File: histogram.cpp

package info (click to toggle)
forge 1.0.1-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,312 kB
  • sloc: cpp: 12,447; ansic: 319; xml: 182; makefile: 19
file content (346 lines) | stat: -rw-r--r-- 10,694 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
/*******************************************************
 * Copyright (c) 2015-2019, ArrayFire
 * All rights reserved.
 *
 * This file is distributed under 3-clause BSD license.
 * The complete license agreement can be obtained at:
 * http://arrayfire.com/licenses/BSD-3-Clause
 ********************************************************/

#include <forge.h>
#include "cl_helpers.h"
#include <cmath>
#include <ctime>
#include <vector>
#include <sstream>
#include <iostream>
#include <iterator>
#include <algorithm>

using namespace cl;
using namespace std;

const unsigned IMGW = 256;
const unsigned IMGH = 256;
const unsigned DIMX = 1000;
const unsigned DIMY = 800;
const unsigned IMG_SIZE = IMGW * IMGH * 4;
const unsigned NBINS = 256;
const float PERSISTENCE = 0.5f;

#define USE_FORGE_OPENCL_COPY_HELPERS
#include <ComputeCopy.h>

static const std::string perlinKernels =
R"EOK(
float rand(int x)
{
    x = (x << 13) ^ x;
    return ( 1.0 - ( (x * (x * x * 15731 + 789221) + 1376312589) & 0x7fffffff) / 1073741824.0);
}

float interp(float x0, float x1, float t)
{
    return x0 + (x1 - x0) * t;
}

kernel
void init(global float* base, global float* perlin, int IMGW, int IMGH, int randSeed)
{
    int x = get_global_id(0);
    int y = get_global_id(1);

    if (x<IMGW && y<IMGH) {
        int i = x + y * IMGW;
        base[i] = (1+rand(randSeed * i))/2.0f;
        perlin[i] = 0.0f;
    }
}

kernel
void compute(global float* perlin, global float* base,
             unsigned IMGW, unsigned IMGH, float amp, int period)
{
    int x = get_global_id(0);
    int y = get_global_id(1);

    if (x<IMGW && y<IMGH) {
        int index  = y*IMGW + x;

        float freq = 1.0f / period;

        int si0 = (x/period) * period;
        int si1 = (si0 + period) % IMGW;
        float hblend = (x - si0) * freq;

        int sj0 = (y/period) * period;
        int sj1 = (sj0 + period) % IMGH;
        float vblend = (y - sj0) * freq;

        float top = interp(base[si0+IMGW*sj0], base[si1+IMGW*sj0], hblend);
        float bot = interp(base[si0+IMGW*sj1], base[si1+IMGW*sj1], hblend);

        perlin[index] += (amp * interp(top, bot, vblend));
    }
}

kernel
void normalizeNoise(global float* perlin, unsigned IMGW, unsigned IMGH, float tamp)
{
    int x = get_global_id(0);
    int y = get_global_id(1);

    if (x<IMGW && y<IMGH) {
        int index = y*IMGW + x;
        perlin[index] = perlin[index]/tamp;
    }
}

kernel
void fillImage(global unsigned char* ptr, unsigned width, unsigned height,
               global float* perlin, unsigned IMGW, unsigned IMGH)
{
    int x = get_global_id(0);
    int y = get_global_id(1);

    if (x<width && y<height) {
        int offset  = x + y * width;

        unsigned u = (unsigned)(IMGW*x/(float)(width));
        unsigned v = (unsigned)(IMGH*y/(float)(height));
        int idx = u + v*IMGW;

        unsigned char val = 255 * perlin[idx];
        ptr[offset*4 + 0] = val;
        ptr[offset*4 + 1] = val;
        ptr[offset*4 + 2] = val;
        ptr[offset*4 + 3] = 255;
    }
}

kernel
void memSet(global int* out, unsigned len)
{
    if (get_global_id(0)<len)
        out[get_global_id(0)] = 0;
}

kernel
void histogram(const global unsigned char* perlinNoise, global int* histOut,
               const unsigned w, const unsigned h, const unsigned nbins)
{
    int x = get_global_id(0);
    int y = get_global_id(1);

    if (x<w && y<h) {
        int offset  = y * w + x;
        unsigned char noiseVal = perlinNoise[offset*4 + 0];
        offset = (int)(nbins * (noiseVal/255.f));
        atomic_add(histOut + offset , 1);
    }
}

kernel
void setColors(global float* out, unsigned rseed, unsigned gseed, unsigned bseed)
{
    int i = get_global_id(0);
    out[3*i+0] = (1+rand(rseed * i))/2.0f;
    out[3*i+1] = (1+rand(gseed * i))/2.0f;
    out[3*i+2] = (1+rand(bseed * i))/2.0f;
};
)EOK";

inline
int divup(int a, int b)
{
    return (a+b-1)/b;
}

void kernel(cl::Buffer& image, cl::Buffer& base, cl::Buffer& perlin,
            cl::Buffer& histOut, cl::Buffer& colors,
            cl::CommandQueue& queue, cl::Device& device)
{
    static bool compileFlag = true;
    static cl::Program prog;
    static cl::Kernel  initKernel, computeKernel, normKernel, fillKernel;
    static cl::Kernel  memSetKernel, genHistogram, genHistColors;

    std::srand(std::time(0));

    if (compileFlag) {
        try {
            prog = cl::Program(queue.getInfo<CL_QUEUE_CONTEXT>(), perlinKernels, false);

            std::vector<cl::Device> devs;
            devs.push_back(device);
            prog.build(devs);

            initKernel    = cl::Kernel(prog, "init");
            computeKernel = cl::Kernel(prog, "compute");
            normKernel    = cl::Kernel(prog, "normalizeNoise");
            fillKernel    = cl::Kernel(prog, "fillImage");
            memSetKernel  = cl::Kernel(prog, "memSet");
            genHistogram  = cl::Kernel(prog, "histogram");
            genHistColors = cl::Kernel(prog, "setColors");
        } catch (cl::Error err) {
            std::cout << "Compile Errors: " << std::endl;
            std::cout << err.what() << err.err() << std::endl;
            std::cout << prog.getBuildInfo<CL_PROGRAM_BUILD_LOG>(device) << std::endl;
            exit(255);
        }
        std::cout<< "Kernels compiled successfully" << std::endl;
        compileFlag = false;
    }

    static const NDRange local(16, 16);
    NDRange global(local[0] * divup(IMGW, local[0]),
                   local[1] * divup(IMGH, local[1]));

    float persistence = 0.5f;
    float amp  = 1.0f;
    float tamp = 0.0f;

    initKernel.setArg(0, base);
    initKernel.setArg(1, perlin);
    initKernel.setArg(2, IMGW);
    initKernel.setArg(3, IMGH);
    initKernel.setArg(4, std::rand());
    queue.enqueueNDRangeKernel(initKernel, cl::NullRange, global, local);

    for (int octave=6; octave>=0; --octave) {
        int period = 1 << octave;
        computeKernel.setArg(0, perlin);
        computeKernel.setArg(1, base);
        computeKernel.setArg(2, IMGW);
        computeKernel.setArg(3, IMGH);
        computeKernel.setArg(4, amp);
        computeKernel.setArg(5, period);
        queue.enqueueNDRangeKernel(computeKernel, cl::NullRange, global, local);
        tamp += amp;
        amp *= persistence;
    }

    normKernel.setArg(0, perlin);
    normKernel.setArg(1, IMGW);
    normKernel.setArg(2, IMGH);
    normKernel.setArg(3, tamp);
    queue.enqueueNDRangeKernel(normKernel, cl::NullRange, global, local);

    fillKernel.setArg(0, image);
    fillKernel.setArg(1, IMGW);
    fillKernel.setArg(2, IMGH);
    fillKernel.setArg(3, perlin);
    fillKernel.setArg(4, IMGW);
    fillKernel.setArg(5, IMGH);
    queue.enqueueNDRangeKernel(fillKernel, cl::NullRange, global, local);

    static const NDRange global_hist(NBINS);

    memSetKernel.setArg(0, histOut);
    memSetKernel.setArg(1, NBINS);
    queue.enqueueNDRangeKernel(memSetKernel, cl::NullRange, global_hist);

    genHistogram.setArg(0, image);
    genHistogram.setArg(1, histOut);
    genHistogram.setArg(2, IMGW);
    genHistogram.setArg(3, IMGH);
    genHistogram.setArg(4, NBINS);
    queue.enqueueNDRangeKernel(genHistogram, cl::NullRange, global, local);

    genHistColors.setArg(0, colors);
    genHistColors.setArg(1, std::rand());
    genHistColors.setArg(2, std::rand());
    genHistColors.setArg(3, std::rand());
    queue.enqueueNDRangeKernel(genHistColors, cl::NullRange, global_hist);
}

int main(void)
{
    try {

        /*
        * First Forge call should be a window creation call
        * so that necessary OpenGL context is created for any
        * other forge::* object to be created successfully
        */
        forge::Window wnd(DIMX, DIMY, "Histogram Demo");
        wnd.makeCurrent();

        forge::Image img(IMGW, IMGH, FG_RGBA, forge::u8);

        forge::Chart chart(FG_CHART_2D);

        chart.setAxesLabelFormat("%3.1f", "%.2e");

        /* set x axis limits to maximum and minimum values of data
         * and y axis limits to range [0, number of pixels ideally]
         * but practically total number of pixels as y range will skew
         * the histogram graph vertically. Therefore setting it to
         * 25% of total number of pixels */
        chart.setAxesLimits(0, 1, 0, IMGW*IMGH/(float)(NBINS/4.0));

        /*
         * Create histogram object specifying number of bins
         */
        forge::Histogram hist = chart.histogram(NBINS, forge::s32);
        /*
         * Set histogram colors
         */
        hist.setColor(FG_YELLOW);

        /*
         * Helper function to create a CLGL interop context.
         * This function checks for if the extension is available
         * and creates the context on the appropriate device.
         * Note: context and queue are defined in cl_helpers.h
         */
        context = createCLGLContext(wnd);
        Device device = context.getInfo<CL_CONTEXT_DEVICES>()[0];
        queue = CommandQueue(context, device);

        cl::Buffer image(context, CL_MEM_READ_WRITE, IMG_SIZE);
        cl::Buffer baseNoise(context, CL_MEM_READ_WRITE, IMG_SIZE);
        cl::Buffer perlinNoise(context, CL_MEM_READ_WRITE, IMG_SIZE);
        cl::Buffer histOut(context, CL_MEM_READ_WRITE, NBINS * sizeof(int));
        cl::Buffer colors(context, CL_MEM_READ_WRITE, 3 * NBINS * sizeof(float));

        GfxHandle* handles[3];

        createGLBuffer(&handles[0], img.pixels(), FORGE_IMAGE_BUFFER);
        createGLBuffer(&handles[1], hist.vertices(), FORGE_VERTEX_BUFFER);
        createGLBuffer(&handles[2], hist.colors(), FORGE_VERTEX_BUFFER);

        unsigned frame = 0;
        do {
            if (frame%8==0) {
                kernel(image, baseNoise, perlinNoise, histOut, colors, queue, device);

                copyToGLBuffer(handles[0], (ComputeResourceHandle)image(), img.size());
                copyToGLBuffer(handles[1], (ComputeResourceHandle)histOut(), hist.verticesSize());
                copyToGLBuffer(handles[2], (ComputeResourceHandle)colors(), hist.colorsSize());

                frame = 0;
            }

            /*
             * Split the window into grid regions
             */
            wnd.draw(1, 2, 0, img,  "Dynamic Perlin Noise" );
            wnd.draw(1, 2, 1, chart, "Histogram of Noisy Image");

            wnd.swapBuffers();
            frame++;
        } while(!wnd.close());

        releaseGLBuffer(handles[0]);
        releaseGLBuffer(handles[1]);
        releaseGLBuffer(handles[2]);

    }catch (forge::Error err) {
        std::cout << err.what() << "(" << err.err() << ")" << std::endl;
    } catch (cl::Error err) {
        std::cout << err.what() << "(" << err.err() << ")" << std::endl;
    }

    return 0;
}