File: BasicAmericanOptions.Rd

package info (click to toggle)
foptions 260.72-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 428 kB
  • ctags: 62
  • sloc: fortran: 1,262; makefile: 13
file content (196 lines) | stat: -rwxr-xr-x 5,461 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
\name{BasicAmericanOptions}

\alias{BasicAmericanOptions}

\alias{RollGeskeWhaleyOption}
\alias{BAWAmericanApproxOption}
\alias{BSAmericanApproxOption}


\title{Valuation of Basic American Options}


\description{

    A collection and description of functions to valuate 
    basic American options. Approximative formulas for 
    American calls are given for the Roll, Geske and 
    Whaley Approximation, for the Barone-Adesi and Whaley 
    Approximation, and for the Bjerksund and Stensland 
    Approximation.
    \cr
    
    The functions are:

    \tabular{ll}{
    \code{RollGeskeWhaleyOption} \tab Roll, Geske and Whaley Approximation, \cr
    \code{BAWAmericanApproxOption} \tab Barone-Adesi and Whaley Approximation, \cr
    \code{BSAmericanApproxOption} \tab Bjerksund and Stensland Approximation. }
    
}


\usage{
RollGeskeWhaleyOption(S, X, time1, Time2, r, D, sigma,
    title = NULL, description = NULL) 
BAWAmericanApproxOption(TypeFlag, S, X, Time, r, b, sigma,
    title = NULL, description = NULL)
BSAmericanApproxOption(TypeFlag, S, X, Time, r, b, sigma,
    title = NULL, description = NULL) 
}


\arguments{

    \item{b}{
        the annualized cost-of-carry rate, a numeric value; 
        e.g. 0.1 means 10\% pa.
        }
    \item{D}{
        a single dividend with time to dividend payout \code{t1}.
        }
    \item{description}{
        a character string which allows for a brief description.
        }
    \item{r}{
        the annualized rate of interest, a numeric value; 
        e.g. 0.25 means 25\% pa.
        }
    \item{S}{
        the asset price, a numeric value.
        }
    \item{sigma}{
        the annualized volatility of the underlying security, 
        a numeric value; e.g. 0.3 means 30\% volatility pa.
        }
    \item{Time}{
        the time to maturity measured in years, a numeric value.
        }
    \item{time1, Time2}{
        [RollGeskeWhaley*] - 
        the first value measures time to dividend payout in years, 
        e.g. 0.25 denotes a quarter, and the second value measures 
        time to maturity measured in years, a numeric value; e.g. 
        0.5 means 6 months.
        }
    \item{title}{
        a character string which allows for a project title.
        }
    \item{TypeFlag}{
        a character string either "c" for a call option or a "p" 
        for a put option.
        }
    \item{X}{
        the exercise price, a numeric value.
        }

}


\value{
  
    \code{RollGeskeWhaleyOption} \cr
    \code{BAWAmericanApproxOption}
    \cr
    return the option price, a numeric value.
    \cr
    
    \code{BSAmericanApproxOption}
    \cr
    returns a list with the following two elements: \code{Premium} the 
    option price, and \code{TriggerPrice} the trigger price.  
    \cr
 
}


\details{
    
    \bold{Roll-Geske-Whaley Option:}
    \cr\cr
    The function \code{RollGeskeWhaleyOption} valuates American calls 
    on a stock paying a single dividend with specified time to dividend 
    payout according to the pricing formula derived by Roll, Geske and 
    Whaley (1977).
    \cr
    
    
    \code{Approximations for American Options:} 
    \cr\cr
    The function \code{BSAmericanApproxOption} valuates American calls 
    or puts on an underlying asset for a given cost-of-carry rate 
    according to the quadratic approximation method due to Barone-Adesi 
    and Whaley (1987). The function \code{BSAmericanApproxOption} valuates 
    American calls or puts on stocks, futures, and currencies due to 
    the approximation method of Bjerksund and Stensland (1993).
  
}


\note{
  
    The functions implement the algorithms to valuate basic American 
    options as described in Chapter 1.4 of Haug's Option Guide (1997).
    
}


\references{

Barone-Adesi G., Whaley R.E. (1987);
    \emph{Efficient Analytic Approximation of American Option Values},
    Journal of Finance 42, 301--320.
    
Bjerksund P., Stensland G. (1993);
    \emph{Closed Form Approximation of American Options},
    Scandinavian Journal of Management 9, 87--99.
    
Geske R. (1979);
    \emph{A Note on an Analytical Formula for Unprotected
    American Call Options on Stocks with known Dividends},
    Journal of Financial Economics 7, 63--81.

Haug E.G. (1997); 
    \emph{The Complete Guide to Option Pricing Formulas}, 
    Chapter 1, McGraw-Hill, New York.

Roll R. (1977);
    \emph{An Analytic Valuation Formula for Unprotected
    American Call Options on Stocks with known Dividends},
    Journal of Financial Economics 5, 251--258.
    
}


\author{

    Diethelm Wuertz for the Rmetrics \R-port.

}


\examples{
## All the examples are from Haug's Option Guide (1997)

## CHAPTER 1.4: ANALYTICAL MODELS FOR AMERICAN OPTIONS
       
## Roll-Geske-Whaley American Calls on Dividend Paying 
   # Stocks [Haug 1.4.1]
   RollGeskeWhaleyOption(S = 80, X = 82, time1 = 1/4, 
     Time2 = 1/3, r = 0.06, D = 4, sigma = 0.30)
      
## Barone-Adesi and Whaley Approximation for American 
   # Options [Haug 1.4.2] vs. Black76 Option on Futures:
   BAWAmericanApproxOption(TypeFlag = "p", S = 100, 
     X = 100, Time = 0.5, r = 0.10, b = 0, sigma = 0.25)
   Black76Option(TypeFlag = "c", FT = 100, X = 100, 
     Time = 0.5, r = 0.10, sigma = 0.25)  
     
## Bjerksund and Stensland Approximation for American Options:
   BSAmericanApproxOption(TypeFlag = "c", S = 42, X = 40, 
     Time = 0.75, r = 0.04, b = 0.04-0.08, sigma = 0.35)
}


\keyword{math}