1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
|
\name{BasicAmericanOptions}
\alias{BasicAmericanOptions}
\alias{RollGeskeWhaleyOption}
\alias{BAWAmericanApproxOption}
\alias{BSAmericanApproxOption}
\title{Valuation of Basic American Options}
\description{
A collection and description of functions to valuate
basic American options. Approximative formulas for
American calls are given for the Roll, Geske and
Whaley Approximation, for the Barone-Adesi and Whaley
Approximation, and for the Bjerksund and Stensland
Approximation.
\cr
The functions are:
\tabular{ll}{
\code{RollGeskeWhaleyOption} \tab Roll, Geske and Whaley Approximation, \cr
\code{BAWAmericanApproxOption} \tab Barone-Adesi and Whaley Approximation, \cr
\code{BSAmericanApproxOption} \tab Bjerksund and Stensland Approximation. }
}
\usage{
RollGeskeWhaleyOption(S, X, time1, Time2, r, D, sigma,
title = NULL, description = NULL)
BAWAmericanApproxOption(TypeFlag, S, X, Time, r, b, sigma,
title = NULL, description = NULL)
BSAmericanApproxOption(TypeFlag, S, X, Time, r, b, sigma,
title = NULL, description = NULL)
}
\arguments{
\item{b}{
the annualized cost-of-carry rate, a numeric value;
e.g. 0.1 means 10\% pa.
}
\item{D}{
a single dividend with time to dividend payout \code{t1}.
}
\item{description}{
a character string which allows for a brief description.
}
\item{r}{
the annualized rate of interest, a numeric value;
e.g. 0.25 means 25\% pa.
}
\item{S}{
the asset price, a numeric value.
}
\item{sigma}{
the annualized volatility of the underlying security,
a numeric value; e.g. 0.3 means 30\% volatility pa.
}
\item{Time}{
the time to maturity measured in years, a numeric value.
}
\item{time1, Time2}{
[RollGeskeWhaley*] -
the first value measures time to dividend payout in years,
e.g. 0.25 denotes a quarter, and the second value measures
time to maturity measured in years, a numeric value; e.g.
0.5 means 6 months.
}
\item{title}{
a character string which allows for a project title.
}
\item{TypeFlag}{
a character string either "c" for a call option or a "p"
for a put option.
}
\item{X}{
the exercise price, a numeric value.
}
}
\value{
\code{RollGeskeWhaleyOption} \cr
\code{BAWAmericanApproxOption}
\cr
return the option price, a numeric value.
\cr
\code{BSAmericanApproxOption}
\cr
returns a list with the following two elements: \code{Premium} the
option price, and \code{TriggerPrice} the trigger price.
\cr
}
\details{
\bold{Roll-Geske-Whaley Option:}
\cr\cr
The function \code{RollGeskeWhaleyOption} valuates American calls
on a stock paying a single dividend with specified time to dividend
payout according to the pricing formula derived by Roll, Geske and
Whaley (1977).
\cr
\code{Approximations for American Options:}
\cr\cr
The function \code{BSAmericanApproxOption} valuates American calls
or puts on an underlying asset for a given cost-of-carry rate
according to the quadratic approximation method due to Barone-Adesi
and Whaley (1987). The function \code{BSAmericanApproxOption} valuates
American calls or puts on stocks, futures, and currencies due to
the approximation method of Bjerksund and Stensland (1993).
}
\note{
The functions implement the algorithms to valuate basic American
options as described in Chapter 1.4 of Haug's Option Guide (1997).
}
\references{
Barone-Adesi G., Whaley R.E. (1987);
\emph{Efficient Analytic Approximation of American Option Values},
Journal of Finance 42, 301--320.
Bjerksund P., Stensland G. (1993);
\emph{Closed Form Approximation of American Options},
Scandinavian Journal of Management 9, 87--99.
Geske R. (1979);
\emph{A Note on an Analytical Formula for Unprotected
American Call Options on Stocks with known Dividends},
Journal of Financial Economics 7, 63--81.
Haug E.G. (1997);
\emph{The Complete Guide to Option Pricing Formulas},
Chapter 1, McGraw-Hill, New York.
Roll R. (1977);
\emph{An Analytic Valuation Formula for Unprotected
American Call Options on Stocks with known Dividends},
Journal of Financial Economics 5, 251--258.
}
\author{
Diethelm Wuertz for the Rmetrics \R-port.
}
\examples{
## All the examples are from Haug's Option Guide (1997)
## CHAPTER 1.4: ANALYTICAL MODELS FOR AMERICAN OPTIONS
## Roll-Geske-Whaley American Calls on Dividend Paying
# Stocks [Haug 1.4.1]
RollGeskeWhaleyOption(S = 80, X = 82, time1 = 1/4,
Time2 = 1/3, r = 0.06, D = 4, sigma = 0.30)
## Barone-Adesi and Whaley Approximation for American
# Options [Haug 1.4.2] vs. Black76 Option on Futures:
BAWAmericanApproxOption(TypeFlag = "p", S = 100,
X = 100, Time = 0.5, r = 0.10, b = 0, sigma = 0.25)
Black76Option(TypeFlag = "c", FT = 100, X = 100,
Time = 0.5, r = 0.10, sigma = 0.25)
## Bjerksund and Stensland Approximation for American Options:
BSAmericanApproxOption(TypeFlag = "c", S = 42, X = 40,
Time = 0.75, r = 0.04, b = 0.04-0.08, sigma = 0.35)
}
\keyword{math}
|