1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
|
/*******************************************************
* Copyright (c) 2015-2019, ArrayFire
* All rights reserved.
*
* This file is distributed under 3-clause BSD license.
* The complete license agreement can be obtained at:
* http://arrayfire.com/licenses/BSD-3-Clause
********************************************************/
#include <forge.h>
#include "cl_helpers.h"
#include <cmath>
#include <ctime>
#include <vector>
#include <sstream>
#include <iostream>
#include <iterator>
#include <algorithm>
using namespace cl;
using namespace std;
const unsigned DIMX = 640;
const unsigned DIMY = 480;
const float MINIMUM = 1.0f;
const float MAXIMUM = 20.f;
const float STEP = 2.0f;
const float NELEMS = (MAXIMUM-MINIMUM+1)/STEP;
const unsigned DPOINTS[] = {5, 5, 5, 15, 15, 5, 15, 15};
#define USE_FORGE_OPENCL_COPY_HELPERS
#include <ComputeCopy.h>
static const std::string fieldKernel =
R"EOK(
constant float PI = 3.14159265359;
kernel
void pointGenKernel(global float* points, global float* dirs, int NELEMS, float MINIMUM, float STEP)
{
int i = get_global_id(0);
int j = get_global_id(1);
if (i<NELEMS && j<NELEMS) {
int id = i + j * NELEMS;
float x = MINIMUM + i*STEP;
float y = MINIMUM + j*STEP;
points[2*id+0] = x;
points[2*id+1] = y;
dirs[2*id+0] = sin(2.0*PI*x/10.0);
dirs[2*id+1] = sin(2.0*PI*y/10.0);
}
}
)EOK";
inline int divup(int a, int b)
{
return (a+b-1)/b;
}
void generatePoints(cl::Buffer& points, cl::Buffer& dirs,
cl::CommandQueue& queue, cl::Device &device)
{
static bool compileFlag = true;
static cl::Program prog;
static cl::Kernel pointGenKernel;
if (compileFlag) {
try {
prog = cl::Program(queue.getInfo<CL_QUEUE_CONTEXT>(), fieldKernel, false);
std::vector<cl::Device> devs;
devs.push_back(device);
prog.build(devs);
pointGenKernel = cl::Kernel(prog, "pointGenKernel");
} catch (cl::Error err) {
std::cout << "Compile Errors: " << std::endl;
std::cout << err.what() << err.err() << std::endl;
std::cout << prog.getBuildInfo<CL_PROGRAM_BUILD_LOG>(device) << std::endl;
exit(255);
}
std::cout<< "Kernels compiled successfully" << std::endl;
compileFlag = false;
}
static const NDRange local(8, 8);
NDRange global(local[0] * divup(NELEMS, local[0]),
local[1] * divup(NELEMS, local[1]));
pointGenKernel.setArg(0, points);
pointGenKernel.setArg(1, dirs);
pointGenKernel.setArg(2, (int)NELEMS);
pointGenKernel.setArg(3, MINIMUM);
pointGenKernel.setArg(4, STEP);
queue.enqueueNDRangeKernel(pointGenKernel, cl::NullRange, global, local);
}
int main(void)
{
try {
/*
* First Forge call should be a window creation call
* so that necessary OpenGL context is created for any
* other forge::* object to be created successfully
*/
forge::Window wnd(DIMX, DIMY, "Vector Field Demo");
wnd.makeCurrent();
forge::Chart chart(FG_CHART_2D);
chart.setAxesLimits(MINIMUM-1.0f, MAXIMUM, MINIMUM-1.0f, MAXIMUM);
chart.setAxesTitles("x-axis", "y-axis");
forge::Plot divPoints = chart.plot(4, forge::u32, FG_PLOT_SCATTER, FG_MARKER_CIRCLE);
divPoints.setColor(0.9f, 0.9f, 0.0f, 1.f);
divPoints.setLegend("Convergence Points");
divPoints.setMarkerSize(24);
size_t npoints = NELEMS*NELEMS;
forge::VectorField field = chart.vectorField(npoints, forge::f32);
field.setColor(0.f, 0.6f, 0.3f, 1.f);
/*
* Helper function to create a CLGL interop context.
* This function checks for if the extension is available
* and creates the context on the appropriate device.
* Note: context and queue are defined in cl_helpers.h
*/
context = createCLGLContext(wnd);
Device device = context.getInfo<CL_CONTEXT_DEVICES>()[0];
queue = CommandQueue(context, device);
GfxHandle* handles[3];
createGLBuffer(&handles[0], divPoints.vertices(), FORGE_VERTEX_BUFFER);
createGLBuffer(&handles[1], field.vertices(), FORGE_VERTEX_BUFFER);
createGLBuffer(&handles[2], field.directions(), FORGE_VERTEX_BUFFER);
cl::Buffer dpoints(context, CL_MEM_READ_WRITE, sizeof(unsigned)*8);
cl::Buffer points(context, CL_MEM_READ_WRITE, sizeof(float)*2*npoints);
cl::Buffer dirs(context, CL_MEM_READ_WRITE, sizeof(float)*2*npoints);
queue.enqueueWriteBuffer(dpoints, CL_TRUE, 0, sizeof(unsigned)*8, DPOINTS);
generatePoints(points, dirs, queue, device);
copyToGLBuffer(handles[0], (ComputeResourceHandle)dpoints(), divPoints.verticesSize());
copyToGLBuffer(handles[1], (ComputeResourceHandle)points(), field.verticesSize());
copyToGLBuffer(handles[2], (ComputeResourceHandle)dirs(), field.directionsSize());
do {
wnd.draw(chart);
} while(!wnd.close());
// destroy GL-CUDA interop buffers
releaseGLBuffer(handles[0]);
releaseGLBuffer(handles[1]);
releaseGLBuffer(handles[2]);
} catch (forge::Error err) {
std::cout << err.what() << "(" << err.err() << ")" << std::endl;
} catch (cl::Error err) {
std::cout << err.what() << "(" << err.err() << ")" << std::endl;
}
return 0;
}
|