File: plotting.cu

package info (click to toggle)
forge 1.0.1-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,312 kB
  • sloc: cpp: 12,447; ansic: 319; xml: 182; makefile: 19
file content (150 lines) | stat: -rw-r--r-- 4,999 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
/*******************************************************
 * Copyright (c) 2015-2019, ArrayFire
 * All rights reserved.
 *
 * This file is distributed under 3-clause BSD license.
 * The complete license agreement can be obtained at:
 * http://arrayfire.com/licenses/BSD-3-Clause
 ********************************************************/

#include <forge.h>
#include <cuda_runtime.h>
#include <cuComplex.h>
#define USE_FORGE_CUDA_COPY_HELPERS
#include <ComputeCopy.h>
#include <cstdio>
#include <iostream>

const unsigned DIMX = 1000;
const unsigned DIMY = 800;

static const float    dx = 0.1;
static const float    FRANGE_START = 0.f;
static const float    FRANGE_END = 2 * 3.141592f;
static const size_t   DATA_SIZE = ( FRANGE_END - FRANGE_START ) / dx;

void kernel(float* dev_out, int functionCode);

int main(void)
{
    float *sin_out;
    float *cos_out;
    float *tan_out;
    float *log_out;

    /*
     * First Forge call should be a window creation call
     * so that necessary OpenGL context is created for any
     * other forge::* object to be created successfully
     */
    forge::Window wnd(DIMX, DIMY, "Plotting Demo");
    wnd.makeCurrent();

    forge::Chart chart(FG_CHART_2D);
    chart.setAxesLimits(FRANGE_START, FRANGE_END, -1.0f, 1.0f);

    /* Create several plot objects which creates the necessary
     * vertex buffer objects to hold the different plot types
     */
    forge::Plot plt0 = chart.plot( DATA_SIZE, forge::f32);                                 //create a default plot
    forge::Plot plt1 = chart.plot( DATA_SIZE, forge::f32, FG_PLOT_LINE, FG_MARKER_NONE);       //or specify a specific plot type
    forge::Plot plt2 = chart.plot( DATA_SIZE, forge::f32, FG_PLOT_LINE, FG_MARKER_TRIANGLE);   //last parameter specifies marker shape
    forge::Plot plt3 = chart.plot( DATA_SIZE, forge::f32, FG_PLOT_SCATTER, FG_MARKER_CROSS);

    /*
     * Set plot colors
     */
    plt0.setColor(FG_RED);
    plt1.setColor(FG_BLUE);
    plt2.setColor(FG_YELLOW);            //use a forge predefined color
    plt3.setColor((forge::Color) 0x257973FF);  //or any hex-valued color
    /*
     * Set plot legends
     */
    plt0.setLegend("Sine");
    plt1.setLegend("Cosine");
    plt2.setLegend("Tangent");
    plt3.setLegend("Log base 10");

    FORGE_CUDA_CHECK(cudaMalloc((void**)&sin_out, sizeof(float) * DATA_SIZE * 2));
    FORGE_CUDA_CHECK(cudaMalloc((void**)&cos_out, sizeof(float) * DATA_SIZE * 2));
    FORGE_CUDA_CHECK(cudaMalloc((void**)&tan_out, sizeof(float) * DATA_SIZE * 2));
    FORGE_CUDA_CHECK(cudaMalloc((void**)&log_out, sizeof(float) * DATA_SIZE * 2));

    kernel(sin_out, 0);
    kernel(cos_out, 1);
    kernel(tan_out, 2);
    kernel(log_out, 3);

    GfxHandle* handles[4];
    createGLBuffer(&handles[0], plt0.vertices(), FORGE_VERTEX_BUFFER);
    createGLBuffer(&handles[1], plt1.vertices(), FORGE_VERTEX_BUFFER);
    createGLBuffer(&handles[2], plt2.vertices(), FORGE_VERTEX_BUFFER);
    createGLBuffer(&handles[3], plt3.vertices(), FORGE_VERTEX_BUFFER);

    /* copy your data into the vertex buffer object exposed by
     * forge::Plot class and then proceed to rendering.
     * To help the users with copying the data from compute
     * memory to display memory, Forge provides copy headers
     * along with the library to help with this task
     */
    copyToGLBuffer(handles[0], (ComputeResourceHandle)sin_out, plt0.verticesSize());
    copyToGLBuffer(handles[1], (ComputeResourceHandle)cos_out, plt1.verticesSize());
    copyToGLBuffer(handles[2], (ComputeResourceHandle)tan_out, plt2.verticesSize());
    copyToGLBuffer(handles[3], (ComputeResourceHandle)log_out, plt3.verticesSize());

    do {
        wnd.draw(chart);
    } while(!wnd.close());

    FORGE_CUDA_CHECK(cudaFree(sin_out));
    FORGE_CUDA_CHECK(cudaFree(cos_out));
    FORGE_CUDA_CHECK(cudaFree(tan_out));
    FORGE_CUDA_CHECK(cudaFree(log_out));
    releaseGLBuffer(handles[0]);
    releaseGLBuffer(handles[1]);
    releaseGLBuffer(handles[2]);
    releaseGLBuffer(handles[3]);

    return 0;
}

__global__
void simple_sinf(float* out, const size_t _data_size, int fnCode, const float _dx, const float _frange_start)
{
    int i = blockIdx.x * blockDim.x  + threadIdx.x;

    if (i < _data_size) {
        float x  = _frange_start + i * _dx;
        int idx  = 2 * i;
        out[idx] = x;

        switch(fnCode) {
            case 0:
                out[ idx + 1 ] = sinf(x);
                break;
            case 1:
                out[ idx + 1 ] = cosf(x);
                break;
            case 2:
                out[ idx + 1 ] = tanf(x);
                break;
            case 3:
                out[ idx + 1 ] = log10f(x);
                break;
        }
    }
}

inline int divup(int a, int b)
{
    return (a+b-1)/b;
}

void kernel(float* dev_out, int functionCode)
{
    static const dim3 threads(1024);
    dim3 blocks(divup(DATA_SIZE, 1024));

    simple_sinf << < blocks, threads >> >(dev_out, DATA_SIZE, functionCode, dx, FRANGE_START);
}