1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
|
/*******************************************************
* Copyright (c) 2015-2019, ArrayFire
* All rights reserved.
*
* This file is distributed under 3-clause BSD license.
* The complete license agreement can be obtained at:
* http://arrayfire.com/licenses/BSD-3-Clause
********************************************************/
#include <forge.h>
#include "cl_helpers.h"
#include <mutex>
#include <vector>
#include <sstream>
#include <iostream>
#include <iterator>
#include <algorithm>
using namespace cl;
using namespace std;
const unsigned DIMX = 1000;
const unsigned DIMY = 800;
const float dx = 0.1;
const float FRANGE_START = 0.f;
const float FRANGE_END = 2 * 3.141592f;
const unsigned DATA_SIZE = ( FRANGE_END - FRANGE_START ) / dx;
#define USE_FORGE_OPENCL_COPY_HELPERS
#include <ComputeCopy.h>
static const std::string sinf_ocl_kernel = R"(
kernel void sinf(global float* out, const float dx, const unsigned DATA_SIZE, int fnCode)
{
unsigned x = get_global_id(0);
if(x < DATA_SIZE) {
out[2 * x] = x * dx ;
switch(fnCode) {
case 0:
out[ 2 * x + 1 ] = sin(x*dx);
break;
case 1:
out[ 2 * x + 1 ] = cos(x*dx);
break;
case 2:
out[ 2 * x + 1 ] = tan(x*dx);
break;
case 3:
out[ 2 * x + 1 ] = log10(x*dx);
break;
}
}
}
)";
void kernel(cl::Buffer& devOut, cl::CommandQueue& queue, int fnCode)
{
static std::once_flag compileFlag;
static cl::Program prog;
static cl::Kernel kern;
std::call_once(compileFlag,
[queue]() {
prog = cl::Program(queue.getInfo<CL_QUEUE_CONTEXT>(), sinf_ocl_kernel, true);
kern = cl::Kernel(prog, "sinf");
});
static const NDRange global(DATA_SIZE * 2);
kern.setArg(0, devOut);
kern.setArg(1, dx);
kern.setArg(2, DATA_SIZE);
kern.setArg(3, fnCode);
queue.enqueueNDRangeKernel(kern, cl::NullRange, global);
}
int main(void)
{
try {
/*
* First Forge call should be a window creation call
* so that necessary OpenGL context is created for any
* other forge::* object to be created successfully
*/
forge::Window wnd(DIMX, DIMY, "Plotting Demo");
wnd.makeCurrent();
forge::Chart chart(FG_CHART_2D);
chart.setAxesLimits(FRANGE_START, FRANGE_END, -1.0f, 1.0f);
/* Create several plot objects which creates the necessary
* vertex buffer objects to hold the different plot types
*/
forge::Plot plt0 = chart.plot(DATA_SIZE, forge::f32); //create a default plot
forge::Plot plt1 = chart.plot(DATA_SIZE, forge::f32, FG_PLOT_LINE, FG_MARKER_NONE); //or specify a specific plot type
forge::Plot plt2 = chart.plot(DATA_SIZE, forge::f32, FG_PLOT_LINE, FG_MARKER_TRIANGLE); //last parameter specifies marker shape
forge::Plot plt3 = chart.plot(DATA_SIZE, forge::f32, FG_PLOT_SCATTER, FG_MARKER_CROSS);
/*
* Set plot colors
*/
plt0.setColor(FG_RED);
plt1.setColor(FG_BLUE);
plt2.setColor(FG_YELLOW); //use a forge predefined color
plt3.setColor((forge::Color) 0x257973FF); //or any hex-valued color
/*
* Set plot legends
*/
plt0.setLegend("Sine");
plt1.setLegend("Cosine");
plt2.setLegend("Tangent");
plt3.setLegend("Log base 10");
/*
* Helper function to create a CLGL interop context.
* This function checks for if the extension is available
* and creates the context on the appropriate device.
* Note: context and queue are defined in cl_helpers.h
*/
context = createCLGLContext(wnd);
Device device = context.getInfo<CL_CONTEXT_DEVICES>()[0];
queue = CommandQueue(context, device);
cl::Buffer sinOut(context, CL_MEM_READ_WRITE, sizeof(float) * DATA_SIZE * 2);
cl::Buffer cosOut(context, CL_MEM_READ_WRITE, sizeof(float) * DATA_SIZE * 2);
cl::Buffer tanOut(context, CL_MEM_READ_WRITE, sizeof(float) * DATA_SIZE * 2);
cl::Buffer logOut(context, CL_MEM_READ_WRITE, sizeof(float) * DATA_SIZE * 2);
kernel(sinOut, queue, 0);
kernel(cosOut, queue, 1);
kernel(tanOut, queue, 2);
kernel(logOut, queue, 3);
GfxHandle* handles[4];
createGLBuffer(&handles[0], plt0.vertices(), FORGE_VERTEX_BUFFER);
createGLBuffer(&handles[1], plt1.vertices(), FORGE_VERTEX_BUFFER);
createGLBuffer(&handles[2], plt2.vertices(), FORGE_VERTEX_BUFFER);
createGLBuffer(&handles[3], plt3.vertices(), FORGE_VERTEX_BUFFER);
/* copy your data into the vertex buffer object exposed by
* forge::Plot class and then proceed to rendering.
* To help the users with copying the data from compute
* memory to display memory, Forge provides copy headers
* along with the library to help with this task
*/
copyToGLBuffer(handles[0], (ComputeResourceHandle)sinOut(), plt0.verticesSize());
copyToGLBuffer(handles[1], (ComputeResourceHandle)cosOut(), plt1.verticesSize());
copyToGLBuffer(handles[2], (ComputeResourceHandle)tanOut(), plt2.verticesSize());
copyToGLBuffer(handles[3], (ComputeResourceHandle)logOut(), plt3.verticesSize());
do {
wnd.draw(chart);
} while(!wnd.close());
releaseGLBuffer(handles[0]);
releaseGLBuffer(handles[1]);
releaseGLBuffer(handles[2]);
releaseGLBuffer(handles[3]);
}catch (forge::Error err) {
std::cout << err.what() << "(" << err.err() << ")" << std::endl;
} catch (cl::Error err) {
std::cout << err.what() << "(" << err.err() << ")" << std::endl;
}
return 0;
}
|