1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
|
// Copyright (C) 2015-2025 Jonathan Müller and foonathan/memory contributors
// SPDX-License-Identifier: Zlib
#ifndef FOONATHAN_MEMORY_MEMORY_STACK_HPP_INCLUDED
#define FOONATHAN_MEMORY_MEMORY_STACK_HPP_INCLUDED
/// \file
/// Class \ref foonathan::memory::memory_stack and its \ref foonathan::memory::allocator_traits specialization.
// Inform that foonathan::memory::memory_stack::min_block_size API is available
#define FOONATHAN_MEMORY_MEMORY_STACK_HAS_MIN_BLOCK_SIZE
#include <cstdint>
#include <type_traits>
#include "detail/assert.hpp"
#include "detail/memory_stack.hpp"
#include "config.hpp"
#include "error.hpp"
#include "memory_arena.hpp"
namespace foonathan
{
namespace memory
{
#if !defined(DOXYGEN)
template <class Impl>
class memory_stack;
#endif
namespace detail
{
class stack_marker
{
std::size_t index;
char* top;
const char* end;
stack_marker(std::size_t i, const detail::fixed_memory_stack& s,
const char* e) noexcept
: index(i), top(s.top()), end(e)
{
}
friend bool operator==(const stack_marker& lhs, const stack_marker& rhs) noexcept
{
if (lhs.index != rhs.index)
return false;
FOONATHAN_MEMORY_ASSERT_MSG(lhs.end == rhs.end, "you must not compare two "
"stack markers from different "
"stacks");
return lhs.top == rhs.top;
}
friend bool operator!=(const stack_marker& lhs, const stack_marker& rhs) noexcept
{
return !(rhs == lhs);
}
friend bool operator<(const stack_marker& lhs, const stack_marker& rhs) noexcept
{
if (lhs.index != rhs.index)
return lhs.index < rhs.index;
FOONATHAN_MEMORY_ASSERT_MSG(lhs.end == rhs.end, "you must not compare two "
"stack markers from different "
"stacks");
return lhs.top < rhs.top;
}
friend bool operator>(const stack_marker& lhs, const stack_marker& rhs) noexcept
{
return rhs < lhs;
}
friend bool operator<=(const stack_marker& lhs, const stack_marker& rhs) noexcept
{
return !(rhs < lhs);
}
friend bool operator>=(const stack_marker& lhs, const stack_marker& rhs) noexcept
{
return !(lhs < rhs);
}
template <class Impl>
friend class memory::memory_stack;
};
struct memory_stack_leak_handler
{
void operator()(std::ptrdiff_t amount);
};
} // namespace detail
/// A stateful \concept{concept_rawallocator,RawAllocator} that provides stack-like (LIFO) allocations.
/// It uses a \ref memory_arena with a given \c BlockOrRawAllocator defaulting to \ref growing_block_allocator to allocate huge blocks
/// and saves a marker to the current top.
/// Allocation simply moves this marker by the appropriate number of bytes and returns the pointer at the old marker position,
/// deallocation is not directly supported, only setting the marker to a previously queried position.
/// \ingroup allocator
template <class BlockOrRawAllocator = default_allocator>
class memory_stack
: FOONATHAN_EBO(detail::default_leak_checker<detail::memory_stack_leak_handler>)
{
public:
using allocator_type = make_block_allocator_t<BlockOrRawAllocator>;
/// \returns The minimum block size required for a stack containing the given amount of memory.
/// If a stack is created with the result of `min_block_size(n)`, the resulting capacity will be exactly `n`.
/// \requires `byte_size` must be a positive number.
/// \note Due to debug fence sizes, the actual amount of usable memory can vary.
/// However, this is impossible to compute without knowing the exact allocation pattern before,
/// so this is just a rough estimate.
static constexpr std::size_t min_block_size(std::size_t byte_size) noexcept
{
return detail::memory_block_stack::implementation_offset() + byte_size;
}
/// \effects Creates it with a given initial block size and and other constructor arguments for the \concept{concept_blockallocator,BlockAllocator}.
/// It will allocate the first block and sets the top to its beginning.
/// \requires \c block_size must be at least \c min_block_size(1).
template <typename... Args>
explicit memory_stack(std::size_t block_size, Args&&... args)
: arena_(block_size, detail::forward<Args>(args)...),
stack_(arena_.allocate_block().memory)
{
}
/// \effects Allocates a memory block of given size and alignment.
/// It simply moves the top marker.
/// If there is not enough space on the current memory block,
/// a new one will be allocated by the \concept{concept_blockallocator,BlockAllocator} or taken from a cache
/// and used for the allocation.
/// \returns A \concept{concept_node,node} with given size and alignment.
/// \throws Anything thrown by the \concept{concept_blockallocator,BlockAllocator} on growth
/// or \ref bad_allocation_size if \c size is too big.
/// \requires \c size and \c alignment must be valid.
void* allocate(std::size_t size, std::size_t alignment)
{
auto fence = detail::debug_fence_size;
auto offset = detail::align_offset(stack_.top() + fence, alignment);
if (!stack_.top()
|| fence + offset + size + fence > std::size_t(block_end() - stack_.top()))
{
// need to grow
auto block = arena_.allocate_block();
stack_ = detail::fixed_memory_stack(block.memory);
// new alignment required for over-aligned types
offset = detail::align_offset(stack_.top() + fence, alignment);
auto needed = fence + offset + size + fence;
detail::check_allocation_size<bad_allocation_size>(needed, block.size, info());
}
return stack_.allocate_unchecked(size, offset);
}
/// \effects Allocates a memory block of given size and alignment,
/// similar to \ref allocate().
/// But it does not attempt a growth if the arena is empty.
/// \returns A \concept{concept_node,node} with given size and alignment
/// or `nullptr` if there wasn't enough memory available.
void* try_allocate(std::size_t size, std::size_t alignment) noexcept
{
return stack_.allocate(block_end(), size, alignment);
}
/// The marker type that is used for unwinding.
/// The exact type is implementation defined,
/// it is only required that it is efficiently copyable
/// and has all the comparision operators defined for two markers on the same stack.
/// Two markers are equal, if they are copies or created from two `top()` calls without a call to `unwind()` or `allocate()`.
/// A marker `a` is less than marker `b`, if after `a` was obtained, there was one or more call to `allocate()` and no call to `unwind()`.
using marker = FOONATHAN_IMPL_DEFINED(detail::stack_marker);
/// \returns A marker to the current top of the stack.
marker top() const noexcept
{
return {arena_.size() - 1, stack_, block_end()};
}
/// \effects Unwinds the stack to a certain marker position.
/// This sets the top pointer of the stack to the position described by the marker
/// and has the effect of deallocating all memory allocated since the marker was obtained.
/// If any memory blocks are unused after the operation,
/// they are not deallocated but put in a cache for later use,
/// call \ref shrink_to_fit() to actually deallocate them.
/// \requires The marker must point to memory that is still in use and was the whole time,
/// i.e. it must have been pointed below the top at all time.
void unwind(marker m) noexcept
{
FOONATHAN_MEMORY_ASSERT(m <= top());
detail::debug_check_pointer([&] { return m.index <= arena_.size() - 1; }, info(),
m.top);
if (std::size_t to_deallocate = (arena_.size() - 1) - m.index) // different index
{
arena_.deallocate_block();
for (std::size_t i = 1; i != to_deallocate; ++i)
arena_.deallocate_block();
detail::debug_check_pointer(
[&]
{
auto cur = arena_.current_block();
return m.end == static_cast<char*>(cur.memory) + cur.size;
},
info(), m.top);
// mark memory from new top to end of the block as freed
detail::debug_fill_free(m.top, std::size_t(m.end - m.top), 0);
stack_ = detail::fixed_memory_stack(m.top);
}
else // same index
{
detail::debug_check_pointer([&] { return stack_.top() >= m.top; }, info(),
m.top);
stack_.unwind(m.top);
}
}
/// \effects \ref unwind() does not actually do any deallocation of blocks on the \concept{concept_blockallocator,BlockAllocator},
/// unused memory is stored in a cache for later reuse.
/// This function clears that cache.
void shrink_to_fit() noexcept
{
arena_.shrink_to_fit();
}
/// \returns The amount of memory remaining in the current block.
/// This is the number of bytes that are available for allocation
/// before the cache or \concept{concept_blockallocator,BlockAllocator} needs to be used.
std::size_t capacity_left() const noexcept
{
return std::size_t(block_end() - stack_.top());
}
/// \returns The size of the next memory block after the current block is exhausted and the arena grows.
/// This function just forwards to the \ref memory_arena.
/// \note All of it is available for the stack to use, but due to fences and alignment buffers,
/// this may not be the exact amount of memory usable for the user.
std::size_t next_capacity() const noexcept
{
return arena_.next_block_size();
}
/// \returns A reference to the \concept{concept_blockallocator,BlockAllocator} used for managing the arena.
/// \requires It is undefined behavior to move this allocator out into another object.
allocator_type& get_allocator() noexcept
{
return arena_.get_allocator();
}
private:
allocator_info info() const noexcept
{
return {FOONATHAN_MEMORY_LOG_PREFIX "::memory_stack", this};
}
const char* block_end() const noexcept
{
auto block = arena_.current_block();
return static_cast<const char*>(block.memory) + block.size;
}
memory_arena<allocator_type> arena_;
detail::fixed_memory_stack stack_;
friend allocator_traits<memory_stack<BlockOrRawAllocator>>;
friend composable_allocator_traits<memory_stack<BlockOrRawAllocator>>;
};
/// Simple utility that automatically unwinds a `Stack` to a previously saved location.
/// A `Stack` is anything that provides a `marker`, a `top()` function returning a `marker`
/// and an `unwind()` function to unwind to a `marker`,
/// like a \ref foonathan::memory::memory_stack
/// \ingroup allocator
template <class Stack = memory_stack<>>
class memory_stack_raii_unwind
{
public:
using stack_type = Stack;
using marker_type = typename stack_type::marker;
/// \effects Same as `memory_stack_raii_unwind(stack, stack.top())`.
explicit memory_stack_raii_unwind(stack_type& stack) noexcept
: memory_stack_raii_unwind(stack, stack.top())
{
}
/// \effects Creates the unwinder by giving it the stack and the marker.
/// \requires The stack must live longer than this object.
memory_stack_raii_unwind(stack_type& stack, marker_type marker) noexcept
: marker_(marker), stack_(&stack)
{
}
/// \effects Move constructs the unwinder by taking the saved position from `other`.
/// `other.will_unwind()` will return `false` after it.
memory_stack_raii_unwind(memory_stack_raii_unwind&& other) noexcept
: marker_(other.marker_), stack_(other.stack_)
{
other.stack_ = nullptr;
}
/// \effects Unwinds to the previously saved location,
/// if there is any, by calling `unwind()`.
~memory_stack_raii_unwind() noexcept
{
if (stack_)
stack_->unwind(marker_);
}
/// \effects Move assigns the unwinder by taking the saved position from `other`.
/// `other.will_unwind()` will return `false` after it.
memory_stack_raii_unwind& operator=(memory_stack_raii_unwind&& other) noexcept
{
if (stack_)
stack_->unwind(marker_);
marker_ = other.marker_;
stack_ = other.stack_;
other.stack_ = nullptr;
return *this;
}
/// \effects Removes the location without unwinding it.
/// `will_unwind()` will return `false`.
void release() noexcept
{
stack_ = nullptr;
}
/// \effects Unwinds to the saved location explictly.
/// \requires `will_unwind()` must return `true`.
void unwind() noexcept
{
FOONATHAN_MEMORY_ASSERT(will_unwind());
stack_->unwind(marker_);
}
/// \returns Whether or not the unwinder will actually unwind.
/// \note It will not unwind if it is in the moved-from state.
bool will_unwind() const noexcept
{
return stack_ != nullptr;
}
/// \returns The saved marker, if there is any.
/// \requires `will_unwind()` must return `true`.
marker_type get_marker() const noexcept
{
FOONATHAN_MEMORY_ASSERT(will_unwind());
return marker_;
}
/// \returns The stack it will unwind.
/// \requires `will_unwind()` must return `true`.
stack_type& get_stack() const noexcept
{
FOONATHAN_MEMORY_ASSERT(will_unwind());
return *stack_;
}
private:
marker_type marker_;
stack_type* stack_;
};
#if FOONATHAN_MEMORY_EXTERN_TEMPLATE
extern template class memory_stack<>;
extern template class memory_stack_raii_unwind<memory_stack<>>;
#endif
/// Specialization of the \ref allocator_traits for \ref memory_stack classes.
/// \note It is not allowed to mix calls through the specialization and through the member functions,
/// i.e. \ref memory_stack::allocate() and this \c allocate_node().
/// \ingroup allocator
template <class BlockAllocator>
class allocator_traits<memory_stack<BlockAllocator>>
{
public:
using allocator_type = memory_stack<BlockAllocator>;
using is_stateful = std::true_type;
/// \returns The result of \ref memory_stack::allocate().
static void* allocate_node(allocator_type& state, std::size_t size,
std::size_t alignment)
{
auto mem = state.allocate(size, alignment);
state.on_allocate(size);
return mem;
}
/// \returns The result of \ref memory_stack::allocate().
static void* allocate_array(allocator_type& state, std::size_t count, std::size_t size,
std::size_t alignment)
{
return allocate_node(state, count * size, alignment);
}
/// @{
/// \effects Does nothing besides bookmarking for leak checking, if that is enabled.
/// Actual deallocation can only be done via \ref memory_stack::unwind().
static void deallocate_node(allocator_type& state, void*, std::size_t size,
std::size_t) noexcept
{
state.on_deallocate(size);
}
static void deallocate_array(allocator_type& state, void* ptr, std::size_t count,
std::size_t size, std::size_t alignment) noexcept
{
deallocate_node(state, ptr, count * size, alignment);
}
/// @}
/// @{
/// \returns The maximum size which is \ref memory_stack::next_capacity().
static std::size_t max_node_size(const allocator_type& state) noexcept
{
return state.next_capacity();
}
static std::size_t max_array_size(const allocator_type& state) noexcept
{
return state.next_capacity();
}
/// @}
/// \returns The maximum possible value since there is no alignment restriction
/// (except indirectly through \ref memory_stack::next_capacity()).
static std::size_t max_alignment(const allocator_type&) noexcept
{
return std::size_t(-1);
}
};
/// Specialization of the \ref composable_allocator_traits for \ref memory_stack classes.
/// \ingroup allocator
template <class BlockAllocator>
class composable_allocator_traits<memory_stack<BlockAllocator>>
{
public:
using allocator_type = memory_stack<BlockAllocator>;
/// \returns The result of \ref memory_stack::try_allocate().
static void* try_allocate_node(allocator_type& state, std::size_t size,
std::size_t alignment) noexcept
{
return state.try_allocate(size, alignment);
}
/// \returns The result of \ref memory_stack::try_allocate().
static void* try_allocate_array(allocator_type& state, std::size_t count,
std::size_t size, std::size_t alignment) noexcept
{
return state.try_allocate(count * size, alignment);
}
/// @{
/// \effects Does nothing.
/// \returns Whether the memory will be deallocated by \ref memory_stack::unwind().
static bool try_deallocate_node(allocator_type& state, void* ptr, std::size_t,
std::size_t) noexcept
{
return state.arena_.owns(ptr);
}
static bool try_deallocate_array(allocator_type& state, void* ptr, std::size_t count,
std::size_t size, std::size_t alignment) noexcept
{
return try_deallocate_node(state, ptr, count * size, alignment);
}
/// @}
};
#if FOONATHAN_MEMORY_EXTERN_TEMPLATE
extern template class allocator_traits<memory_stack<>>;
extern template class composable_allocator_traits<memory_stack<>>;
#endif
} // namespace memory
} // namespace foonathan
#endif // FOONATHAN_MEMORY_MEMORY_STACK_HPP_INCLUDED
|