1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
|
/*******************************************************
* Copyright (c) 2015-2019, ArrayFire
* All rights reserved.
*
* This file is distributed under 3-clause BSD license.
* The complete license agreement can be obtained at:
* http://arrayfire.com/licenses/BSD-3-Clause
********************************************************/
#include <forge.h>
#include <cuda_runtime.h>
#include <curand.h>
#include <curand_kernel.h>
#define USE_FORGE_CUDA_COPY_HELPERS
#include <ComputeCopy.h>
#include <cstdio>
#include <iostream>
const unsigned DIMX = 1000;
const unsigned DIMY = 800;
static const float DX = 0.1;
static const float FRANGE_START = 0.f;
static const float FRANGE_END = 2 * 3.141592f;
static const size_t DATA_SIZE = (FRANGE_END - FRANGE_START) / DX;
curandState_t* state;
void kernel(float* dev_out, int functionCode,
float* colors, float* alphas, float* radii);
inline int divup(int a, int b)
{
return (a+b-1)/b;
}
__global__
void setupRandomKernel(curandState *states, unsigned long long seed)
{
unsigned tid = blockDim.x * blockIdx.x + threadIdx.x;
curand_init(seed, tid, 0, &states[tid]);
}
int main(void)
{
FORGE_CUDA_CHECK(cudaMalloc((void **)&state, DATA_SIZE*sizeof(curandState_t)));
setupRandomKernel <<< divup(DATA_SIZE,32), 32 >>> (state, 314567);
float *cos_out;
float *tan_out;
float *colors_out;
float *alphas_out;
float *radii_out;
FORGE_CUDA_CHECK(cudaMalloc((void**)&cos_out, sizeof(float) * DATA_SIZE * 2));
FORGE_CUDA_CHECK(cudaMalloc((void**)&tan_out, sizeof(float) * DATA_SIZE * 2));
FORGE_CUDA_CHECK(cudaMalloc((void**)&colors_out, sizeof(float) * DATA_SIZE * 3));
FORGE_CUDA_CHECK(cudaMalloc((void**)&alphas_out, sizeof(float) * DATA_SIZE));
FORGE_CUDA_CHECK(cudaMalloc((void**)&radii_out, sizeof(float) * DATA_SIZE));
/*
* First Forge call should be a window creation call
* so that necessary OpenGL context is created for any
* other forge::* object to be created successfully
*/
forge::Window wnd(DIMX, DIMY, "Bubble chart with Transparency Demo");
wnd.makeCurrent();
forge::Chart chart(FG_CHART_2D);
chart.setAxesLimits(FRANGE_START, FRANGE_END, -1.0f, 1.0f);
/* Create several plot objects which creates the necessary
* vertex buffer objects to hold the different plot types
*/
forge::Plot plt1 = chart.plot(DATA_SIZE, forge::f32, FG_PLOT_LINE, FG_MARKER_TRIANGLE);
forge::Plot plt2 = chart.plot(DATA_SIZE, forge::f32, FG_PLOT_LINE, FG_MARKER_CIRCLE);
/* Set plot colors */
plt1.setColor(FG_RED);
plt2.setColor(FG_GREEN); //use a forge predefined color
/* Set plot legends */
plt1.setLegend("Cosine");
plt2.setLegend("Tangent");
/* set plot global marker size */
plt1.setMarkerSize(20);
/* copy your data into the opengl buffer object exposed by
* forge::Plot class and then proceed to rendering.
* To help the users with copying the data from compute
* memory to display memory, Forge provides copy headers
* along with the library to help with this task
*/
GfxHandle* handles[5];
// create GL-CUDA interop buffers
createGLBuffer(&handles[0], plt1.vertices(), FORGE_VERTEX_BUFFER);
createGLBuffer(&handles[1], plt2.vertices(), FORGE_VERTEX_BUFFER);
createGLBuffer(&handles[2], plt2.colors(), FORGE_VERTEX_BUFFER);
createGLBuffer(&handles[3], plt2.alphas(), FORGE_VERTEX_BUFFER);
createGLBuffer(&handles[4], plt2.radii(), FORGE_VERTEX_BUFFER);
kernel(cos_out, 0, NULL, NULL, NULL);
kernel(tan_out, 1, colors_out, alphas_out, radii_out);
// copy the data from compute buffer to graphics buffer
copyToGLBuffer(handles[0], (ComputeResourceHandle)cos_out, plt1.verticesSize());
copyToGLBuffer(handles[1], (ComputeResourceHandle)tan_out, plt2.verticesSize());
/* update color value for tan graph */
copyToGLBuffer(handles[2], (ComputeResourceHandle)colors_out, plt2.colorsSize());
/* update alpha values for tan graph */
copyToGLBuffer(handles[3], (ComputeResourceHandle)alphas_out, plt2.alphasSize());
/* update marker sizes for tan graph markers */
copyToGLBuffer(handles[4], (ComputeResourceHandle)radii_out, plt2.radiiSize());
do {
wnd.draw(chart);
} while(!wnd.close());
// destroy GL-CUDA Interop buffer
releaseGLBuffer(handles[0]);
releaseGLBuffer(handles[1]);
releaseGLBuffer(handles[2]);
releaseGLBuffer(handles[3]);
releaseGLBuffer(handles[4]);
// destroy CUDA handles
FORGE_CUDA_CHECK(cudaFree(cos_out));
FORGE_CUDA_CHECK(cudaFree(tan_out));
FORGE_CUDA_CHECK(cudaFree(colors_out));
FORGE_CUDA_CHECK(cudaFree(alphas_out));
FORGE_CUDA_CHECK(cudaFree(radii_out));
return 0;
}
__global__
void mapKernel(float* out, int functionCode, float frange_start, float dx)
{
int id = blockIdx.x * blockDim.x + threadIdx.x;
float x = frange_start + id*dx;
float y;
switch(functionCode) {
case 0: y = cos(x); break;
case 1: y = tan(x); break;
default: y = sin(x); break;
}
out[2*id+0] = x;
out[2*id+1] = y;
}
__global__
void colorsKernel(float* colors, curandState *states)
{
int id = blockIdx.x * blockDim.x + threadIdx.x;
colors[3*id+0] = curand_uniform(&states[id]);
colors[3*id+1] = curand_uniform(&states[id]);
colors[3*id+2] = curand_uniform(&states[id]);
}
__global__
void randKernel(float* out, curandState *states, float min, float scale)
{
int id = blockIdx.x * blockDim.x + threadIdx.x;
out[id] = curand_uniform(&states[id])*scale + min;
}
void kernel(float* dev_out, int functionCode,
float* colors, float* alphas, float* radii)
{
static const dim3 threads(32);
dim3 blocks(divup(DATA_SIZE, 32));
mapKernel<<< blocks, threads >>>(dev_out, functionCode, FRANGE_START, DX);
if (colors)
colorsKernel<<< blocks, threads >>>(colors, state);
if (alphas)
randKernel<<< blocks, threads >>>(alphas, state, 0, 1);
if (radii)
randKernel<<< blocks, threads >>>(radii, state, 20, 60);
}
|