1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
|
# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Library General Public
# License as published by the Free Software Foundation; either
# version 2 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Library General Public License for more details.
#
# You should have received a copy of the GNU Library General
# Public License along with this library; if not, write to the
# Free Foundation, Inc., 59 Temple Place, Suite 330, Boston,
# MA 02111-1307 USA
# Copyrights (C)
# for this R-port:
# 1999 - 2004, Diethelm Wuertz, GPL
# Diethelm Wuertz <wuertz@itp.phys.ethz.ch>
# info@rmetrics.org
# www.rmetrics.org
# for the code accessed (or partly included) from other R-ports:
# see R's copyright and license files
# for the code accessed (or partly included) from contributed R-ports
# and other sources
# see Rmetrics's copyright file
################################################################################
# FUNCTION: DESCRIPTION:
# RollGeskeWhaleyOption Roll-Geske-Whaley Calls on Dividend Paying Stocks
# BAWAmericanApproxOption Barone-Adesi and Whaley Approximation
# BSAmericanApproxOption Bjerksund and Stensland Approximation
################################################################################
RollGeskeWhaleyOption =
function(S, X, time1, Time2, r, D, sigma, title = NULL, description = NULL)
{ # A function implemented by Diethelm Wuertz
# Description:
# Calculates the option price of an American call on a stock
# paying a single dividend with specified time to divident
# payout. The option valuation formula derived by Roll, Geske
# and Whaley is used.
# References:
# Haug E.G., The Complete Guide to Option Pricing Formulas
# FUNCTION:
# Settings:
big = 100000000
eps = 1.0e-5
t1 = time1
T2 = Time2
# Compute:
Sx = S - D * exp(-r * t1)
if(D <= X * (1 - exp(-r*(T2-t1)))) {
result = GBSOption("c", Sx, X, T2, r, b=r, sigma)@price
cat("\nWarning: Not optimal to exercise\n")
return(result) }
ci = GBSOption("c", S, X, T2-t1, r, b=r, sigma)@price
HighS = S
while ( ci-HighS-D+X > 0 && HighS < big ) {
HighS = HighS * 2
ci = GBSOption("c", HighS, X, T2-t1, r, b=r, sigma)@price }
if(HighS > big) {
result = GBSOption("c", Sx, X, T2, r, b=r, sigma)@price
stop()}
LowS = 0
I = HighS * 0.5
ci = GBSOption("c", I, X, T2-t1, r, b=r, sigma)@price
# Search algorithm to find the critical stock price I
while ( abs(ci-I-D+X) > eps && HighS - LowS > eps ) {
if(ci-I-D+X < 0 ) { HighS = I }
else { LowS = I }
I = (HighS + LowS) / 2
ci = GBSOption("c", I, X, T2-t1, r, b=r, sigma)@price }
a1 = (log(Sx/X) + (r+sigma^2/2)*T2) / (sigma*sqrt(T2))
a2 = a1 - sigma*sqrt(T2)
b1 = (log(Sx/I) + (r+sigma^2/2)*t1) / (sigma*sqrt(t1))
b2 = b1 - sigma*sqrt(t1)
result = Sx*CND(b1) + Sx*CBND(a1,-b1,-sqrt(t1/T2)) -
X*exp(-r*T2)*CBND(a2,-b2,-sqrt(t1/T2)) -
(X-D)*exp(-r*t1)*CND(b2)
# Parameters:
# S, X, time1, Time2, r, D, sigma
param = list()
param$S = S
param$X = X
param$time1 = time1
param$Time2 = Time2
param$r = r
param$D = D
param$sigma = sigma
# Add title and description:
if(is.null(title)) title = "Roll Geske Whaley Option"
if(is.null(description)) description = as.character(date())
# Return Value:
new("fOPTION",
call = match.call(),
parameters = param,
price = result,
title = title,
description = description
)
}
# ******************************************************************************
BAWAmericanApproxOption =
function(TypeFlag = c("c", "p"), S, X, Time, r, b, sigma, title = NULL,
description = NULL)
{ # A function implemented by Diethelm Wuertz
# Description:
# Calculates the option price of an American call or put
# option on an underlying asset for a given cost-of-carry rate.
# The quadratic approximation method by Barone-Adesi and
# Whaley is used.
# References:
# Haug E.G., The Complete Guide to Option Pricing Formulas
# FUNCTION:
# Settings:
TypeFlag = TypeFlag[1]
# Compute:
if(TypeFlag == "c") {
result = .BAWAmCallApproxOption(S, X, Time, r, b, sigma) }
if(TypeFlag == "p") {
result = .BAWAmPutApproxOption(S, X, Time, r, b, sigma) }
# Parameters:
# TypeFlag = c("c", "p"), S, X, Time, r, b, sigma
param = list()
param$TypeFlag = TypeFlag
param$S = S
param$X = X
param$Time = Time
param$r = r
param$b = b
param$sigma = sigma
# Add title and description:
if(is.null(title)) title = "BAW American Approximated Option"
if(is.null(description)) description = as.character(date())
# Return Value:
new("fOPTION",
call = match.call(),
parameters = param,
price = result,
title = title,
description = description
)
}
.BAWAmCallApproxOption <-
function(S, X, Time, r, b, sigma)
{
# Internal Function - The Call:
# Compute:
if(b >= r) {
result = GBSOption("c", S, X, Time, r, b, sigma)@price }
else {
Sk = .bawKc(X, Time, r, b, sigma)
n = 2*b/sigma^2
K = 2*r/(sigma^2*(1-exp(-r*Time)))
d1 = (log(Sk/X)+(b+sigma^2/2)*Time)/(sigma*sqrt(Time))
Q2 = (-(n-1)+sqrt((n-1)^2+4*K))/2
a2 = (Sk/Q2)*(1-exp((b-r)*Time)*CND(d1))
if(S < Sk) {
result = GBSOption("c", S, X, Time, r, b, sigma)@price +
a2*(S/Sk)^Q2
} else {
result = S-X
}
}
# Return Value:
result
}
.bawKc <-
function(X, Time, r, b, sigma)
{
# Newton Raphson algorithm to solve for the critical commodity
# price for a Call.
# Calculation of seed value, Si
n = 2*b/sigma^2
m = 2*r/sigma^2
q2u = (-(n-1)+sqrt((n-1)^2+4*m))/2
Su = X/(1-1/q2u)
h2 = -(b*Time+2*sigma*sqrt(Time))*X/(Su-X)
Si = X+(Su-X)*(1-exp(h2))
K = 2*r/(sigma^2*(1-exp(-r*Time)))
d1 = (log(Si/X)+(b+sigma^2/2)*Time)/(sigma*sqrt(Time))
Q2 = (-(n-1)+sqrt((n-1)^2+4*K))/2
LHS = Si-X
RHS = GBSOption("c", Si, X, Time, r, b, sigma)@price +
(1-exp((b-r)*Time)*CND(d1))*Si/Q2
bi = exp((b-r)*Time)*CND(d1)*(1-1/Q2) +
(1-exp((b-r)*Time)*CND(d1)/(sigma*sqrt(Time)))/Q2
E = 0.000001
# Newton Raphson algorithm for finding critical price Si
while (abs(LHS-RHS)/X > E) {
Si = (X+RHS-bi*Si)/(1-bi)
d1 = (log(Si/X)+(b+sigma^2/2)*Time)/(sigma*sqrt(Time))
LHS = Si-X
RHS = GBSOption("c", Si, X, Time, r, b, sigma)@price +
(1-exp((b-r)*Time)*CND(d1))*Si/Q2
bi = exp((b-r)*Time)*CND(d1)*(1-1/Q2) +
( 1-exp((b-r)*Time)*CND(d1)/(sigma*sqrt(Time)))/Q2 }
# Return Value:
Si
}
.BAWAmPutApproxOption <-
function(S, X, Time, r, b, sigma)
{
# Internal Function - The Put:
# Compute:
Sk = .bawKp(X, Time, r, b, sigma)
n = 2*b/sigma^2
K = 2*r/(sigma^2*(1-exp(-r*Time)))
d1 = (log(Sk/X)+(b+sigma^2/2)*Time)/(sigma*sqrt(Time))
Q1 = (-(n-1)-sqrt((n-1)^2+4*K))/2
a1 = -(Sk/Q1)*(1-exp((b-r)*Time)*CND(-d1))
if(S > Sk) {
result = GBSOption("p", S, X, Time, r, b, sigma)@price + a1*(S/Sk)^Q1
} else {
result = X-S
}
# Return Value:
result
}
.bawKp <-
function(X, Time, r, b, sigma)
{
# Internal Function - used for the Put:
# Newton Raphson algorithm to solve for the critical commodity
# price for a Put.
# Calculation of seed value, Si
n = 2*b/sigma^2
m = 2*r/sigma^2
q1u = (-(n-1)-sqrt((n-1)^2+4*m))/2
Su = X/(1-1/q1u)
h1 = (b*Time-2*sigma*sqrt(Time))*X/(X-Su)
Si = Su+(X-Su)*exp(h1)
K = 2*r/(sigma^2*(1-exp(-r*Time)))
d1 = (log(Si/X)+(b+sigma^2/2)*Time)/(sigma*sqrt(Time))
Q1 = (-(n-1)-sqrt((n-1)^2+4*K))/2
LHS = X-Si
RHS = GBSOption("p", Si, X, Time, r, b, sigma)@price -
(1-exp((b-r)*Time)*CND(-d1))*Si/Q1
bi = -exp((b-r)*Time)*CND(-d1)*(1-1/Q1) -
(1+exp((b-r)*Time)*CND(-d1)/(sigma*sqrt(Time)))/Q1
E = 0.000001
# Newton Raphson algorithm for finding critical price Si
while (abs(LHS-RHS)/X > E ) {
Si = (X-RHS+bi*Si)/(1+bi)
d1 = (log(Si/X)+(b+sigma^2/2)*Time)/(sigma*sqrt(Time))
LHS = X-Si
RHS = GBSOption("p", Si, X, Time, r, b, sigma)@price -
(1-exp((b-r)*Time)*CND(-d1))*Si/Q1
bi = -exp((b-r)*Time)*CND(-d1)*(1-1/Q1) -
(1+exp((b-r)*Time)*CND(-d1)/(sigma*sqrt(Time)))/Q1 }
# Return Value:
Si
}
# ------------------------------------------------------------------------------
BSAmericanApproxOption =
function(TypeFlag = c("c", "p"), S, X, Time, r, b, sigma, title = NULL,
description = NULL)
{ # A function implemented by Diethelm Wuertz
# Description:
# Calculates the option price of an American call or
# put option stocks, futures, and currencies. The
# approximation method by Bjerksund and Stensland is used.
# References:
# Haug E.G., The Complete Guide to Option Pricing Formulas
# FUNCTION:
# Settings:
TypeFlag = TypeFlag[1]
# The Bjerksund and Stensland (1993) American approximation:
if(TypeFlag == "c") {
result = .BSAmericanCallApprox(S, X, Time, r, b, sigma) }
if(TypeFlag == "p") {
# Use the Bjerksund and Stensland put-call transformation
result = .BSAmericanCallApprox(X, S, Time, r - b, -b, sigma) }
# Parameters:
# TypeFlag = c("c", "p"), S, X, Time, r, b, sigma
param = list()
param$TypeFlag = TypeFlag
param$S = S
param$X = X
param$Time = Time
param$r = r
param$b = b
param$sigma = sigma
if(!is.na(result$TriggerPrice)) param$TrigerPrice = result$TriggerPrice
# Add title and description:
if(is.null(title)) title = "BS American Approximated Option"
if(is.null(description)) description = as.character(date())
# Return Value:
new("fOPTION",
call = match.call(),
parameters = param,
price = result$Premium,
title = title,
description = description
)
}
.BSAmericanCallApprox <-
function(S, X, Time, r, b, sigma)
{
# Call Approximation:
if(b >= r) {
# Never optimal to exersice before maturity
result = list(
Premium = GBSOption("c", S, X, Time, r, b, sigma)@price,
TriggerPrice = NA)
} else {
Beta = (1/2 - b/sigma^2) + sqrt((b/sigma^2 - 1/2)^2 + 2*r/sigma^2)
BInfinity = Beta/(Beta-1) * X
B0 = max(X, r/(r-b) * X)
ht = -(b*Time + 2*sigma*sqrt(Time)) * B0/(BInfinity-B0)
# Trigger Price I:
I = B0 + (BInfinity-B0) * (1 - exp(ht))
alpha = (I-X) * I^(-Beta)
if(S >= I) {
result = list(
Premium = S-X,
TriggerPrice = I) }
else {
result = list(
Premium = alpha*S^Beta - alpha*.bsPhi(S,Time,Beta,I,I,r,b,sigma) +
.bsPhi(S,Time,1,I,I,r,b,sigma) - .bsPhi(S,Time,1,X,I,r,b,sigma) -
X*.bsPhi(S,Time,0,I,I,r,b,sigma) + X*.bsPhi(S,Time,0,X,I,r,b,sigma),
TriggerPrice = I) } }
result}
.bsPhi <-
function(S, Time, gamma, H, I, r, b, sigma)
{
# Utility function phi:
lambda = (-r + gamma*b + 0.5*gamma * (gamma-1)*sigma^2) * Time
d = -(log(S/H) + (b + (gamma-0.5)*sigma^2)*Time) /
(sigma*sqrt(Time))
kappa = 2 * b / (sigma^2) + (2*gamma - 1)
result = exp(lambda)*S^gamma *
(CND(d)-(I/S)^kappa*CND(d-2*log(I/S)/(sigma*sqrt(Time))))
# Return Value:
result
}
################################################################################
|