1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
|
/*******************************************************
* Copyright (c) 2015-2019, ArrayFire
* All rights reserved.
*
* This file is distributed under 3-clause BSD license.
* The complete license agreement can be obtained at:
* http://arrayfire.com/licenses/BSD-3-Clause
********************************************************/
#include <forge.h>
#include "cl_helpers.h"
#include <cmath>
#include <ctime>
#include <vector>
#include <sstream>
#include <iostream>
#include <iterator>
#include <algorithm>
using namespace cl;
using namespace std;
const unsigned DIMX = 1000;
const unsigned DIMY = 800;
static const float DX = 0.1;
static const float FRANGE_START = 0.f;
static const float FRANGE_END = 2 * 3.141592f;
static const int DATA_SIZE = (FRANGE_END - FRANGE_START) / DX;
#define USE_FORGE_OPENCL_COPY_HELPERS
#include <ComputeCopy.h>
static const std::string chartKernels =
R"EOK(
float rand(int x)
{
x = (x << 13) ^ x;
return ( 1.0 - ( (x * (x * x * 15731 + 789221) + 1376312589) & 0x7fffffff) / 1073741824.0);
}
kernel
void randKernel(global float* out, unsigned seed, float min, float scale, int DATA_SIZE)
{
int id = get_global_id(0);
if (id<DATA_SIZE)
out[id] = scale * (1+rand(seed*id))/2.0f + min;
}
kernel
void colorsKernel(global float* out, unsigned rseed, unsigned gseed, unsigned bseed, int DATA_SIZE)
{
int id = get_global_id(0);
if (id<DATA_SIZE) {
out[3*id+0] = (1+rand(rseed * id))/2.0f;
out[3*id+1] = (1+rand(gseed * id))/2.0f;
out[3*id+2] = (1+rand(bseed * id))/2.0f;
}
}
kernel
void mapKernel(global float* out, int functionCode, float FRANGE_START, float DX, int DATA_SIZE)
{
int id = get_global_id(0);
float x = FRANGE_START + id*DX;
float y;
switch(functionCode) {
case 0: y = cos(x); break;
case 1: y = tan(x); break;
default: y = sin(x); break;
}
if (id<DATA_SIZE) {
out[2*id+0] = x;
out[2*id+1] = y;
}
}
)EOK";
inline int divup(int a, int b)
{
return (a+b-1)/b;
}
void kernel(cl::Buffer& devOut, int fnCode, int outFlags,
cl::Buffer& colorsOut, cl::Buffer& alphasOut, cl::Buffer& radiiOut,
cl::CommandQueue& queue, cl::Device& device)
{
static bool compileFlag = true;
static cl::Program prog;
static cl::Kernel randKernel, colorsKernel, mapKernel;
std::srand(std::time(0));
if (compileFlag) {
try {
prog = cl::Program(queue.getInfo<CL_QUEUE_CONTEXT>(), chartKernels, false);
std::vector<cl::Device> devs;
devs.push_back(device);
prog.build(devs);
randKernel = cl::Kernel(prog, "randKernel");
colorsKernel = cl::Kernel(prog, "colorsKernel");
mapKernel = cl::Kernel(prog, "mapKernel");
} catch (cl::Error err) {
std::cout << "Compile Errors: " << std::endl;
std::cout << err.what() << err.err() << std::endl;
std::cout << prog.getBuildInfo<CL_PROGRAM_BUILD_LOG>(device) << std::endl;
exit(255);
}
std::cout<< "Kernels compiled successfully" << std::endl;
compileFlag = false;
}
static const NDRange local(32);
NDRange global(local[0] * divup(DATA_SIZE, local[0]));
mapKernel.setArg(0, devOut);
mapKernel.setArg(1, fnCode);
mapKernel.setArg(2, FRANGE_START);
mapKernel.setArg(3, DX);
mapKernel.setArg(4, DATA_SIZE);
queue.enqueueNDRangeKernel(mapKernel, cl::NullRange, global, local);
if (outFlags & 0x00000001) {
colorsKernel.setArg(0, colorsOut);
colorsKernel.setArg(1, std::rand());
colorsKernel.setArg(2, std::rand());
colorsKernel.setArg(3, std::rand());
colorsKernel.setArg(4, DATA_SIZE);
queue.enqueueNDRangeKernel(colorsKernel, cl::NullRange, global, local);
}
if (outFlags & 0x00000002) {
randKernel.setArg(0, alphasOut);
randKernel.setArg(1, std::rand());
randKernel.setArg(2, 0.0f);
randKernel.setArg(3, 1.0f);
randKernel.setArg(4, DATA_SIZE);
queue.enqueueNDRangeKernel(randKernel, cl::NullRange, global, local);
}
if (outFlags & 0x00000004) {
randKernel.setArg(0, radiiOut);
randKernel.setArg(1, std::rand());
randKernel.setArg(2, 20.0f);
randKernel.setArg(3, 60.0f);
randKernel.setArg(4, DATA_SIZE);
queue.enqueueNDRangeKernel(randKernel, cl::NullRange, global, local);
}
}
int main(void)
{
try {
/*
* First Forge call should be a window creation call
* so that necessary OpenGL context is created for any
* other forge::* object to be created successfully
*/
forge::Window wnd(DIMX, DIMY, "Bubble chart with Transparency Demo");
wnd.makeCurrent();
forge::Chart chart(FG_CHART_2D);
chart.setAxesLimits(FRANGE_START, FRANGE_END, -1.0f, 1.0f);
/* Create several plot objects which creates the necessary
* vertex buffer objects to hold the different plot types
*/
forge::Plot plt1 = chart.plot(DATA_SIZE, forge::f32, FG_PLOT_LINE, FG_MARKER_TRIANGLE);
forge::Plot plt2 = chart.plot(DATA_SIZE, forge::f32, FG_PLOT_LINE, FG_MARKER_CIRCLE);
/* Set plot colors */
plt1.setColor(FG_RED);
plt2.setColor(FG_GREEN); //use a forge predefined color
/* Set plot legends */
plt1.setLegend("Cosine");
plt2.setLegend("Tangent");
/* set plot global marker size */
plt1.setMarkerSize(20);
/*
* Helper function to create a CLGL interop context.
* This function checks for if the extension is available
* and creates the context on the appropriate device.
* Note: context and queue are defined in cl_helpers.h
*/
context = createCLGLContext(wnd);
Device device = context.getInfo<CL_CONTEXT_DEVICES>()[0];
queue = CommandQueue(context, device);
GfxHandle* handles[5];
// create GL-OpenCL interop buffers
createGLBuffer(&handles[0], plt1.vertices(), FORGE_VERTEX_BUFFER);
createGLBuffer(&handles[1], plt2.vertices(), FORGE_VERTEX_BUFFER);
createGLBuffer(&handles[2], plt2.colors(), FORGE_VERTEX_BUFFER);
createGLBuffer(&handles[3], plt2.alphas(), FORGE_VERTEX_BUFFER);
createGLBuffer(&handles[4], plt2.radii(), FORGE_VERTEX_BUFFER);
cl::Buffer cosOut(context, CL_MEM_READ_WRITE, sizeof(float) * DATA_SIZE * 2);
cl::Buffer tanOut(context, CL_MEM_READ_WRITE, sizeof(float) * DATA_SIZE * 2);
cl::Buffer colorsOut(context, CL_MEM_READ_WRITE, sizeof(float) * DATA_SIZE * 3);
cl::Buffer alphasOut(context, CL_MEM_READ_WRITE, sizeof(float) * DATA_SIZE);
cl::Buffer radiiOut(context, CL_MEM_READ_WRITE, sizeof(float) * DATA_SIZE);
cl::Buffer dummy;
kernel(cosOut, 0, 0, dummy, dummy, dummy, queue, device);
kernel(tanOut, 1, 0x00000007, colorsOut, alphasOut, radiiOut, queue, device);
/* copy your data into the opengl buffer object exposed by
* forge::Plot class and then proceed to rendering.
* To help the users with copying the data from compute
* memory to display memory, Forge provides copy headers
* along with the library to help with this task
*/
copyToGLBuffer(handles[0], (ComputeResourceHandle)cosOut(), plt1.verticesSize());
copyToGLBuffer(handles[1], (ComputeResourceHandle)tanOut(), plt2.verticesSize());
/* update color value for tan graph */
copyToGLBuffer(handles[2], (ComputeResourceHandle)colorsOut(), plt2.colorsSize());
/* update alpha values for tan graph */
copyToGLBuffer(handles[3], (ComputeResourceHandle)alphasOut(), plt2.alphasSize());
/* update marker sizes for tan graph markers */
copyToGLBuffer(handles[4], (ComputeResourceHandle)radiiOut(), plt2.radiiSize());
do {
wnd.draw(chart);
} while(!wnd.close());
// destroy GL-OpenCL Interop buffer
releaseGLBuffer(handles[0]);
releaseGLBuffer(handles[1]);
releaseGLBuffer(handles[2]);
releaseGLBuffer(handles[3]);
releaseGLBuffer(handles[4]);
} catch (forge::Error err) {
std::cout << err.what() << "(" << err.err() << ")" << std::endl;
} catch (cl::Error err) {
std::cout << err.what() << "(" << err.err() << ")" << std::endl;
}
return 0;
}
|