File: runitLowDiscrepancy.R

package info (click to toggle)
foptions 260.72-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 428 kB
  • ctags: 62
  • sloc: fortran: 1,262; makefile: 13
file content (222 lines) | stat: -rwxr-xr-x 6,633 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222

# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Library General Public
# License as published by the Free Software Foundation; either
# version 2 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 
# GNU Library General Public License for more details.
#
# You should have received a copy of the GNU Library General 
# Public License along with this library; if not, write to the 
# Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, 
# MA  02111-1307  USA

# Copyrights (C)
# for this R-port: 
#   1999 - 2007, Diethelm Wuertz, GPL
#   Diethelm Wuertz <wuertz@itp.phys.ethz.ch>
#   info@rmetrics.org
#   www.rmetrics.org
# for the code accessed (or partly included) from other R-ports:
#   see R's copyright and license files
# for the code accessed (or partly included) from contributed R-ports
# and other sources
#   see Rmetrics's copyright file


################################################################################
# FUNCTION:             DESCRIPTION:                      
#  runif.pseudo           Uniform Pseudo Random number sequence
#  rnorm.pseudo           Normal Pseudo Random number sequence
#  runif.halton           Uniform Halton low discrepancy sequence
#  rnorm.halton           Normal Halton low discrepancy sequence
#  runif.sobol            Uniform Sobol low discrepancy sequence
#  rnorm.sobol            Normal Sobol low discrepancy sequence
################################################################################


test.pseudo = 
function()
{  
    # Pseudo Random Numbers:
    #   Uniform and Normal pseudo random number sequences
    
    # RVs:
    RNGkind(kind = "Marsaglia-Multicarry", normal.kind = "Inversion")
    set.seed(4711, kind = "Marsaglia-Multicarry")
    
    # Graphics Frame:
    par(mfrow = c(2, 2), cex = 0.75)
    
    # Histogram Uniform:
    runif.pseudo(n = 10, dimension = 5)
    r = runif.pseudo(n = 1000, dimension = 1)
    hist(r, probability = TRUE, main = "Uniform Pseudo", xlab = "x", 
        col = "steelblue", border = "white")
    abline (h = 1, col = "orange", lwd = 2)
        
    # Scatterplot Uniform:
    r = runif.pseudo(n = 1000, dimension = 2)
    plot(r, cex = 0.5, main = "Scatterplot Uniform Pseudo")
    
    # Histogram Normal:
    rnorm.pseudo(n = 10, dimension = 5)
    r = rnorm.pseudo(n = 1000, dimension = 1)
    hist(r, probability = TRUE, xlim = c(-3, 3), main = "Normal Pseudo", 
        xlab = "x", col = "steelblue", border = "white")
    x = seq(-3, 3, length = 301)
    lines(x, dnorm(x), col = "orange", lwd = 2)
          
    # Scatterplot Normal:
    r = rnorm.pseudo(n = 1000, dimension = 2)
    plot(r, cex = 0.5, main = "Scatterplot Normal Pseudo")

    # Return Value:
    return()    
}


# ------------------------------------------------------------------------------


test.halton = 
function()
{
    # Halton Sequence:
    #   Uniform and Normal Halton low discrepancy sequences
    
    # RVs:
    RNGkind(kind = "Marsaglia-Multicarry", normal.kind = "Inversion")
    set.seed(4711, kind = "Marsaglia-Multicarry")
    
    # Graphics Frame:
    par(mfrow = c(2, 2), cex = 0.75)
    
    # Histogram Uniform:
    runif.halton(n = 10, dimension = 5)
    r = runif.halton(n = 5000, dimension = 1)
    hist(r, probability = TRUE, main = "Uniform Halton", xlab = "x", 
        col = "steelblue", border = "white")
    abline (h = 1, col = "orange", lwd = 2)
        
    # Scatterplot Uniform:
    r = runif.halton(n = 1000, dimension = 2)
    plot(r, cex = 0.5, main = "Scatterplot Uniform Halton")
    
    # Histogram Normal:
    rnorm.halton(n = 10, dimension = 5)
    r = rnorm.halton(n = 5000, dimension = 1)
    hist(r, probability = TRUE, xlim = c(-3, 3), main = "Normal Halton", 
        xlab = "x", col = "steelblue", border = "white")
    x = seq(-3, 3, length = 301)
    lines(x, dnorm(x), col = "orange", lwd = 2)
          
    # Scatterplot Normal:
    r = rnorm.halton(n = 1000, dimension = 2)
    plot(r, cex = 0.5, main = "Scatterplot Normal Halton")

    # Return Value:
    return()    
}


# ------------------------------------------------------------------------------


test.sobol = 
function()
{   
    # Sobol Sequence:
    #   Uniform and Normal Sobol low discrepancy sequences
    
    # RVs:
    RNGkind(kind = "Marsaglia-Multicarry", normal.kind = "Inversion")
    set.seed(4711, kind = "Marsaglia-Multicarry")
    
    # Graphics Frame:
    par(mfrow = c(2, 2), cex = 0.75)
    
    # Histogram Uniform:
    runif.sobol(n = 10, dimension = 5)
    r = runif.sobol(5000, 1)
    hist(r, probability = TRUE, main = "Uniform Sobol", 
        xlab = "x", col = "steelblue", border = "white")
    abline (h = 1, col = "orange", lwd = 2)
    
    # Scatterplot Uniform:
    
    # Histogram Normal:
    rnorm.sobol(n = 10, dimension = 5)
    r = rnorm.sobol(1000, 1)
    hist(r, probability = TRUE, main = "Normal Sobol", 
        xlab = "x", col = "steelblue", border = "white")
    x = seq(-3, 3, length = 301)
    lines(x, dnorm(x), col = "orange", lwd = 2)
    
    # Scatterplot Normal:

    # Return Value:
    return()    
}


# ------------------------------------------------------------------------------


test.scrambling = 
function()
{  
    # Sobol Scrambling:
    
    # RVs:
    RNGkind(kind = "Marsaglia-Multicarry", normal.kind = "Inversion")
    set.seed(4711, kind = "Marsaglia-Multicarry")
    
    # runif.sobol(n, dimension, init = TRUE, scrambling = 0, seed = 4711)
    
    # Unscrambled:
    runif.sobol(10, 5)
    
    # Owen Type Scrambling:
    runif.sobol(10, 5, scrambling = 1)
    
    # Faure-Tezuka  Type Scrambling:
    runif.sobol(10, 5, scrambling = 2)
    
    # Combined Owen and Faure-Tezuka Type Scrambling:
    runif.sobol(10, 5, scrambling = 3)
    
    # Return Value:
    return()    
}


# ------------------------------------------------------------------------------


test.restart = 
function()
{  
    # Sobol Restart:
    
    # RVs:
    RNGkind(kind = "Marsaglia-Multicarry", normal.kind = "Inversion")
    set.seed(4711, kind = "Marsaglia-Multicarry")
    
    # runif.sobol(n, dimension, init = TRUE, scrambling = 0, seed = 4711)
    runif.sobol(10, 5, init = TRUE)
    runif.sobol(10, 5, init = FALSE)
    
    # Seed:
    print(.runif.sobol.seed)

    # Return Value:
    return()    
}


################################################################################