File: bubblechart.cpp

package info (click to toggle)
forge 1.0.1-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,312 kB
  • sloc: cpp: 12,447; ansic: 319; xml: 182; makefile: 19
file content (134 lines) | stat: -rw-r--r-- 4,767 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
/*******************************************************
 * Copyright (c) 2015-2019, ArrayFire
 * All rights reserved.
 *
 * This file is distributed under 3-clause BSD license.
 * The complete license agreement can be obtained at:
 * http://arrayfire.com/licenses/BSD-3-Clause
 ********************************************************/

#include <forge.h>
#define USE_FORGE_CPU_COPY_HELPERS
#include <ComputeCopy.h>
#include <complex>
#include <cmath>
#include <vector>
#include <iostream>
#include <random>
#include <algorithm>
#include <functional>
#include <iterator>

const unsigned DIMX = 1000;
const unsigned DIMY = 800;

const float FRANGE_START = 0.f;
const float FRANGE_END = 2.f * 3.1415926f;

using namespace std;
void map_range_to_vec_vbo(float range_start, float range_end, float dx,
                          std::vector<float> &vec,
                          float (*map) (float))
{
    if(range_start > range_end && dx > 0) return;
    for(float i=range_start; i < range_end; i+=dx){
        vec.push_back(i);
        vec.push_back((*map)(i));
    }
}

int main(void)
{
    std::vector<float> cosData;
    std::vector<float> tanData;

    map_range_to_vec_vbo(FRANGE_START, FRANGE_END, 0.1f, cosData, &cosf);
    map_range_to_vec_vbo(FRANGE_START, FRANGE_END, 0.1f, tanData, &tanf);

    std::random_device r;

    std::default_random_engine e1(r());
    std::mt19937_64 gen(r());

    std::uniform_int_distribution<int> uDist(20, 80);
    std::uniform_real_distribution<float> cDist(0.2, 0.6);
    std::uniform_real_distribution<float> fDist(0.4, 0.6);

    auto clr = std::bind(cDist, gen);
    auto rnd = std::bind(uDist, e1);
    auto alp = std::bind(fDist, gen);

    std::vector<float> colors(3*tanData.size());
    std::vector<float> alphas(tanData.size());
    std::vector<float> radii(tanData.size());

    std::generate(colors.begin(), colors.end(), clr);
    std::generate(radii.begin(), radii.end(), rnd);
    std::generate(alphas.begin(), alphas.end(), alp);

    /*
     * First Forge call should be a window creation call
     * so that necessary OpenGL context is created for any
     * other forge::* object to be created successfully
     */
    forge::Window wnd(DIMX, DIMY, "Bubble chart with Transparency Demo");
    wnd.makeCurrent();

    forge::Chart chart(FG_CHART_2D);
    chart.setAxesLimits(FRANGE_START, FRANGE_END, -1.0f, 1.0f);

    /* Create several plot objects which creates the necessary
     * vertex buffer objects to hold the different plot types
     */
    forge::Plot plt1 = chart.plot(cosData.size()/2, forge::f32,
                               FG_PLOT_LINE, FG_MARKER_TRIANGLE); //or specify a specific plot type
    forge::Plot plt2 = chart.plot(tanData.size()/2, forge::f32,
                               FG_PLOT_LINE, FG_MARKER_CIRCLE); //last parameter specifies marker shape

    /* Set plot colors */
    plt1.setColor(FG_RED);
    plt2.setColor(FG_GREEN);            //use a forge predefined color
    /* Set plot legends */
    plt1.setLegend("Cosine");
    plt2.setLegend("Tangent");
    /* set plot global marker size */
    plt1.setMarkerSize(20);
    /* copy your data into the opengl buffer object exposed by
     * forge::Plot class and then proceed to rendering.
     * To help the users with copying the data from compute
     * memory to display memory, Forge provides copy headers
     * along with the library to help with this task
     */

    GfxHandle* handles[5];

    // create GL-CPU interop buffers
    createGLBuffer(&handles[0], plt1.vertices(), FORGE_VERTEX_BUFFER);
    createGLBuffer(&handles[1], plt2.vertices(), FORGE_VERTEX_BUFFER);
    createGLBuffer(&handles[2], plt2.colors(), FORGE_VERTEX_BUFFER);
    createGLBuffer(&handles[3], plt2.alphas(), FORGE_VERTEX_BUFFER);
    createGLBuffer(&handles[4], plt2.radii(), FORGE_VERTEX_BUFFER);

    // copy the data from compute buffer to graphics buffer
    copyToGLBuffer(handles[0], (ComputeResourceHandle)cosData.data(), plt1.verticesSize());
    copyToGLBuffer(handles[1], (ComputeResourceHandle)tanData.data(), plt2.verticesSize());

    /* update color value for tan graph */
    copyToGLBuffer(handles[2], (ComputeResourceHandle)colors.data(), plt2.colorsSize());
    /* update alpha values for tan graph */
    copyToGLBuffer(handles[3], (ComputeResourceHandle)alphas.data(), plt2.alphasSize());
    /* update marker sizes for tan graph markers */
    copyToGLBuffer(handles[4], (ComputeResourceHandle)radii.data(), plt2.radiiSize());

    do {
        wnd.draw(chart);
    } while(!wnd.close());

    // destroy GL-CPU Interop buffer
    releaseGLBuffer(handles[0]);
    releaseGLBuffer(handles[1]);
    releaseGLBuffer(handles[2]);
    releaseGLBuffer(handles[3]);
    releaseGLBuffer(handles[4]);
    return 0;
}