1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
|
// Copyright (C) 2015-2025 Jonathan Müller and foonathan/memory contributors
// SPDX-License-Identifier: Zlib
#ifndef FOONATHAN_MEMORY_TEST_BENCHMARK_HPP_INCLUDED
#define FOONATHAN_MEMORY_TEST_BENCHMARK_HPP_INCLUDED
// Benchmarking functions and allocator scenarios
#include <algorithm>
#include <chrono>
#include <random>
#include <vector>
#include "foonathan/memory/allocator_traits.hpp"
using unit = std::chrono::nanoseconds;
template <typename F, typename... Args>
std::size_t measure(F func, Args&&... args)
{
auto start = std::chrono::system_clock::now();
func(std::forward<Args>(args)...);
auto duration = std::chrono::duration_cast<unit>(std::chrono::system_clock::now() - start);
return std::size_t(duration.count());
}
std::size_t sample_size = 1024u;
template <typename F, typename Alloc, typename... Args>
std::size_t benchmark(F measure_func, Alloc make_alloc, Args&&... args)
{
auto min_time = std::size_t(-1);
for (std::size_t i = 0u; i != sample_size; ++i)
{
auto alloc = make_alloc();
auto time = measure_func(alloc, std::forward<Args>(args)...);
if (time < min_time)
min_time = time;
}
return min_time;
}
struct single
{
std::size_t count;
single(std::size_t c) : count(c) {}
template <class RawAllocator>
std::size_t operator()(RawAllocator& alloc, std::size_t size)
{
using namespace foonathan::memory;
return measure(
[&]()
{
for (std::size_t i = 0u; i != count; ++i)
{
volatile auto ptr =
allocator_traits<RawAllocator>::allocate_node(alloc, size, 1);
allocator_traits<RawAllocator>::deallocate_node(alloc, ptr, size, 1);
}
});
}
template <class RawAllocator>
std::size_t operator()(RawAllocator& alloc, std::size_t array_size, std::size_t node_size)
{
return measure(
[&]()
{
for (std::size_t i = 0u; i != count; ++i)
{
auto ptr = allocator_traits<RawAllocator>::allocate_array(alloc, array_size,
node_size, 1);
allocator_traits<RawAllocator>::deallocate_array(alloc, ptr, array_size,
node_size, 1);
}
});
}
static const char* name()
{
return "single";
}
};
struct basic_bulk
{
using order_func = void (*)(std::vector<void*>&);
order_func func;
std::size_t count;
basic_bulk(order_func f, std::size_t c) : func(f), count(c) {}
template <class RawAllocator>
std::size_t operator()(RawAllocator& alloc, std::size_t node_size)
{
using namespace foonathan::memory;
std::vector<void*> ptrs;
ptrs.reserve(count);
auto alloc_t = measure(
[&]()
{
for (std::size_t i = 0u; i != count; ++i)
ptrs.push_back(
allocator_traits<RawAllocator>::allocate_node(alloc, node_size, 1));
});
func(ptrs);
auto dealloc_t = measure(
[&]()
{
for (auto ptr : ptrs)
allocator_traits<RawAllocator>::deallocate_node(alloc, ptr, node_size, 1);
});
return alloc_t + dealloc_t;
}
template <class RawAllocator>
std::size_t operator()(RawAllocator& alloc, std::size_t array_size, std::size_t node_size)
{
using namespace foonathan::memory;
std::vector<void*> ptrs;
ptrs.reserve(count);
auto alloc_t = measure(
[&]()
{
for (std::size_t i = 0u; i != count; ++i)
ptrs.push_back(allocator_traits<RawAllocator>::allocate_array(alloc, array_size,
node_size, 1));
});
func(ptrs);
auto dealloc_t = measure(
[&]()
{
for (auto ptr : ptrs)
allocator_traits<RawAllocator>::deallocate_array(alloc, ptr, array_size,
node_size, 1);
});
return alloc_t + dealloc_t;
}
};
struct bulk : basic_bulk
{
bulk(std::size_t c) : basic_bulk([](std::vector<void*>&) {}, c) {}
static const char* name()
{
return "bulk";
}
};
struct bulk_reversed : basic_bulk
{
bulk_reversed(std::size_t c)
: basic_bulk([](std::vector<void*>& ptrs) { std::reverse(ptrs.begin(), ptrs.end()); }, c)
{
}
static const char* name()
{
return "bulk_reversed";
}
};
struct butterfly : basic_bulk
{
butterfly(std::size_t c)
: basic_bulk([](std::vector<void*>& ptrs)
{ std::shuffle(ptrs.begin(), ptrs.end(), std::mt19937{}); }, c)
{
}
static const char* name()
{
return "butterfly\n";
}
};
#endif // FOONATHAN_MEMORY_TEST_BENCHMARK_HPP_INCLUDED
|