1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
|
\chapter{Functions}
\label{functions}
%--#[ General :
\noindent Functions\index{function} are objects that can have arguments.
There exist several types of functions in \FORM. First there is the
distinction between commuting\index{commuting} and
noncommuting\index{noncommuting} functions. Commuting functions commute
with all other objects. This property is used by the normalization routines
that bring terms into standard form. Noncommuting functions do not commute
necessarily with other noncommuting functions. They do however commute with
objects that are considered to be commuting, like symbols, vectors and
commuting functions. Various instances of the same noncommuting function
but with different arguments do not commute either.
\noindent The next subdivision of the category of functions is in regular
functions\index{function!regular}, tensors\index{tensor} and
tables\index{table}. Tensors are special functions that can have only
indices or vectors for their arguments. If an argument is a vector, it is
assumed that this vector is there as the result of an index contraction.
Tables are functions with automatic substitution rules. A table must have
at least one table\index{table index} index\index{index!table}. Each time
during normalization \FORM\ will check whether an instance of a table can be
substituted. This means that undefined table elements will slow the program
down somewhat.
\noindent All the various types of functions are declared with their own
declaration statements. These are described in the chapter for the
statements (see chapter~\ref{statements}).
%--#] General :
%--#[ Wildcards :
One of the useful properties of functions is the
wildcarding\index{wildcard} of their arguments during pattern matching. The
following argument wildcards are possible:
\leftvitem{2cm}{x?}
\rightvitem{14cm}{Here x is a symbol. This symbol can match either a
symbol, any numerical argument, or a complete subexpression argument that
is not vectorlike or indexlike.}
\leftvitem{2cm}{i?}
\rightvitem{14cm}{Here i is an index. This index can match either an index,
a vector (actually the dummy\index{dummy} index\index{index!dummy} of the
vector that was contracted), or a complete subexpression that is vector like
(again actually the contracted dummy index).}
\leftvitem{2cm}{v?}
\rightvitem{14cm}{Here v is a vector. This vector can match either a vector
or a complete subexpression that is vector like.}
\leftvitem{2cm}{f?}
\rightvitem{14cm}{Here f is any functiontype. This function can match any
function. It is the responsibility of the user to avoid problems in the
right-hand side if f happens to match a tensor.}
\leftvitem{2cm}{?a}
\rightvitem{14cm}{This is an argument\index{argument field} field
wildcard\index{wildcard!argument field}. This can match a
complete set of arguments. The set can be empty. Argument field wildcards
have a name that starts with a question mark followed by a name. They do
not have to be declared as there cannot be confusion.}
%--#] Wildcards :
\noindent In addition to the above syntax \FORM\ knows a number of special
functions with well defined properties. All these functions have a name
that ends in an underscore. In addition the names of these built in objects
are case insensitive. This means for instance that the factorial function
can be referred to as \verb:fac_:, \verb:Fac_: or \verb:FAC_: or whatever
the user considers more readable. The built in functions are:
%--#[ abs_ :
\section{abs\_}\index{abs\_}\index{function!abs\_}
\label{funabs}
\noindent With one argument that is numerical it evaluates into the
absolute value of the argument.
%--#] abs_ :
%--#[ bernoulli_ :
\section{bernoulli\_}\index{bernoulli\_}\index{function!bernoulli\_}
\label{funbernoulli}
\noindent If it has one nonzero integer argument n, it evaluates into
the n-th coefficient in the power series expansion of $x/(1-e^{-x})$.
%--#] bernoulli_ :
%--#[ binom_ :
\section{binom\_}\index{binom\_}\index{function!binom\_}
\label{funbinom}
\noindent binom\_(n,i) $= n!/(i!(n-i)!)$. If the arguments are non
integer or negative, no substitution is made.
%--#] binom_ :
%--#[ conjg_ :
\section{conjg\_}\index{conjg\_}\index{function!conjg\_}
\label{funconjg}
\noindent Currently not doing anything.
%--#] conjg_ :
%--#[ content_ :
\section{content\_}\index{content\_}\index{function!content\_}
\label{funcontent}
\noindent This function expects the name of a single expression or a dollar
variable for its
argument. If it finds this the content of this expression or dollar
variable is returned. The
content is defined as a term that has
\begin{itemize}
\item for its numerator the GCD of the numerators of all terms in the
expression.
\item for its denominator the LCM of the denominators of all terms in the
expression.
\item all the common subexpressions in all terms of the expression.
\item the most negative powers of all symbols and dotproducts with negative
powers in the terms of the expression.
\end{itemize}
When there are no negative powers and no denominators in the coefficients,
this definition of the content co\"{\i}ncides with the classical definition
of the content of a polynomial over the integers. Our content has the
property that if we divide the expression by it, we are left with an
expression of which the coefficients are all integer, there are no negative
powers and the GCD of all terms combined is one.
\noindent This function has one limitation. It will not consider
noncommuting objects. Neither will it consider denominator functions.
\noindent Caveat: this function is evaluated each time it is encountered.
Therefore the best thing is to evaluate it once in the definition of a
dollar variable or an expression as in
\begin{verbatim}
#$x = content_(F);
Local G = (a+b)^10*$x;
\end{verbatim}
Here the content is computed only once. In
\begin{verbatim}
Local G = (a+b)^10*content_(F);
\end{verbatim}
11 terms are generated and the content is only worked out when the
terms are normalized. This means that it will be evaluated 11 times. If one
does not like dollar variables and still wants to evaluate the content only
once the code would be
\begin{verbatim}
Local G = ab^10*content_(F);
id ab = a+b;
\end{verbatim}
because now the term will be normalized before the substitution makes it
into eleven terms. This assumes of course that the content does not contain
the variable ab.
%--#] content_ :
%--#[ count_ :
\section{count\_}\index{count\_}\index{function!count\_}
\label{funcount}
\noindent Similar to the count object in the if statement (see
\ref{substaif}). This function expects the same arguments as the count
object and returns the corresponding count value for the current term.
%--#] count_ :
%--#[ d_ :
\section{d\_}\index{d\_}\index{function!d\_}
\label{fund}
\noindent The kronecker\index{kronecker} delta\index{delta!kronecker}.
Should have two indices for arguments. Often indicated as
$\delta^{\mu\nu}$. In automatic summation over the indices the d\_ often
vanishes again as in
\verb:d_(mu,nu)*p(mu)*q(nu): $\rightarrow$ \verb:p.q: and similar
replacements. Internally this object is treated in a rather special way.
Hence it will not match a function wildcard.
%--#] d_ :
%--#[ dd_ :
\section{dd\_}\index{dd\_}\index{function!dd\_}
\label{fundd}
\noindent This is a combinatorics\index{combinatorics} function. The tensor
dd\_ with an even number of indices is equal to the totally symmetric
tensor built up from products of kronecker delta's. Each term in this
symmetric combination is normalized to one. In principle there are
$n!/(2^{n/2}(n/2)!$ terms in this combination. The profit comes when some
or all the indices are contracted with vectors and some of these vectors
are identical. In that case \FORM\ will use combinatorics to generate only
different terms, each with the proper prefactor. This can result in great
time and space savings.
%--#] dd_ :
%--#[ delta_ :
\section{delta\_}\index{delta\_}\index{function!delta\_}
\label{fundelta}
\noindent With one numerical argument the result is one if
the argument is zero and zero otherwise. With two arguments the result is
one if the arguments are numerical and identical. If they are numerical and
they differ the result is zero. In all other cases nothing is done.
%--#] delta_ :
%--#[ deltap_ :
\section{deltap\_}\index{deltap\_}\index{function!deltap\_}
\label{fundeltap}
\noindent If one argument and it is numerical the result is zero if
the argument is zero and one otherwise. If two arguments, the result is
zero if the arguments are numerical and identical. If they are numerical and
they differ the result is one. In all other cases nothing is done.
%--#] deltap_ :
%--#[ denom_ :
\section{denom\_}\index{denom\_}\index{function!denom\_}
\label{fundenom}
\noindent Internal function to describe denominators. Has a single
argument. \verb:den(a+b): is printed as \verb:1/(a+b):.
%--#] denom_ :
%--#[ diagrams_ :
%
%\section{diagrams\_}\index{diagrams\_}\index{function!diagrams\_}
%\label{fundiagrams}
%\noindent For a description of this function, please see the section on
%diagrams~\ref{diagrams}.
%
%--#] diagrams_ :
%--#[ distrib_ :
\section{distrib\_}\index{distrib\_}\index{function!distrib\_}
\label{fundistrib}
\noindent This is a combinatorics\index{combinatorics} function. It should
have at least five arguments. If we have
\begin{verbatim}
distrib_(type,n,f1,f2,x1,...,xm)
\end{verbatim}
with type and n integers, f1 and f2 functions and then a number of
arguments there can be action if $-2 \le$ type $\le 2$. The typical action
is that the arguments \verb:x1,...,xm: will be divided over the two
functions in all possible ways. For each possibility a new term is
generated. The relative order of the arguments is kept. If type is negative
it is assumed that the collection of x-arguments is
antisymmetric\index{antisymmetric} and hence the number of permutations
needed to make the split will determine whether there will be a minus sign
on the resulting term. When type is zero all possible divisions are
generated. Hence there will be $2^m$ divisions. The second argument is then
not relevant. If type is 1 or -1 the second parameter says that the first
function should obtain n arguments. The remaining arguments go to the
second function. If type is 2 or -2 the second function should obtain n
arguments. Example:
% THIS EXAMPLE IS PART OF THE TESTSUITE. CHANGES HERE SHOULD BE APPLIED THERE AS
% WELL!
\begin{verbatim}
Symbols x1,...,x4;
CFunctions f,f1,f2;
Local F = f(x1,...,x4);
id f(?a) = distrib_(-1,2,f1,f2,?a);
Print +s;
.end
F =
+ f1(x1,x2)*f2(x3,x4)
- f1(x1,x3)*f2(x2,x4)
+ f1(x1,x4)*f2(x2,x3)
+ f1(x2,x3)*f2(x1,x4)
- f1(x2,x4)*f2(x1,x3)
+ f1(x3,x4)*f2(x1,x2)
;
\end{verbatim}
When adjacent x-arguments are identical \FORM\ uses combinatorics to avoid
generating more terms than necessary.
%--#] distrib_ :
%--#[ div_ :
\section{div\_}\index{div\_}\index{function!div\_}
\label{fundiv}
\noindent \verb:div_(x1,x2): is replaced by the quotient of the arguments.
The arguments can be any valid subexpressions, provided the whole function
fits inside a term. When an argument is only an active expression or a
\$-expression it is only expanded during the division. This way the
contents of such expressions can exceed the maximum term size. One should
however realize that in that case the operation takes place in allocated
memory. This function replaces the experimental function
polydiv\_\index{polydiv\_}\index{function!polydiv\_} that existed in
version 3.
%--#] div_ :
%--#[ dum_ :
\section{dum\_}\index{dum\_}\index{function!dum\_}
\label{fundum}
\noindent Special function for printing virtual\index{virtual bracket}
brackets\index{bracket}. \verb:dum_(a+b): is printed as \verb:(a+b):: the
name of this function is not printed!
%--#] dum_ :
%--#[ dummy_ :
\section{dummy\_}\index{dummy\_}\index{function!dummy\_}
\label{fundummy}
\noindent For internal use only.
%--#] dummy_ :
%--#[ dummyten_ :
\section{dummyten\_}\index{dummyten\_}\index{function!dummyten\_}
\label{fundummyten}
\noindent For internal use only.
%--#] dummyten_ :
%--#[ e_ :
\section{e\_}\index{e\_}\index{function!e\_}
\label{fune}
\noindent The Levi-Civita\index{Levi-Civita tensor}
tensor\index{tensor!Levi-Civita}. It is a totally
antisymmetric\index{antisymmetric} tensor with well defined contraction
rules (see \ref{substacontract}).
%--#] e_ :
%--#[ edge_ :
%
%\section{edge\_}\index{edge\_}\index{function!edge\_}
%\label{funedge}
%\noindent For a description of this function, please see the section on
%diagrams~\ref{diagrams}.
%
%--#] edge_ :
%--#[ exp_ :
\section{exp\_}\index{exp\_}\index{function!exp\_}
\label{funexp}
\noindent Internal function with two arguments. Represents
argument1 to the power argument2. Of course it is printed in the standard
power notation.
%--#] exp_ :
%--#[ exteuclidean_ :
\section{exteuclidean\_}\index{exteuclidean\_}\index{function!exteuclidean\_}
\label{funexteuclidean}
\noindent This is a number function. It expects two positive integer
arguments. It then computes the Greatest Common Divider of these arguments
with the use of the extended Euclidean algoritm. The answer will be in the
same function but now there will be four arguments as in:
\begin{verbatim}
Symbols x1,x2,x3,x4;
Local F = exteuclidean_(54,84);
Print;
.sort
F =
exteuclidean_(54,84,-3,2);
id exteuclidean_(x1?,x2?,x3?,x4?) = x1*x3+x2*x4;
Print;
.end
F =
6;
\end{verbatim}
\noindent We can see that we obtain the GCD with the relation that is
characteristic for the extended Euclidean algorithm. When the two arguments
are relative prime, one obtains the so-called modinverses of these numbers:
\begin{verbatim}
Symbols x1,x2,x3,x4,a,b;
Local F = exteuclidean_(97,101);
Print;
.sort
F =
exteuclidean_(97,101,25,-24);
id exteuclidean_(x1?,x2?,x3?,x4?) = x1*x3+x2*x4
+a*mod2_(1/97,101)+b*mod2_(1/101,97);
Print;
.end
F =
1 - 24*b + 25*a;
\end{verbatim}
\noindent Here 25 is the inverse of 97 when we calculate modulus 101 and
-24 is the inverse of 101 when we calculate modulus 97.
\noindent This function can be very handy when a calculation has been done
modulus various prime numbers and one would like to know the result modulus
the product of these numbers. This combination is done with the aid of the
Chinese remainder theorem\index{Chinese remainder theorem}:
\begin{verbatim}
#procedure ChineseRemainder(NAME,NAME1,NAME2,M1,M2,PAR)
*
* Assumes that NAME1 is an expression mod $M1
* Assumes that NAME2 is an expression mod $M2
* Creates $ch1r and $ch2r with the property that
* the expression NAME = NAME1*$ch1r+NAME2*$ch2rn
* is the corresponding equation mod $M1*$M2
*
Modulus 0; * we need to switch off previous settings.
#$ch1r = exteuclidean_($`M1',$`M2');
#inside $ch1r;
id exteuclidean_(xxx1?,xxx2?,xxx3?,xxx4?) = xxx2*xxx4;
#endinside;
#$ch2r = exteuclidean_($`M1',$`M2');
#inside $ch2r;
id exteuclidean_(xxx1?,xxx2?,xxx3?,xxx4?) = xxx1*xxx3;
#endinside;
#$MM12 = $`M1'*$`M2';
Modulus,plusmin,`$MM12';
Local `NAME' = `NAME1i'*$ch1r+`NAME2i'*$ch2r;
.sort
*
#endprocedure
\end{verbatim}
%--#] exteuclidean_ :
%--#[ extrasymbol_ :
\section{extrasymbol\_}\index{extrasymbol\_}\index{function!extrasymbol\_}
\label{funextrasymbol}
\noindent This function expects a single argument. This argument can be a
number or an extra symbol(see \ref{extrasymbols}). In either case the
function is replaced by the expression that the corresponding extra symbol
stands for.
\noindent If there are more arguments or the argument does not represent a
legal extra symbol, no substitution is made.
%--#] extrasymbol_ :
%--#[ fac_ :
\section{fac\_}\index{fac\_}\index{function!fac\_}
\label{funfac}
\noindent The factorial\index{factorial} function. If it has a single nonzero
integer argument n it is replaced by n! but if the result is bigger than
the maximum allowable number an error will result.
%--#] fac_ :
%--#[ factorin_ :
\section{factorin\_}\index{factorin\_}\index{function!factorin\_}
\label{funfactorin}
\noindent When the argument is a single \$-variable\index{\$-variable} or
an expression\index{expression} the function is replaced by the common
factor in the terms of that \verb:$:-variable or expression. This common
factor consists in the first place of all symbolic objects that occur in
all terms. In addition the numerical factor consists of the GCD\index{GCD}
of all numerators and the LCM\index{LCM} of all denominators. Hence if the
\verb:$:-variable or expression is divided by the result of factorin\_ all
coefficients become integer.
%--#] factorin_ :
%--#[ farg_ :
\section{farg\_}\index{farg\_}\index{function!farg\_}
\label{funfarg}
\noindent For internal use only.
%--#] farg_ :
%--#[ firstbracket_ :
\section{firstbracket\_}\index{firstbracket\_}\index{function!firstbracket\_}
\label{funfirstbracket}
\noindent In the case that there is a single argument and this
single argument is the name of an expression, this function is replaced by
the part that is outside brackets in the first term of the expression. If
there are no brackets the function is replaced by one.
%--#] firstbracket_ :
%--#[ firstterm_ :
\section{firstterm\_}\index{firstterm\_}\index{function!firstterm\_}
\label{funfirstterm}
\noindent This function expects the name of an expression or a dollar
variable for its (single) argument. It will return the first term in this
expression or dollar variable. When it has to obtain the first term of an
expression, FORM uses the expression in the representation in which it was
stored at the end of the previous module. If the expression did not exist
in the previous module, it will attempt to use the expression as defined
and processed in the current expression. If the expression has only been
defined in the current module and has not yet been processed (as is the
case when referring to the first term in the current expression) the answer
will be unspecified. This use is considered illegal, even though it does
not generate an error message.
%--#] firstterm_ :
%--#[ g5_ :
\section{g5\_}\index{g5\_}\index{function!g5\_}
\label{fungfive}
\noindent The $\gamma_5$ Dirac gamma matrix. We assume here that it
anticommutes with the other Dirac\index{Dirac} gamma\index{gamma matrices}
matrices. Anybody who does not like that should program private libraries
(this should not be too difficult with the cycle symmetric functions
(see~\ref{substafunctions}). There should be a single index to indicate
the spinline.
%--#] g5_ :
%--#[ g6_ :
\section{g6\_}\index{g6\_}\index{function!g6\_}
\label{fungsix}
\noindent There should be a single index to indicate the spinline.
As in Schoonschip\index{Schoonschip} we use $\gamma_6 = 1+\gamma_5$.
%--#] g6_ :
%--#[ g7_ :
\section{g7\_}\index{g7\_}\index{function!g7\_}
\label{fungseven}
\noindent There should be a single index to indicate the spinline.
As in Schoonschip\index{Schoonschip} we use $\gamma_7 = 1-\gamma_5$.
%--#] g7_ :
%--#[ g_ :
\section{g\_}\index{g\_}\index{function!g\_}
\label{fung}
\noindent The Dirac\index{Dirac} gamma\index{gamma matrices} matrix. Its
first argument should be an index (either symbolic or numeric). Then follow
zero, one or more indices to indicate a string of gamma matrices that
belong together. Gamma matrices with the same first index are considered to
belong together, but as long as the indices are symbolic no assumptions are
made about whether they go together or not. Hence no commutation or
anticommutation properties are applied for different spin lines unless the
spinline indices are both numeric.
%--#] g_ :
%--#[ gcd_ :
\section{gcd\_}\index{gcd\_}\index{function!gcd\_}
\label{fungcd}
\noindent \verb:gcd_(x1,...,xn): is replaced by the greatest common divisor
of the arguments. The arguments can be any valid subexpressions, provided
the whole function fits inside a term. When an argument is only an active
expression or a \$-expression it is only expanded during evaluation of the
GCD. This way the contents of such expressions can exceed the maximum term
size. One should however realize that in that case the operation takes
place in allocated memory.
This function replaces the experimental function
polygcd\_\index{polygcd\_}\index{function!polygcd\_} that existed in
version 3.
%--#] gcd_ :
%--#[ gi_ :
\section{gi\_}\index{gi\_}\index{function!gi\_}
\label{fungi}
\noindent The unit Dirac gamma matrix. Should have a single index
to indicate its spin line. Its is identical to a regular gamma matrix with
no Lorenz indices: \verb:gi_(n) = g_(n):
%--#] gi_ :
%--#[ id_ :
\section{id\_}\index{id\_}\index{function!id\_}
\label{funid}
\noindent This function is a crossbreed between the
replace\_\index{replace\_}~\ref{funreplace} function and the id
statement\index{substaidentify}~\ref{substaidentify}. To become active it
needs an even number of arguments. The odd numbered arguments can be
anything of the types:
\begin{description}
\item[] a single symbol, possibly to an integer power.
\item[] a single dotproducts, possibly to an integer power.
\item[] a single function, possibly with any number and type of arguments.
\end{description}
When \FORM{} encounters an id\_ function the last step of normalizing a term
is to replace the id function by a number substitutions in which the odd
arguments are replaced by the following even arguments. These are not
wildcard substitutions as in the replace\_ function, but substitutions as
in regular id statements. The matching of the odd arguments is done in a
single step as in an id-al construction~\ref{substaalso}. Hence
\begin{verbatim}
id_(x^2,y+z,y,u+v,x,z+u)
\end{verbatim}
effectively becomes
\begin{verbatim}
id x^2 = y+z;
al y = u+v;
al x = z+u;
\end{verbatim}
\FORM{} treats multiple occurrences of the id\_ function one at a time. It
takes the leftmost occurrence first, takes the patterns from the term,
expands the right hand sides, tries to normalize the resulting terms and
only then continues with the next id\_ function. For this reason the id\_
function is noncommuting.
%--#] id_ :
%--#[ integer_ :
\section{integer\_}\index{integer\_}\index{function!integer\_}
\label{funinteger}
\noindent This is a rounding\index{rounding} function. It should have
either one or two arguments. If there is a single argument and it is
numeric, it will be rounded down to become an integer. If there are two
arguments of which the first is numeric and the second is either 1, 0 or
-1, the result will be the rounded value of the first argument. If the
second argument is 1, the rounding will be down, when it is -1, the
rounding will be up and when it is zero the rounding will be towards zero.
In all other cases nothing is done.
%--#] integer_ :
%--#[ inverse_ :
\section{inverse\_}\index{inverse\_}\index{function!inverse\_}
\label{funinverse}
\noindent \verb:inverse_(x1,x2): expects two arguments which are
polynomials in the same single variable. The return expression $x_3$
has the property that $x_1 x_3$ divided by $x_2$ has remainder 1. Or in
other words: $x_3$ is the inverse of $x_1$ modulus $x_2$.
The arguments can be any valid subexpressions, provided the whole function
fits inside a term. When an argument is an active expression or a
\$-expression it is only expanded during the division. This way the
contents of such expressions can exceed the maximum term size. One should
however realize that in that case the operation takes place in allocated
memory.
%--#] inverse_ :
%--#[ invfac_ :
\section{invfac\_}\index{invfac\_}\index{function!invfac\_}
\label{funinvfac}
\noindent One divided by the factorial\index{factorial} function. If it has
a single nonzero integer argument n, it is replaced by 1/n!, but if this
results in a number bigger than the maximum allowable number an error will
result.
%--#] invfac_ :
%--#[ makerational_ :
\section{makerational\_}\index{makerational\_}\index{function!makerational\_}
\label{funmakerational}
\noindent This function takes two arguments. Both are integers. We assume
calculus modulus the second argument. The function is then replaced by a
fraction of which both elements are less than the square root of the second
argument and that, in calculus modulus this second number would give the
same result as the first number modulus the second number. Example:
\begin{verbatim}
#$m = prime_(1);
#write <> "The prime number is %$",$m
The prime number is 2147483587
L F = MakeRational_(12345678,$m);
Print;
.sort
F =
9719/38790;
Modulus `$m';
Print;
.end
F =
12345678;
\end{verbatim}
\noindent This function can be used to reconstruct fractions when calculus
has been done modulus one or more prime numbers.
%--#] makerational_ :
%--#[ match_ :
\section{match\_}\index{match\_}\index{function!match\_}
\label{funmatch}
\noindent Currently not active. Replaced automatically by 1.
%--#] match_ :
%--#[ max_ :
\section{max\_}\index{max\_}\index{function!max\_}
\label{funmax}
\noindent If all its arguments are numeric, this function returns
the maximum value of these arguments.
%--#] max_ :
%--#[ maxpowerof_ :
\section{maxpowerof\_}\index{maxpowerof\_}\index{function!maxpowerof\_}
\label{funmaxpowerof}
\noindent If this function has a single argument that is a symbol, it
returns the maximum power restriction of this symbol. If none was given it
will be the installation dependent value MAXPOWER which is 10000 on
32\index{32 bits} bit machines and 500000000 on 64\index{64 bits} bit
machines.
%--#] maxpowerof_ :
%--#[ min_ :
\section{min\_}\index{min\_}\index{function!min\_}
\label{funmin}
\noindent If all its arguments are numeric, this function returns
the minimum value of these arguments.
%--#] min_ :
%--#[ minpowerof_ :
\section{minpowerof\_}\index{minpowerof\_}\index{function!minpowerof\_}
\label{funminpowerof}
\noindent If this function has a single argument that is a symbol, it
returns the minimum power restriction of this symbol. If none was given it
will be the installation dependent value -MAXPOWER which is -10000 on 32 bit
machines.
%--#] minpowerof_ :
%--#[ mod_ :
\section{mod\_}\index{mod\_}\index{function!mod\_}
\label{funmod}
\noindent If there are two integer arguments and the second
argument is a positive short integer (less than $2^{15}$ on 32 bit
computers and less than $2^{31}$ on 64 bit computers) the return value is
the first argument modulus the second. Note that if the second argument is
not a prime number and the first argument contains a denominator, division
by zero could occur. It is up to the user to avoid such cases. See also the
mod2\_ function~\ref{funmod2} and the rem\_ function~\ref{funrem}.
The function has one peculiarity: when the second argument is one, the
function is left untouched.
%--#] mod_ :
%--#[ mod2_ :
\section{mod2\_}\index{mod2\_}\index{function!mod2\_}
\label{funmod2}
\noindent This gives basically the same action as the mod\_ function (see
\ref{funmod}), but the answer will be in the range $-[(p-1)/2]$ to
$+[(p+1)/2]$.
%--#] mod2_ :
%--#[ mul_ :
\section{mul\_}\index{mul\_}\index{function!mul\_}
\label{funmul}
\noindent \verb|mul_(x,y)| is replaced by \verb|x*y|, but internally
the multiplication is performed via polynomial routines introduced in
\FORM{} version 4. This can be faster than the normal way of multiplications
for big polynomials: e.g., \verb|mul_($x,$y)| where the \$-variables \verb|$x|
and \verb|$y| store big polynomials.
A drawback is, because the polynomial routines accept only symbols, all
non-symbolic objects in the operands are temporarily translated to (commuting)
extra symbols. This process breaks the ordering of non-commutative objects
in the result.
%--#] mul_ :
%--#[ nargs_ :
\section{nargs\_}\index{nargs\_}\index{function!nargs\_}
\label{funnargs}
\noindent Is replaced by an integer indicating the number of
arguments that the function has.
%--#] nargs_ :
%--#[ node_ :
\section{node\_}\index{topologies\_}\index{function!node\_}
\label{funtonode}
\noindent For a description of this function, please see the section on
diagrams~\ref{diagrams}.
%--#] node_ :
%--#[ nterms_ :
\section{nterms\_}\index{nterms\_}\index{function!nterms\_}
\label{funnterms}
\noindent If this function has only one argument it is replaced by
the number of terms inside this argument.
%--#] nterms_ :
%--#[ numfactors_ :
\section{numfactors\_}\index{numfactors\_}\index{function!numfactors\_}
\label{funnumfactors}
\noindent This function returns the number of factors in a factorized
expression (see the chapter on polynomials~\ref{polynomials}) or dollar
variable~\ref{dollars}. It expects a single argument which should be the
name of an expression or a dollar variable. If the expression or dollar
variable has not been factorized, the function returns zero.
%--#] numfactors_ :
%--#[ partitions_ :
\section{partitions\_}\index{partitions\_}\index{function!partitions\_}
\label{funpartitions}
\noindent This function generates all partitions of a list of arguments into
$n$ parts. Each part consists of a function name and a size.
This function exploits symmetries of the arguments to make sure that no argument
is generated twice. Instead, a combinatorial prefactor is computed.
The syntax distinguishes three cases:
\begin{verbatim}
1] partitions_(n,[function,n1,]_1,...,[function,nn,]_n,arguments)
2] partitions_(n,[function,n1,]_1,...,[function,0],arguments)
3] partitions_(0,function,n1,arguments)
\end{verbatim}
In the first case, the first entry specifies the number of partitions $n$.
It should be followed by $n$ parts, defined by a function name
and the number of arguments for that function. The final entries are the arguments
that will be distributed over the functions.
The number of arguments should be the same as the sum of
all the function argument sizes.
There are no restrictions on the type of arguments.
The second case is the same as the first, except that the last partition
has a 0 for the size. This means that any leftover arguments are collected
in this term. Thus \path{partitions_(2,f1,3,f2,0,arguments)} yields the same
as \texttt{distrib\_(1,3,f1,f2,arguments)}.
The third case, determined by a 0 for the number of partitions followed by one part, spreads
the arguments over a repeated instance of that part. Thus \path{partitions_(0,f1,2,arguments)} is similar to \texttt{dd\_(arguments)}.
In case of a deviation from the above rules, no action will be taken.
Some examples are given below:
\begin{verbatim}
partitions_(2,f1,2,f2,1,x1,x1,x3) =
+ f1(x1,x1)*f2(x3) + 2*f1(x1,x3)*f2(x1)
;
partitions_(3,f1,2,f2,1,f3,0,x1,x1,x1,x2,x2,x2) =
+ 3*f1(x1,x1)*f2(x1)*f3(x2,x2,x2)
+ 9*f1(x1,x1)*f2(x2)*f3(x1,x2,x2)
+ 18*f1(x1,x2)*f2(x1)*f3(x1,x2,x2)
+ 18*f1(x1,x2)*f2(x2)*f3(x1,x1,x2)
+ 9*f1(x2,x2)*f2(x1)*f3(x1,x1,x2)
+ 3*f1(x2,x2)*f2(x2)*f3(x1,x1,x1)
;
partitions_(0,f1,3,x1,x1,x1,x4,x5,x6) =
+ f1(x1,x1,x1)*f1(x4,x5,x6)
+ 3*f1(x1,x1,x4)*f1(x1,x5,x6)
+ 3*f1(x1,x1,x5)*f1(x1,x4,x6)
+ 3*f1(x1,x1,x6)*f1(x1,x4,x5)
;
\end{verbatim}
%--#] partitions_ :
%--#[ pattern_ :
\section{pattern\_}\index{pattern\_}\index{function!pattern\_}
\label{funpattern}
\noindent Currently not active. Replaced automatically by 1.
%--#] pattern_ :
%--#[ perm_ :
\section{perm\_}\index{perm\_}\index{function!perm\_}
\label{funperm}
\noindent Generates all permutations of the arguments, with exception
of the first argument which should be the name of a function. This function
will then have the permuted arguments as in:
\begin{verbatim}
CFunction f;
Symbols x1,...,x3;
Local F = perm_(f,x1,x2,x3);
Print +s;
.end
F =
+ f(x1,x2,x3)
+ f(x1,x3,x2)
+ f(x2,x1,x3)
+ f(x2,x3,x1)
+ f(x3,x1,x2)
+ f(x3,x2,x1)
;
\end{verbatim}
The permutations are generated with an algorithm that takes subsequent
cyclic permutations. If one puts a nonzero integer before the function
argument the output terms will be multiplied by -1 when the permutation is
odd.
When the function name is the only argument the answer will be just this
function without arguments. One could argue that technically the answer
should be zero, but this way the attention of the user may be attracted to
the occurrence which might not be the case when the term 'just vanishes'.
It is however rather simple to add a statement that makes such a function
zero.
%--#] perm_ :
%--#[ poly_ :
\section{poly\_}\index{poly\_}\index{function!poly\_}
\label{funpoly}
\noindent This was an experimental function in version 3. It was for
internal use with a whole category of other experimental functions of which
the functionality has been replaced by better working functions that are
more general. This category included the functions
polyadd\_\index{polyadd\_}\index{function!polyadd\_},
polydiv\_\index{polydiv\_}\index{function!polydiv\_},
polygcd\_\index{polygcd\_}\index{function!polygcd\_},
polyintfac\_\index{polyintfac\_}\index{function!polyintfac\_},
polymul\_\index{polymul\_}\index{function!polymul\_},
polynorm\_\index{polynorm\_}\index{function!polynorm\_},
polyrem\_\index{polyrem\_}\index{function!polyrem\_} and
polysub\_\index{polysub\_}\index{function!polysub\_}.
See also the chapter on polynomials~\ref{polynomials} and the functions
gcd\_~\ref{fungcd}, div\_~\ref{fundiv} and rem\_~\ref{funrem}.
%--#] poly_ :
%--#[ prime_ :
\section{prime\_}\index{prime\_}\index{function!prime\_}
\label{funprime}
\noindent For a number of internal operations FORM needs prime numbers that
are neither very large nor very small. Hence it generates, when needed
prime numbers that still fit inside a single FORM word, but are maximal
within that limitation. Hence for a 64-bits computer in which the largest
positive `small' integer in FORM is $2^{31}-1$, it works its way down from
there. Once it has determined that a number is prime it stores it in a
list. The function prime\_ gives access to this list. The single argument
n (n a positive integer) makes that \verb:prime_(n): will be replaced by
the n-th member of the list. There is a limitation to the size of the list
which is implementation dependent. The number will anyway never be smaller
than the maximum power that is allowed for symbols. Example:
\begin{verbatim}
Symbols x1,x2,x3,x4;
ON highfirst;
Local F = x1*prime_(1)+x2*prime_(2)
+x3*prime_(3)+x4*prime_(4);
Print;
.end
F =
2147483587*x1 + 2147483579*x2 + 2147483563*x3 + 2147483549*x4;
\end{verbatim}
This function is useful when calculations generate very large intermediate
coefficients, but in the end the answer is relatively simple again. In that
case one can do the calculation modulus one or more prime numbers. If more
prime numbers are used the Chinese remainder theorem\index{Chinese
remainder theorem}. can be used (see the exteuclidean\_
function~\ref{funexteuclidean} to combine the results and the
makerational\_ function~\ref{funmakerational} can be used if fractions have
to be reconstructed. An example of this kind of use is given in the simple
Groebner basis procedure that is in the packages library in the FORM site.
%--#] prime_ :
%--#[ putfirst_ :
\section{putfirst\_}\index{putfirst\_}\index{function!putfirst\_}
\label{funputfirst}
\noindent
This function allows one to select a given argument by its number. The
syntax is:
\begin{verbatim}
putfirst_(functionname,numberofargument,arguments.....);
\end{verbatim}
It will select the indicated argument in the argument field indicated by
arguments and output this as the first argument in the indicated function.
This argument will then be followed by the remaining arguments.
Example:
\begin{verbatim}
S a,a1,...,a10;
CF f,g;
L F = g(a,a1,...,a10);
id g(?a) = putfirst_(f,4,?a);
Print;
.end
F =
f(a3,a,a1,a2,a4,a5,a6,a7,a8,a9,a10);
\end{verbatim}
%--#] putfirst_ :
%--#[ random_ :
\section{random\_}\index{random\_}\index{function!random\_}
\label{funrandom}
\noindent A random number generator. When the function has a single
positive integer argument, the function will return a pseudo random number
in the range of one to that number inclusive. Hence one can imitate a die
roll with the call random\_(6). The program uses a random number generator
as described in vol 2 of the "Art of computer programming, vol2" by D.
Knuth with the parameters set at 89,38 to give as long a cycle as possible.
For very large numbers the program pastes several random numbers together.
The generator can be initialized with the preprocessor
\#setrandom~\ref{presetrandom}\index{\#setrandom} instruction. When running
with TFORM or ParFORM each worker runs an independent generator with its
own seed. The seeds of the workers are derived from the seed of the master
and the number of the worker in a non-trivial way. It should be noted
however that with workers it may be impossible to reproduce previous runs
as it is non-deterministic which term ends up in which worker.
%--#] random_ :
%--#[ ranperm_ :
\section{ranperm\_}\index{ranperm\_}\index{function!ranperm\_}
\label{funranperm}
\noindent Generates a random permutation of the arguments, with exception
of the first argument which should be the name of a function. This function
will then have the permuted arguments as in:
\begin{verbatim}
CFunction f;
Symbols x1,...,x5;
Local F = ranperm_(f,1,2,3,4,5,6)
+ranperm_(f,x1,x2,x3+x1,x4,x5);
Print +s;
.end
F =
+ f(x5,x1,x3 + x1,x4,x2)
+ f(3,1,6,2,4,5)
;
\end{verbatim}
The permutation is generated with the same random number generator that is
used by the function
random\_~\ref{funrandom}\index{random}\index{function!random\_} and hence
is susceptible to the same initialization procedure that can be executed
with the \#setrandom~\ref{presetrandom}\index{setrandom} instruction.
%--#] ranperm_ :
%--#[ rem_ :
\section{rem\_}\index{rem\_}\index{function!rem\_}
\label{funrem}
\noindent \verb:rem_(x1,x2): is replaced by the remainder of the division
of $x_1$ by $x_2$. The arguments can be any valid subexpressions, provided
the whole function fits inside a term. When an argument is only an active
expression or a \$-expression it is only expanded during the division. This
way the contents of such expressions can exceed the maximum term size. One
should however realize that in that case the operation takes place in
allocated memory.
This function replaces the experimental function
polyrem\_\index{polyrem\_}\index{function!polyrem\_} that existed in
version 3.
%--#] rem_ :
%--#[ replace_ :
\section{replace\_}\index{replace\_}\index{function!replace\_}
\label{funreplace}
\noindent This function defines a rather general purpose
replacement\index{replacement} mechanism. It should have pairs of
arguments. Each pair consists of a single symbol, index, vector or
function, followed by what this object should be replaced by in the entire
term. Functions can only be replaced by functions, indices only by indices.
A vector can be replaced by a single vector or by a vector like expression.
A symbol can be replaced by a single symbol, a numerical expression or a
complete subexpression that is not index like or vector like. This
mechanism is sometimes needed to make replacements in ways that are very
hard with the id\index{id} statements because those do not make
replacements automatically inside function arguments (see
\ref{substaidnew}). It also allows to exchange two variables as the
replacements are executed simultaneously by the wildcard substitution
mechanism.
\begin{verbatim}
Multiply replace_(x,y,y,x);
\end{verbatim}
will exchange x and y. Because there is no definite order in which multiple
replace\_ functions are treated, one should not use more than a single one
at the same time inside a term. At times multiple replace\_ functions may
lead to confusion inside \FORM.
%--#] replace_ :
%--#[ reverse_ :
\section{reverse\_}\index{reverse\_}\index{function!reverse\_}
\label{funreverse}
\noindent Can only occur as an argument of a function. Is replaced
by the reversed string of its own arguments.
%--#] reverse_ :
%--#[ root_ :
\section{root\_}\index{root\_}\index{function!root\_}
\label{funroot}
\noindent If we have \verb:root_(n,x): and \verb:n: is a positive
integer and \verb:x: is a rational number and \verb:y: is a rational number
with $y^n = x$ (no imaginary numbers are considered and negative numbers
are avoided if possible. Only one root is given) then \verb:root_(n,x): is
replaced by \verb:y:. This function was originally intended for internal
use. Do not hold it against the author that \verb:root_(2,1): is replaced
by \verb:1:. In the case that it is needed the user should manipulate the
sign or the complexity properties externally.
%--#] root_ :
%--#[ setfun_ :
\section{setfun\_}\index{setfun\_}\index{function!setfun\_}
\label{funsetfun}
\noindent Currently not active.
%--#] setfun_ :
%--#[ sig_ :
\section{sig\_}\index{sig\_}\index{function!sig\_}
\label{funsig}
\noindent Is replaced by the sign of the (numerical) argument, i.e. by -1
if there is a single negative argument and by +1 if there is a single
numerical argument that is greater or equal to zero.
%--#] sig_ :
%--#[ sign_ :
\section{sign\_}\index{sign\_}\index{function!sign\_}
\label{funsign}
\noindent \verb:sign_(n): is replaced by \verb:(-1)^n: if n is an
integer.
%--#] sign_ :
%--#[ sizeof_ :
\section{sizeof\_}\index{sizeof\_}\index{function!sizeof\_}
\label{funsizeof}
\noindent If there is a single argument and this argument is the name of an
active (or previously active during the current job) expression, the
function is replaced by the number\index{number of \FORM words} of \FORM
words in this expression. Stored expressions that were entered via a load
statement (see \ref{substaload}) are excluded from this because for them
this information is not readily available.
%--#] sizeof_ :
%--#[ sum_ :
\section{sum\_}\index{sum\_}\index{function!sum\_}
\label{funsum}
\noindent General purpose sum\index{sum} function. The first argument should
be the summation parameter (a symbol). The second argument is the starting
point of summation, the third argument the `upper' limit and a potential
fourth argument the increment. These numbers should all be integers.
Summation stops when the summation parameter obtains a value that has
passed the upper limit. The last argument is the summand, the object to be
summed over. It can be any subexpression. If it contains the summation
parameter, it will be replaced by its value for each generated term.
Examples:
\begin{verbatim}
sum_(j,1,4,sign_(j)*x^j/j)
sum_(i,1,9,2,sign_((i-1)/2)*x^i*invfac_(i))
\end{verbatim}
%--#] sum_ :
%--#[ sump_ :
\section{sump\_}\index{sump\_}\index{function!sump\_}
\label{funsump}
\noindent Special sum function. Its arguments are like for the
sum\_ function, but each new term is the product of the previously
generated term with the last argument in which the current value of the
summation parameter has been substituted. The first term is always one.
Example:
% THIS EXAMPLE IS PART OF THE TESTSUITE. CHANGES HERE SHOULD BE APPLIED THERE AS
% WELL!
\begin{verbatim}
Symbol i,x;
Local F = sump_(i,0,5,x/i);
Print;
.end
F =
1 + x + 1/2*x^2 + 1/6*x^3 + 1/24*x^4 + 1/120*x^5;
\end{verbatim}
This function is a leftover from the Schoonschip\index{Schoonschip} days.
The ordinary sum\_ function is much more readable.
%--#] sump_ :
%--#[ table_ :
\section{table\_}\index{table\_}\index{function!table\_}
\label{funtable}
\noindent For action the arguments should be the name of a table and then
either the name of a function or one symbol for each dimension of the
table. In the case of the list of symbols the return value will be a
monomial in the given symbols in which the powers of the symbols correspond
to the table indices of the defined table elements with the coefficients
the table contents corresponding to those indices. In the case of a
function name the return value will be a sum over terms in which the table
elements are indicated by arguments in the given function while these
functions are then multiplied by the corresponding table elements. This is
one way to put a complete table inside an expression and store it (with the
save statement of \ref{substasave}) in a binary way for a future run in
which the table can be filled again with the
fillexpression\index{fillexpression} (see \ref{substafillexpression})
statement. Note that for obvious reasons one should avoid using symbols or
functions that also occur inside the table definitions.
%--#] table_ :
%--#[ tbl_ :
\section{tbl\_}\index{tbl\_}\index{function!tbl\_}
\label{funtbl}
\noindent This function is the `table stub function' as used by the
tablebase\index{tablebase} construction. This is explained in chapter
\ref{tablebase}. It is mainly for internal use, but it could occur in the
output.
%--#] tbl_ :
%--#[ term_ :
\section{term\_}\index{term\_}\index{function!term\_}
\label{funterm}
\noindent This function has no arguments. It is replaced by the current
term. It can be used to load the current term into a dollar variable as in
\begin{verbatim}
$x = term_;
\end{verbatim}
%--#] term_ :
%--#[ termsin_ :
\section{termsin\_}\index{termsin\_}\index{function!termsin\_}
\label{funtermsin}
\noindent If there is a single argument and this argument is the name of an
active (or previously active during the current job) expression, the
function is replaced by the number\index{number of terms} of terms in this
expression. Stored expressions that were entered via a load statement (see
\ref{substaload}) are excluded from this because for them \FORM\ would have
to actually count the terms.
%--#] termsin_ :
%--#[ termsinbracket_ :
\section{termsinbracket\_}\index{termsinbracket\_}\index{function!termsinbracket\_}
\label{funtermsinbracket}
\noindent If there is no argument, or the single argument is zero, the
function is replaced by the number of terms in the current
bracket\index{bracket}, provided the expression has been bracketed at its
last sort and a keep brackets statement (see \ref{substakeep}) has been
used. Note that the terms have to be counted. Hence this is a relatively
expensive command. More options will be implemented in the future.
%--#] termsinbracket_ :
%--#[ theta_ :
\section{theta\_}\index{theta\_}\index{function!theta\_}
\label{funtheta}
\noindent If there is a single numerical argument x the function is
replaced by one if $x \ge 0$ and by zero if $x < 0$. If there are two
numerical arguments $x_1$ and $x_2$ the function is replaced by one if $x_1
= x_2$ or if the arguments are in natural order (if theta\_ would be a
symmetric function there would be no reason to exchange the arguments) and
by zero if the arguments are not in natural order (they would be exchanged
in a symmetric function). In all other cases nothing is done.
%--#] theta_ :
%--#[ thetap_ :
\section{thetap\_}\index{thetap\_}\index{function!thetap\_}
\label{funthetap}
\noindent If there is a single numerical argument x the function is
replaced by one if $x > 0$ and by zero if $x \le 0$. If there are two
numerical arguments $x_1$ and $x_2$ the function is replaced by zero if $x_1
= x_2$ or if the arguments are not in natural order. If the arguments are
in natural order the function is replaced by one. In all other cases
nothing is done.
%--#] thetap_ :
%--#[ topologies_ :
\section{topologies\_}\index{topologies\_}\index{function!topologies\_}
\label{funtopologies}
\noindent For a description of this function, please see the section on
diagrams~\ref{diagrams}.
%--#] topologies_ :
%--#[ Reserved names :
\section{Extra reserved names}
\noindent In addition there are some names that have been reserved for
future use. At the moment these functions do not do very much. It is hoped
that in the future some simplifications of the arguments can be
implemented. These functions are:
\leftvitem{3cm}{sqrt\_}\index{sqrt\_}\index{function!sqrt\_}
\rightvitem{13cm}{The regular square root.}
\leftvitem{3cm}{ln\_}\index{ln\_}\index{function!ln\_}
\rightvitem{13cm}{The natural logarithm.}
\leftvitem{3cm}{sin\_}\index{sin\_}\index{function!sin\_}
\rightvitem{13cm}{The sine function.}
\leftvitem{3cm}{cos\_}\index{cos\_}\index{function!cos\_}
\rightvitem{13cm}{The cosine function.}
\leftvitem{3cm}{tan\_}\index{tan\_}\index{function!tan\_}
\rightvitem{13cm}{The tangent function.}
\leftvitem{3cm}{asin\_}\index{asin\_}\index{function!asin\_}
\rightvitem{13cm}{The inverse of the sine function.}
\leftvitem{3cm}{acos\_}\index{acos\_}\index{function!acos\_}
\rightvitem{13cm}{The inverse of the cosine function.}
\leftvitem{3cm}{atan\_}\index{atan\_}\index{function!atan\_}
\rightvitem{13cm}{The inverse of the tangent function.}
\leftvitem{3cm}{atan2\_}\index{atan2\_}\index{function!atan2\_}
\rightvitem{13cm}{Another inverse of the tangent function.}
\leftvitem{3cm}{sinh\_}\index{sinh\_}\index{function!sinh\_}
\rightvitem{13cm}{The hyperbolic sine function.}
\leftvitem{3cm}{cosh\_}\index{cosh\_}\index{function!cosh\_}
\rightvitem{13cm}{The hyperbolic cosine function.}
\leftvitem{3cm}{tanh\_}\index{tanh\_}\index{function!tanh\_}
\rightvitem{13cm}{The hyperbolic tangent function.}
\leftvitem{3cm}{asinh\_}\index{asinh\_}\index{function!asinh\_}
\rightvitem{13cm}{The inverse of the hyperbolic sine function.}
\leftvitem{3cm}{acosh\_}\index{acosh\_}\index{function!acosh\_}
\rightvitem{13cm}{The inverse of the hyperbolic cosine function.}
\leftvitem{3cm}{atanh\_}\index{atanh\_}\index{function!atanh\_}
\rightvitem{13cm}{The inverse of the hyperbolic tangent function.}
\leftvitem{3cm}{li2\_}\index{li2\_}\index{function!li2\_}
\rightvitem{13cm}{The dilogarithm function.}
\leftvitem{3cm}{lin\_}\index{lin\_}\index{function!lin\_}
\rightvitem{13cm}{The polylogarithm function.}
\noindent The user is allowed to use these functions, but it could be that
in the future they will develop a nontrivial behaviour. Hence caution is
required.
%--#] Reserved names :
|