File: statements.tex

package info (click to toggle)
form 4.2.1%2Bgit20200217-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 5,500 kB
  • sloc: ansic: 101,613; cpp: 9,375; sh: 1,582; makefile: 505
file content (6395 lines) | stat: -rw-r--r-- 247,301 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395

\chapter{Statements}
\label{statements}

%--#[ abrackets :

\section{abrackets, antibrackets}
\label{substaabrackets}

\noindent \begin{tabular}{ll}
Type & Output control statement\\
Syntax & ab[rackets][+][-] {\tt<}list of names{\tt>}; \\
& antib[rackets][+][-] {\tt<}list of names{\tt>}; \\
See also & bracket (\ref{substabracket}) and the chapter on brackets 
     (\ref{brackets})
\end{tabular} \vspace{4mm}

\noindent
This statement\index{abrackets}\index{antibrackets} does the opposite of 
the bracket statement (see \ref{substabracket}). In the bracket statement 
the variables that are mentioned are placed outside brackets and inside the 
brackets are all other objects. In the antibracket statement the variables 
in the list are the only objects that are not placed outside the brackets. 
For the rest of the syntax, see the bracket statement (section 
\ref{substabracket}).
\vspace{10mm}

%--#] abrackets : 
%--#[ also :
 
\section{also}
\label{substaalso}

\noindent \begin{tabular}{ll}
Type & Executable Statement \\
Syntax & a[lso] [options] {\tt<}pattern{\tt>} = 
         {\tt<}expression{\tt>}; \\
See also & identify (\ref{substaidentify}), idold (\ref{substaidold})
\end{tabular} \vspace{4mm}

\noindent The also\index{also} statement should follow either an 
id\index{id} statement or another also statement. The action is that the 
pattern matching in the also statement takes place immediately after the 
pattern matching of the previous id statement (or also statement) and after 
possible matching patterns have been removed, but before the r.h.s. 
expressions are inserted. It is identical to the idold statement (see 
\ref{substaidold}). Example:
\begin{verbatim}
    id    x = cosphi*x-sinphi*y;
    also  y = sinphi*x+cosphi*y;
\end{verbatim}

\noindent The options are explained in the section on the id statement (see 
\ref{substaidentify}). \vspace{10mm}

%--#] also : 
%--#[ antiputinside :

\section{antiputinside}
\label{substaantiputinside}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & antiputinside {\tt<}name of function{\tt>} [,$<$antibracket information$>$];
\\ See also & PutInside (\ref{substaputinside})
\end{tabular}\vspace{4mm}

\noindent This statement\index{antiputinside} puts all parts of the term 
with the exception of the variables in the antibracket information inside a 
function argument. The function must be a regular function (hence no tensor 
or table which are special types of functions). The 
antibracket\index{antibracket} information should adhere to the syntax of 
the bracket statement (\ref{substabracket}, \ref{substaabrackets}) and all 
occurrences of all variables with the exception of the antibracket 
variables will be put inside the function. The coefficient will also be put 
inside the function.
\vspace{10mm}

%--#] antiputinside : 
%--#[ antisymmetrize :

\section{antisymmetrize}
\label{substaantisymmetrize}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & an[tisymmetrize] \verb:{:{\tt<}name of function/tensor{\tt>}
         [{\tt<}argument specifications{\tt>}];\verb:}: \\
See also & symmetrize (\ref{substasymmetrize}), cyclesymmetrize 
(\ref{substacyclesymmetrize}), rcyclesymmetrize (\ref{substarcyclesymmetrize})
\end{tabular} \vspace{4mm}

\noindent The argument specifications are explained in the section on the 
symmetrize statements (see \ref{substasymmetrize}).\medskip

\noindent The action of this statement\index{antisymmetrize} is to 
anti-symmetrize the (specified) arguments of the functions that are 
mentioned. This means that the arguments are brought to `natural order' in 
the notation of \FORM\ and each exchange of arguments or groups of arguments 
results in a minus sign in the coefficient of the term. The `natural order' 
may depend on the order of declaration of the variables. If two arguments 
or groups of arguments that are part in the anti-symmetrization are 
identical, the function is replaced by zero. \vspace{10mm}

%--#] antisymmetrize : 
%--#[ apply :

\section{apply}
\label{substaapply}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & apply ["{\tt<}tablename(s){\tt>}"];
\\ See also & tablebases (\ref{tablebase}), apply (\ref{tblapply})
\end{tabular} \vspace{4mm}

\noindent This statement\index{apply} is explained in the chapter on 
tablebases.\vspace{10mm}

%--#] apply : 
%--#[ argexplode :

\section{argexplode}
\label{substaargexplode}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & argexplode [{\tt<}list of functions{\tt>}] \\
See also & argimplode (\ref{substaargimplode})
\end{tabular} \vspace{4mm}

\noindent See the description of the ArgImplode~\ref{substaargimplode} 
statement.
\vspace{10mm}

%--#] argexplode : 
%--#[ argimplode :

\section{argimplode}
\label{substaargimplode}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & argimplode [{\tt<}list of functions{\tt>}] \\
See also & argexplode (\ref{substaargexplode})
\end{tabular} \vspace{4mm}

\noindent This is a rather specialized statement. It converts one notation 
of indices, used for harmonic sums\index{sums!harmonic}\index{harmonic 
sums}, harmonic 
polylogarithms\index{polylogarithms!harmonic}\index{harmonic 
polylogarithms} and multiple zeta values\index{multiple zeta values} into 
its alternative notation. The two notations are:
\begin{verbatim}
   Z(0,0,0,1,0,0,-1)
   Z(4,-3)
\end{verbatim}
In the first notation the indices can only be 0, 1 and -1. In the second 
notation there can be no zeroes. The `ArgImplode,Z;' 
statement\index{argimplode} would be 
equivalent to the statement
% THIS EXAMPLE IS PART OF THE TESTSUITE. CHANGES HERE SHOULD BE APPLIED THERE AS
% WELL!
\begin{verbatim}
   repeat id Z(?a,0,x?!{0,0},?b) = Z(?a,x+sig_(x),?b);
\end{verbatim}
and takes one from the first notation to the second. The `ArgExplode,Z;' 
statement\index{argexplode} is equivalent to the statement
% THIS EXAMPLE IS PART OF THE TESTSUITE. CHANGES HERE SHOULD BE APPLIED THERE AS
% WELL!
\begin{verbatim}
   repeat id Z(?a,x?!{1,0,-1},?b) = Z(?a,0,x-sig_(x),?b);
\end{verbatim}
and takes one from the second notation to the first. The reason that these 
statements have been built in lies in the fact that for many indices the 
repeat statements started to become very time-consuming.

\noindent For the harmonic sums, the harmonic polylogarithms and the 
multiple zeta values one can use the summer6 and the harmpol packages in 
the \FORM\ distribution. They are described in the papers

J.~A.~M. Vermaseren, {\it Harmonic sums, Mellin transforms and integrals},
  {\em Int. J. Mod. Phys.} {\bf A14} (1999) 2037,
  http://arxiv.org/abs/hep-ph/9806280.

E.~Remiddi and J.~A.~M. Vermaseren, {\it Harmonic polylogarithms},  {\em 
Int. J. Mod. Phys.} {\bf A15} (2000) 725,
  http://arxiv.org/abs/hep-ph/9905237.
\vspace{10mm}

%--#] argimplode : 
%--#[ argtoextrasymbol :

\section{argtoextrasymbol}
\label{substaargtoextrasymbol}

\noindent
\begin{tabular}{ll}
Type &
  Executable statement \\
Syntax &
  argtoextrasymbol [tonumber] [{\tt<}argument specifications{\tt>}]; \\
See also &
  topolynomial (\ref{substatopolynomial}) and
  extrasymbols (\ref{substaextrasymbols}, \ref{sect-extrasymbols}).
\end{tabular}
\vspace{4mm}

\noindent
Converts function arguments into extra symbols. 
An argument will be replaced with an extra symbol. 
The arguments that have been encountered before are replaced with the same 
extra symbols. 
Unlike the \texttt{topolynomial} statement (\ref{substatopolynomial}), the 
replacement occurs even for arguments consisting only of numbers and symbols 
(including extra symbols). 
\vspace{4mm}

\noindent
The \texttt{tonumber} option requests that function arguments are converted to 
positive integers corresponding to extra symbols. This provides an efficient 
mapping from any expression (stored as a function argument) to a number. 
\vspace{4mm}

\noindent
The function arguments to be converted can be specified in the same way as the 
\texttt{argument} statement (see \ref{substaargument}). 
\vspace{10mm}

%--#] argtoextrasymbol : 
%--#[ argument :

\section{argument}
\label{substaargument}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & argument [{\tt<}argument specifications{\tt>}] \\ &
    \ \ \ \ \ \ \ \ \ \ \ \
 \verb:{:{\tt<}name of function/set{\tt>}
[{\tt<}argument specifications{\tt>}]\verb:}:; \\
See also & endargument (\ref{substaendargument})
\end{tabular} \vspace{4mm}

\noindent This statement starts an argument\index{argument} 
environment\index{environment!argument}. Such an environment is terminated 
by an endargument statement (see \ref{substaendargument}). The statements 
between the argument and the endargument\index{endargument} statements will 
be applied only to the function arguments as specified by the remaining 
information in the argument statement. This information is given by:
\begin{itemize}
\item   No further information: the statements are applied to all arguments 
of all functions.
\item   A series of numbers: the statements are applied to the given 
arguments of all functions.
\item   A function name (or a set of functions), possibly followed by a 
series of numbers: the statements are applied to the numbered arguments of 
the function specified. If a set of functions was specified, all the 
functions in the set will be taken. If no numbers are specified, all 
arguments of the function (or elements of the set) are taken.
\end{itemize}
The combination of a function (or set) possibly followed by numbers of 
arguments, can occur as many times as needed. The generic numbers of 
arguments that refer to all functions work in addition to the numbers 
specified for individual functions. Example\vspace{1mm}
\begin{verbatim}
   Argument 2,f,1,{f,f1},3,4;
\end{verbatim}
This specifies the second argument of all functions. In addition the first 
argument of \verb:f: will be taken and then also the third and fourth 
arguments of \verb:f: and \verb:f1: will be taken. \vspace{4mm}

\noindent Argument/endargument constructions can be nested. \vspace{10mm}

%--#] argument : 
%--#[ autodeclare :

\section{auto, autodeclare}
\label{substaautodeclare}

\noindent \begin{tabular}{ll}
Type & Declaration statement\\
Syntax & autodeclare {\tt<}variable type{\tt>} {\tt<}list of variables to be declared{\tt>}; \\
       & auto {\tt<}variable type{\tt>} {\tt<}list of variables to be declared{\tt>};
\end{tabular} \vspace{4mm}

\noindent The variable\index{auto}\index{autodeclare} types are 
\vspace{1mm}

\lefttabitem{s[ymbol]}
\tabitem{Declaration of symbols\index{symbols}. For options see \ref{substasymbols}.}

\lefttabitem{v[ector]}
\tabitem{Declaration of vectors\index{vectors}. For options see \ref{substavectors}.}

\lefttabitem{i[ndex]}
\tabitem{Declaration of indices\index{index}. For options see \ref{substaindex}.}

\lefttabitem{i[ndices]}
\tabitem{Declaration of indices\index{indices}. For options see \ref{substaindex}.}

\lefttabitem{f[unctions]}
\tabitem{Declaration of noncommuting\index{noncommuting} 
functions\index{functions!noncommuting}. For options see 
\ref{substanfunctions}.}

\lefttabitem{nf[unctions]}
\tabitem{Declaration of noncommuting functions. For options see 
\ref{substanfunctions}.}

\lefttabitem{cf[unctions]}
\tabitem{Declaration of commuting\index{commuting} 
functions\index{functions!commuting}. For options see 
\ref{substacfunctions}.}

\lefttabitem{co[mmuting]}
\tabitem{Declaration of commuting functions. For options see 
\ref{substacfunctions}.}

\lefttabitem{t[ensors]}
\tabitem{Declaration of commuting tensors\index{tensors!commuting}. For options see 
\ref{substatensors}.}

\lefttabitem{nt[ensors]}
\tabitem{Declaration of noncommuting tensors\index{tensors!noncommuting}. For options see 
\ref{substantensors}.}

\lefttabitem{ct[ensors]}
\tabitem{Declaration of commuting tensors\index{tensors!commuting}. For options see 
\ref{substactensors}.}

\noindent The action of the autodeclare statement is to set a default for 
variable types. In a statement of the type
\begin{verbatim}
   AutoDeclare Symbol a,bc,def;
\end{verbatim}
all undeclared variables of which the name starts with the character a, the 
string bc or the string def will be interpreted as symbols and entered in 
the name tables as such. In the case there are two statements as in
\begin{verbatim}
   AutoDeclare CFunction b,d;
   AutoDeclare Symbol a,bc,def;
\end{verbatim}
all previously undeclared variables of which the name starts with a, bc or 
def will be declared as symbols. All other previously undeclared variables 
of which the name starts with a b or a d will be declared as commuting 
functions. This is independent of the order of the autodeclare statements. 
{\FORM} starts looking for the most detailed matches 
first. Hence the variable defi will match with the string def first.
\vspace{4mm}

\noindent It is also allowed to use the properties of the various variables 
in the autodeclare statement:
\begin{verbatim}
   AutoDeclare Index i=4,i3=3,i5=5;
\end{verbatim}
This declares all previously undeclared variables of which the name starts 
with an i to be four dimensional indices, unless their names start with i3 in 
which case they will be three dimensional indices, or their names start 
with i5 in which case they will be five dimensional indices. \vspace{10mm}

%--#] autodeclare : 
%--#[ bracket :

\section{bracket}
\label{substabracket}

\noindent \begin{tabular}{ll}
Type & Output control statement\\
Syntax & b[rackets][+][-] {\tt<}list of names{\tt>}; \\
See also & antibracket (\ref{substaabrackets}), keep (\ref{substakeep}),
    collect(\ref{substacollect}) and the chapter on brackets 
     (\ref{brackets})
\end{tabular} \vspace{4mm}

\noindent This statement causes the output to be reorganized in such a way 
that all objects in the `list of names' are placed outside 
brackets\index{bracket} and all remaining objects inside 
brackets\index{brackets}. This grouping will remain till the next time that 
the expression is active and is being manipulated. Hence the brackets can 
survive skip (see \ref{substaskip}), hide (see \ref{substahide}) and even 
save (see \ref{substasave}) and load (see \ref{substaload}) statements. The 
bracket information can be used by the collect (see \ref{substacollect}) 
and keep (see \ref{substakeep}) statements, as well in r.h.s. expressions 
when the contents of individual brackets of an expression can be picked up 
(see \ref{brackets}). \vspace{4mm}

\noindent The list of names can contain names of symbols, vectors, 
functions, tensors and sets. In addition it can contain dotproducts. There 
should be only one bracket or antibracket (see \ref{substaabrackets}) 
statement in each module. If there is more than one, only the last one has 
an effect. The presence of a set has the same effect as having all the 
symbolic elements of the set declared in the (anti)bracket 
statement.\vspace{4mm}

\noindent The presence of a $+$ or $-$ after the bracket (or anti bracket) 
refers to potential indexing of the brackets\index{brackets!indexing}. 
Usually {\FORM} has the information inside the terms in an expression. If 
it needs to search for a particular bracket it does so by starting at the 
beginning of that expression. This can be slow. If one likes to access 
individual brackets, it may be faster to tell {\FORM} to make an index by 
putting the $+$ after the bracket or antibracket keyword. For more 
information, see the chapter on brackets (see \ref{brackets}). A $-$ 
indicates that no index should be made. Currently this is the default and 
hence there is no need to use this option. It is present just in case the 
default might be changed in a future version of {\FORM} (in which {\FORM} 
might for instance try to determine by itself what seems best. This option 
exists for case that the user would like to overrule such a mechanism). 
\vspace{4mm}

\noindent See also the antibracket statement in \ref{substaabrackets}.
\vspace{10mm}

%--#] bracket : 
%--#[ break :
%
\section{break}
\label{substabreak}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & break; \\
\\ See also & case (\ref{substacase}), switch (\ref{substaswitch}),
		 default(\ref{substadefault}), endswitch (\ref{substaendswitch}).
\end{tabular} \vspace{4mm}

\noindent When a break statement is reached in a switch construction the 
next statement to be executed is the first statement after the 
corresponding endswitch statement.

\vspace{10mm}
%
%--#] break : 
%--#[ case :
%
\section{case}
\label{substacase}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & case,number; \\
\\ See also & switch (\ref{substaswitch}), break (\ref{substabreak}),
		 default(\ref{substadefault}), endswitch (\ref{substaendswitch}).
\end{tabular} \vspace{4mm}

\noindent The cases in a switch construction are marked by a number. This 
number must be an interger that can be represented inside a {\FORM} word. 
On a 64-bit processor this would be an integer in the range $-2^{31}$ to 
$2^{31}-1$. If the dollar variable in the switch statement has the same 
value as the integer in the case statement, the next statement to be 
executed is the first statement after the case statement. Usually cases are 
terminated by break statements, but if there is no break statement 'fall 
through' may occur in which execution continues with the first statement 
after the next case statement or default statement.

\vspace{10mm}
%
%--#] case : 
%--#[ cfunctions :

\section{cfunctions}
\label{substacfunctions}

\noindent \begin{tabular}{ll}
Type & Declaration statement\\
Syntax & c[functions] {\tt<}list of functions to be declared{\tt>}; \\
See also & functions (\ref{substafunctions}), nfunctions (\ref{substanfunctions})
\end{tabular} \vspace{4mm}

\noindent This statement declares commuting\index{commuting} 
functions\index{functions!commuting}. The name of a 
function can be followed by some information that specifies additional 
properties of the preceding function. These can be (name indicates the 
name of the function to be declared): \vspace{4mm}

\leftvitem{4.1cm}{name{\hash}r}
\rightvitem{12cm}{The function is considered to be a real\index{real} function (default).}

\leftvitem{4.1cm}{name{\hash}c}
\rightvitem{12cm}{The function is considered to be a complex\index{complex} function. This means 
that internally two spaces are reserved. One for the variable name and one 
for its complex conjugate name{\hash}.}

\leftvitem{4.1cm}{name{\hash}i}
\rightvitem{12cm}{The function is considered to be imaginary\index{imaginary}.}

\leftvitem{4.1cm}{name(s[ymmetric])}
\rightvitem{12cm}{The function is totally symmetric\index{symmetric}. This means that during 
normalization {\FORM} will order the arguments according to its internal 
notion of order by trying permutations. The result will depend on the order 
of declaration of variables.}

\leftvitem{4.1cm}{name(a[ntisymmetric])}
\rightvitem{12cm}{The function is totally antisymmetric\index{antisymmetric}. This means that 
during normalization {\FORM} will order the arguments according to its 
internal notion of order and if the resulting permutation of arguments is 
odd the coefficient of the term will change sign. The order will depend on 
the order of declaration of variables.}

\leftvitem{4.1cm}{name(c[yclesymmetric])}
\rightvitem{12cm}{The function is cycle\index{cycle symmetric} symmetric in 
all its arguments. This means that during normalization {\FORM} will order 
the arguments according to its internal notion of order by trying cyclic 
permutations. The result will depend on the order of declaration of 
variables.}

\leftvitem{4.1cm}{name(r[cyclesymmetric)

name(r[cyclic])

name(r[eversecyclic])}
\rightvitem{12cm}{The function is reverse\index{reverse cycle symmetric} 
cycle symmetric in all its arguments. This means that during normalization 
{\FORM} will order the arguments according to its internal notion of order 
by trying cyclic permutations and/or a complete reverse order of all 
arguments. The result will depend on the order of declaration of 
variables.}

\noindent The complexity properties and the symmetric properties can be 
combined. In that case the complexity properties should come first as in
\begin{verbatim}
    CFunction f1#i(antisymmetric);
\end{verbatim}
\vspace{10mm}

%--#] cfunctions : 
%--#[ chainin :
 
\section{chainin}
\label{substachainin}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & Chainin,name of function;
\\ See also & chainout (\ref{substachainout})
\end{tabular} \vspace{4mm}

\noindent Has\index{chainin} the same effect as the statement
\begin{verbatim}
   repeat id f(?a)*f(?b) = f(?a,?b);
\end{verbatim}
if f is the name of the function specified. The chainin statement is just a 
faster shortcut. \vspace{10mm}

%--#] chainin : 
%--#[ chainout :
 
\section{chainout}
\label{substachainout}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & Chainout,name of function;
\\ See also & chainin (\ref{substachainin})
\end{tabular} \vspace{4mm}

\noindent Has\index{chainout} the same effect as the statement
\begin{verbatim}
   repeat id f(x1?,x2?,?a) = f(x1)*f(x2,?a);
\end{verbatim}
if f is the name of the function specified. The chainout statement is just a 
much faster shortcut. \vspace{10mm}

%--#] chainout : 
%--#[ chisholm :

\section{chisholm}
\label{substachisholm}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & chisholm [options] {\tt<}spinline indices{\tt>}; \\
See also & trace4 (\ref{substatrace}) and the chapter on gamma algebra 
(\ref{gammaalgebra})
\end{tabular} \vspace{4mm}

\noindent This statement\index{chisholm} applies the identity
\begin{eqnarray}
    \gamma_a\gamma_\mu\gamma_b \Tr[\gamma_\mu S] & = &
         2\gamma_a( S + S^R ) \gamma_b  \nonumber
\end{eqnarray}
\setcounter{equation}{2}
in order to contract traces. $S$ is here a string of
gamma\index{gamma matrices} matrices and $S^R$ is the reverse string. This 
identity is particularly useful when the matrices $\gamma_6 = 1+\gamma_5$ 
and/or $\gamma_7 = 1-\gamma_5$ are involved. The spinline\index{spinline} index refers to 
which trace should be eliminated this way. The options are \vspace{1mm}
 
\lefttabitem{symmetrize}
\tabitem{If there is more than one contraction with other gamma matrices, 
the answer will be the sum of the various contractions, divided by the 
number of different contractions. This will often result in a minimization 
of the number of $\gamma_5$ matrices left in the final results.}

\lefttabitem{nosymmetrize}
\tabitem{The first contraction encountered will be taken. No attempt is 
made to optimize with respect to the number of $\gamma_5$ matrices left.}

\noindent IMPORTANT: the above identity is only valid in 4 dimensions. For 
more details, see chapter \ref{gammaalgebra} on gamma\index{gamma algebra} algebra. \vspace{10mm}

%--#] chisholm : 
%--#[ cleartable :

\section{cleartable}
\label{substacleartable}

\noindent \begin{tabular}{ll}
Type & Declaration statement\\
Syntax & ClearTable [{\tt<}list of tables{\tt>}]
\end{tabular} \vspace{4mm}

\noindent This statement clears the tables that are mentioned. Sometimes 
(sparse) tables can take so much space that there is no room for new 
elements, while old elements are not needed any longer. In that case one 
can clear the table and start all over again with filling it. It is also 
useful when one wants to reuse a table, but now with a different content.
\vspace{10mm}

%--#] cleartable : 
%--#[ collect :

\section{collect}
\label{substacollect}

\noindent \begin{tabular}{ll}
Type & Specification statement\\
Syntax & collect {\tt<}name of function{\tt>}; \\
       & collect {\tt<}name of function{\tt>} 
        {\tt<}name of other function{\tt>}; \\
       & collect {\tt<}name of function{\tt>} 
        {\tt<}name of other function{\tt>} {\tt<}percentage{\tt>};
\\ See also & bracket (\ref{substabracket}), antibracket 
     (\ref{substaabrackets}) and the chapter on brackets 
     (\ref{brackets})
\end{tabular} \vspace{4mm}

\noindent Upon processing\index{collect} the expressions (hence expressions 
in hide as well as skipped expressions do not take part in this) the 
contents of the brackets\index{brackets} (if there was a bracket or 
antibracket\index{antibracket} statement in the preceding module) are 
collected and put inside the argument of the named function. Hence if the 
expression \verb:F: is given by
\begin{verbatim}
   F =
      a*(b^2+c)
    + a^2*(b+6)
    + b^3 + c*b + 12;
\end{verbatim}
the statement
\begin{verbatim}
   Collect cfun;
\end{verbatim}
will change \verb:F: into
\begin{verbatim}
   F = a*cfun(b^2+c)+a^2*cfun(b+6)+cfun(b^3+c*b+12);
\end{verbatim}
The major complication\index{complication} occurs if the content of a 
bracket is so long that it will not fit inside a single term. The maximum 
size of a term is limited by the setup parameter 
maxtermsize\index{maxtermsize} (see \ref{setupmaxtermsize}). If this size 
is exceeded, {\FORM} will split the bracket contents over more than one term, 
in each of which it will be inside the named function. It will issue a 
warning that it has done so. \vspace{4mm}

\noindent If a second function is specified (the 
alternative\index{alternative} collect function) and if a bracket takes 
more space than can be put inside a single term, the bracket contents will 
be split over more than one term, in each of which it will be inside the 
alternative collect function. In this case there is no need for a 
warning\index{warning} 
as the user can easily check whether this has occurred by checking whether 
the alternative function is present in the expression. \vspace{4mm}

\noindent If additionally a percentage\index{percentage} is specified (an 
integer in the range of 1 to 99) this determines how big the argument must 
be as compared to MaxTermSize (see chapter \ref{setup} on the setup) before 
use is made of the alternate collect function. \vspace{10mm}

%--#] collect : 
%--#[ commuteinset :
 
\section{commuteinset}
\label{substacommuteinset}

\noindent \begin{tabular}{ll}
Type & Declaration statement\\
Syntax & commuteinset {\tt<}$\{$list of noncommuting functions/tensors$\}${\tt>}; \\
See also & functions (\ref{substafunctions})
\end{tabular} \vspace{4mm}

\noindent This statement\index{commuteinset} allows one or more sets of 
noncommuting functions and or tensors for its argument(s). The functions 
inside each set will commute with each other. It is allowed to have the 
same function inside more than one set. For a function to commute with 
itself (with for instance different arguments) it needs to be specified 
twice inside the same set. In that case it is more efficient to have a 
separate set with only two arguments. Example:
\begin{verbatim}
    I   i1,...,i10;
    F   A1,...,A10;
    CommuteInSet{A1,A3,A5},{A1,g_},{A1,A1};
    L   F = A5*A1*A5*A1*A5*A2*A3*A5*A1*A5*A3*A1;
    L   G = g_(2,i1)*g_(2,i2,i3)*A1(i2)*g_(1,i4)*g_(1,5_,i5,i6)
                    *A1(i1)*A1(i3)*g5_(1)*A3(i5)*A3(i4)*g5_(1);
    Print +f +s;
    .end

   F =
       + A1*A1*A5*A5*A5*A2*A1*A1*A3*A3*A5*A5;
   G =
       + g_(1,i4,i5,i6)*g_(2,i1,i2,i3)*A1(i1)*A1(i2)*A1(i3)*
       A3(i5)*A3(i4)*g_(1,5_);
\end{verbatim}
\vspace{10mm}

%--#] commuteinset : 
%--#[ commuting :
 
\section{commuting}
\label{substacommuting}

\noindent \begin{tabular}{ll}
Type & Declaration statement\\
Syntax & co[mmuting] {\tt<}list of functions to be declared{\tt>}; \\
See also & cfunctions (\ref{substacfunctions}), functions (\ref{substafunctions})
\end{tabular} \vspace{4mm}

\noindent This statement\index{commuting} is completely identical to the 
cfunction statement (see \ref{substacfunctions}). \vspace{10mm}

%--#] commuting : 
%--#[ compress :

\section{compress}
\label{substacompress}

\noindent \begin{tabular}{ll}
Type & Declaration statement\\
Syntax & comp[ress] {\tt<}on/off{\tt>};
\\ See also & on (\ref{substaon}), off (\ref{substaoff})
\end{tabular} \vspace{4mm}

\noindent This statement\index{compress} is obsolete. The user should try 
to use the compress option of the on (see \ref{substaon}) or the off (see 
\ref{substaoff}) statements. \vspace{10mm}

%--#] compress : 
%--#[ contract :

\section{contract}
\label{substacontract}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & contract [{\tt<}argument specifications{\tt>}];
\end{tabular} \vspace{4mm}

\noindent Statement\index{contract} causes the contraction of pairs of 
Levi-Civita\index{Levi-Civita} tensors\index{tensor!Levi-Civita} \verb:e_: 
(see also \ref{functions}) into combinations of Kronecker\index{Kronecker} 
delta's\index{delta!Kronecker}. If there are contracted indices, and if 
their dimension is identical to the number of indices of the Levi-Civita 
tensors, the regular shortcuts are taken. If there are contracted indices 
with a different dimension, the contraction treats these indices 
temporarily as different and lets the contraction be ruled by the 
contraction mechanism of the Kronecker delta's. In practise this means that 
the dimension will enter via $\delta^{\mu}_{\mu} \rightarrow {\rm 
dim}(\mu)$. \vspace{4mm}

\noindent In {\FORM} there are no upper\index{upper} and lower\index{lower} 
indices\index{indices!lower}\index{indices!upper}. Of course the user can 
emulate those. The contract statement always assumes that there is a proper 
distribution of upper and lower indices if the user decided to work in a 
metric in which this makes a difference. Note however that due to the fact 
that the Levi-Civita tensor is considered to be imaginary, there is usually 
no need to do anything special. This is explained in the chapter on 
functions (see \ref{functions}). \vspace{4mm}

\noindent There are several options to control which contractions will be 
taken. They are \vspace{1mm}

\lefttabitem{Contract;}
\tabitem{Here only a single pair of Levi-Civita tensors will be contracted. 
The pair that is selected by {\FORM} is the pair that will give the smallest 
number of terms in their contraction.}

\leftvitem{4cm}{Contract {\tt <}number{\tt>};}
\rightvitem{12cm}{This tells {\FORM} to keep contracting pairs of Levi-Civita tensors 
until there are {\tt <}number{\tt>} or {\tt <}number{\tt>}$+1$ 
Levi-Civita tensors left. A common example is

Contract 0;

which will contract as many pairs as possible.}

\leftvitem{4cm}{Contract:{\tt<}number{\tt>};}
\rightvitem{12cm}{Here the number indicates the number of indices in the 
Levi-Civita tensors to be contracted. Only a single pair will be 
contracted and it will be the pair that gives the smallest number of 
terms.}

\leftvitem{4cm}{Contract:{\tt<}number{\tt>}

\hfill {\tt<}number{\tt>};}
\rightvitem{12cm}{The First number refers to the number of indices in the 
Levi-Civita tensors to be contracted. The second number refers to the 
number of Levi-Civita tensors that should be left (if possible) after 
contraction.}

\noindent Note that the order in which {\FORM} selects the contractions is by 
looking at which pair will give the smallest number of terms. This means 
that usually the largest buildup of terms is at the end. This is not always 
the case, because there can be a complicated network of contracted indices. 
\vspace{10mm}

%--#] contract : 
%--#[ copyspectator :

\section{copyspectator}
\label{substacopyspectator}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & copyspectator {\tt<}exprname = spectator;{\tt>};
\end{tabular} \vspace{4mm}

\noindent See chapter\ref{spectators} on spectators.
\vspace{10mm}

%--#] copyspectator : 
%--#[ createspectator :

\section{createspectator}
\label{substacreatespectator}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & createspectator {\tt<}spectatorname, "filename";{\tt>};
\end{tabular} \vspace{4mm}

\noindent See chapter\ref{spectators} on spectators.
\vspace{10mm}

%--#] createspectator : 
%--#[ ctable :

\section{ctable}
\label{substactable}

\noindent \begin{tabular}{ll}
Type & Declaration statement\\
Syntax & ctable {\tt<}options{\tt>} {\tt<}table to be 
declared{\tt>}; \\
See also & functions (\ref{substafunctions}), table (\ref{substatable}),
        ntable (\ref{substantable})
\end{tabular} \vspace{4mm}

\noindent This statement declares a commuting\index{commuting} 
table\index{table!commuting} and is identical to the table command (see 
\ref{substatable}) which has the commuting property as its default. 
\vspace{10mm}

%--#] ctable : 
%--#[ ctensors :
 
\section{ctensors}
\label{substactensors}

\noindent \begin{tabular}{ll}
Type & Declaration statement\\
Syntax & ct[ensors] {\tt<}list of tensors to be declared{\tt>}; \\
See also & functions (\ref{substafunctions}), tensors 
        (\ref{substatensors}), ntensors (\ref{substantensors})
\end{tabular} \vspace{4mm}

\noindent This statement declares commuting\index{commuting} 
tensors\index{tensor!commuting}. It is equal to the tensor statement (see 
\ref{substatensors}) which has the commuting property as its default. 
\vspace{10mm}

%--#] ctensors : 
%--#[ cyclesymmetrize :

\section{cyclesymmetrize}
\label{substacyclesymmetrize}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & cy[clesymmetrize] \verb:{:{\tt<}name of function/tensor{\tt>}
         [{\tt<}argument specifications{\tt>}];\verb:}: \\
See also & symmetrize (\ref{substasymmetrize}), antisymmetrize 
(\ref{substaantisymmetrize}), rcyclesymmetrize (\ref{substarcyclesymmetrize})
\end{tabular} \vspace{4mm}

\noindent The argument\index{cyclesymmetrize} specifications are explained 
in the section on the symmetrize statements (see \ref{substasymmetrize}). 
\medskip

\noindent The action of this statement is to cycle-symmetrize the (specified) 
arguments of the functions that are mentioned. This means that the 
arguments are brought to `natural order' in the notation of \FORM\ by trying 
cyclic permutations of the arguments or groups of arguments. The `natural 
order' may depend on the order of declaration of the variables. 
\vspace{10mm}

%--#] cyclesymmetrize : 
%--#[ deallocatetable :
 
\section{deallocatetable}
\label{substadeallocatetable}

\noindent \begin{tabular}{ll}
Type & Declaration\\
Syntax & DeallocateTable,name(s) of sparse table(s);
\\ See also & table (\ref{substatable}), fill (\ref{substafill}),
   table bases (\ref{tablebase})
\end{tabular} \vspace{4mm}

\noindent Works\index{deallocatetable} only for sparse\index{sparse} 
tables\index{table!sparse}. Deallocates all definitions of elements as 
obtained with `Fill'\index{fill} statements as if there never were any 
`Fill' statements for the given tables.

This statement exists because sometimes cleaning up big tables is needed 
when they take too much memory. This can be the case when a big tablebase 
has been used. \vspace{10mm}

%--#] deallocatetable : 
%--#[ default :
%
\section{default}
\label{substadefault}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & default; \\
\\ See also & case (\ref{substacase}), break (\ref{substabreak}),
		 switch(\ref{substaswitch}), endswitch (\ref{substaendswitch}).
\end{tabular} \vspace{4mm}

\noindent This is the default case in a switch construction.

\vspace{10mm}
%
%--#] default : 
%--#[ delete :

\section{delete}
\label{substadelete}

\noindent \begin{tabular}{ll}
Type & Specification statement\\
Syntax & delete storage; \\
See also & save (\ref{substasave}), load (\ref{substaload}) \\
Syntax & delete extrasymbols; \\
Syntax & delete extrasymbols\textgreater{}number; \\
See also & extrasymbols (\ref{substaextrasymbols}) \\

\end{tabular} \vspace{4mm}

\noindent This statement has currently two varieties. The delete 
storage\index{delete} clears the complete storage\index{storage file} 
file\index{file!storage} and reduces it to zero size. The effect is that 
all stored expressions are removed from the system. Because it is 
impossible to remove individual expressions from the store file (there is 
no mechanism to fill the resulting holes) it is the only way to clean up 
the storage file. If some expressions should be excluded from this 
elimination process, one should copy them first into active global 
expressions, then delete the storage file, after which the expressions can 
be written to storage again with a .store\index{.store} instruction.

\noindent The delete extrasymbols\index{delete}\index{} variety removes 
extra symbols\index{extra symbols} from the list. The default is that all 
extra symbols are removed, but one can also remove the symbols above a 
given number as in
\begin{verbatim}
   #$es = `extrasymbols_';
   ToPolynomial;
     ....some code....
   .sort
   * now the new extra symbols are not needed anylonger
   Delete extrasymbols>`$es';
\end{verbatim}
\vspace{10mm}

%--#] delete : 
%--#[ denominators :

\section{denominators}
\label{substadenominators}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & denominators functionname;
\end{tabular} \vspace{4mm}

\noindent This statement\index{denominators} allows the user to rename all 
occurrences of the built-in denominator function. This built-in function is 
kind of an oddity inside \FORM. Denominators are presented by a very special 
function which doesn't really have a name and hence is rather hard to 
address. In addition there are special rules connected to denominators. 
Hence it is usually better to collect denominators inside functions that 
have been defined by the user and hence allow the user to manipulate them 
at will. Yet, objects can end up inside denominator functions, especially 
when output from other programs is read in. Hence this statement allows all 
occurrences of the denominator function to be renamed into the function 
that is given in the statement. This function will work well together with 
the PolyRatFun statement in which we define a PolyFun with two arguments of 
which the second acts as a denominator and the first as a numerator:
\begin{verbatim}
   PolyRatFun,rat;
   Denominators,den;
   id den(x?) = rat(1,x);
\end{verbatim}
For more about this one should consult the part on the 
PolyRatFun\index{polyratfun} statement 
(\ref{substapolyratfun}) and the chapter on polynomials (still to be 
included because the current version can handle only polynomials in a 
single variable and is also not optimized for many occurrences that have 
identical denominators).
\vspace{10mm}

%--#] denominators : 
%--#[ dimension :
 
\section{dimension}
\label{substadimension}

\noindent \begin{tabular}{ll}
Type & Declaration statement\\
Syntax & d[imension] {\tt<}number or symbol{\tt>};
\\ See also & index (\ref{substaindex})
\end{tabular} \vspace{4mm}

\noindent Sets the default dimension\index{dimension!default}. This default 
dimension determines the dimension of the indices\index{indices} that are 
being declared without dimension specification as well as the dimension of 
all dummy indices\index{indices!dummy}. At the moment an index is declared 
and there is no dimension specification, {\FORM} looks for the default 
dimension and uses that. This index will then have this dimension, even 
when the default dimension is changed at a later moment. The dummy indices 
always have the dimension of the current default dimension. If the default 
dimension is changed the dimension of all dummy indices changes with it. 
Varieties: \vspace{1mm}

\leftvitem{4cm}{Dimension {\tt<}number{\tt>};}
\rightvitem{12cm}{Declares the number to be the default dimension. The number must be smaller than
32768 on 32bit architectures or 2147483648 on 64bit architectures. Negative numbers are not allowed.
If one wants to work with negative dimensions, the practical workaround is to use a symbolic
dimension and later replace that symbol appropriately.}

\leftvitem{4cm}{Dimension {\tt<}symbol{\tt>};}
\rightvitem{12cm}{Symbol must be the name of a symbol, either previously 
declared or declarable because of an auto-declaration (see 
\ref{substaautodeclare}). Declares the symbol to be the default dimension.}

\leftvitem{4cm}{Dimension

\hfill {\tt<}symbol{\tt>}:{\tt<}symbol{\tt>};}
\rightvitem{12cm}{The symbols\index{symbols} must be the names of symbols, 
either previously declared or declarable because of an auto-declaration 
(see \ref{substaautodeclare}). The first symbol will be the default 
dimension. The second symbol will be the first symbol minus 4. It will 
be used as such in the trace\index{trace contractions} 
contractions\index{contractions!trace}. See also \ref{substatracen} and 
\ref{substaindex}.}

\noindent Examples:
\begin{verbatim}
   Dimension 3;
   Dimension n;
   Dimension n:[n-4];
\end{verbatim}
The default dimension in {\FORM} is 4. \vspace{10mm}

%--#] dimension : 
%--#[ discard :

\section{discard}
\label{substadiscard}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & dis[card];
\end{tabular} \vspace{4mm}

\noindent This statement discards\index{discard} the current term. It can 
be very useful in statements of the type
\begin{verbatim}
   if ( count(x,1) > 5 ) Discard;
\end{verbatim}
which eliminates all terms that have more than five powers of x. 
\vspace{10mm}

%--#] discard : 
%--#[ disorder :

\section{disorder}
\label{substadisorder}

\noindent \begin{tabular}{ll}
Type & Executable statement \\
Syntax & disorder {\tt<}pattern{\tt>} = {\tt<}expression{\tt>};
\\ See also & identify (\ref{substaidentify})
\end{tabular} \vspace{4mm}

\noindent This statement is identical to the disorder\index{disorder} 
option\index{option!disorder} of the id\index{id statement}\index{id} 
statement (see \ref{substaidentify}). It is just a shorthand notation for 
`id disorder'. \vspace{10mm}

%--#] disorder : 
%--#[ do :

\section{do}
\label{substado}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & do \$loopvar = lowvalue,highvalue\verb:{:,increment\verb:}:;
\\ See also & enddo (\ref{substaenddo})
\end{tabular} \vspace{4mm}

\noindent The syntax is the typical syntax for do-loops. The loop variable 
has to be a dollar variable. For parallel performance this variable can be 
declared local in a moduleoption (see \ref{substamoduleoption}) statement, 
unless it is also used in other ways in the current module. The loop 
parameters should either be (short) integers or dollar variables or factors 
of dollar variables provided they evaluate at run time to (short) integers. 
The enddo statement should be in the same module as the do statement. In 
addition it should be properly nested with if, repeat, while and argument 
constructions.

\noindent The do-loop facility is in principle superfluous, because the 
repeat~(\ref{substarepeat}), if~(\ref{substaif}) and the pattern matcher can 
basically do everything the do-loop can do. Sometimes however the do-loop 
is easier to program and gives more readable code as shown here:
\begin{verbatim}
   do $i = 1,5;
      id,only,x^$i = f(F[factor_^$i]);
   enddo;
\end{verbatim}
\noindent versus
\begin{verbatim}
   id,only,x^n?{1,2,3,4,5} = ff(n);
   repeat id ff(n?pos_) = ff(n-1)*f(F[factor_^n]);
   id ff(n?neg0_) = 1;
\end{verbatim}
\noindent One should note that the do-loop is evaluated at run time. Hence 
the dollar variables need to be evaluated at run time as well. Therefore, 
if it is possible, the preprocessor variety (see \ref{predo}) is almost 
always faster in execution as in
\begin{verbatim}
   #do i = 1,5
      id,only,x^`i' = f(F[factor_^`i']);
   #enddo
\end{verbatim}
\noindent This can of course not be done in constructions like
\begin{verbatim}
   id  f1(x?$x) = f2(x);
   FactDollar,$x;
   Do $i = 1,$x[0];
     Multiply f($i,$x[$i]);
   Enddo;
\end{verbatim}
\noindent because here \verb:$x: and its factors are only known at run time 
and may be different for each term.
\vspace{10mm}

%--#] do : 
%--#[ drop :

\section{drop}
\label{substadrop}

\noindent \begin{tabular}{ll}
Type & Specification statement\\
Syntax & drop; \\
       & drop {\tt<}list of expressions{\tt>};
\\ See also & ndrop (\ref{substandrop})
\end{tabular} \vspace{4mm}

\noindent In the first variety this statement\index{drop} eliminates all 
expressions\index{expression} from the system. In the second variety it 
eliminates only the expressions that are mentioned from the system. All 
expressions that are to be dropped can still be used in the r.h.s. of other 
expressions inside the current module. Basically the expressions to be 
dropped are not treated for execution and after the module has finished 
completely they are removed. See also the ndrop 
statement~\ref{substandrop}. \vspace{10mm}

%--#] drop : 
%--#[ dropcoefficient :

\section{dropcoefficient}
\label{substadropcoefficient}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & DropCoefficient;
\end{tabular} \vspace{4mm}

\noindent This statement replaces the coefficient of the current term by 
one. In principle it has the same effect as
\begin{verbatim}
   Multiply 1/coeff_;
\end{verbatim}
but there is always the philosophical issue what is the coefficient once 
one enters function arguments. Inside an 
Argument/EndArgument\index{argument}\index{endargument} environment this 
statement would drop the coefficient of the terms inside the argument.
\vspace{10mm}

%--#] dropcoefficient : 
%--#[ dropsymbols :

\section{dropsymbols}
\label{substadropsymbols}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & DropSymbols;
\end{tabular} \vspace{4mm}

\noindent This statement removes all symbols from a term. 
It has the same effect as
\begin{verbatim}
   id,many,x?^n? = 1;
\end{verbatim}
(x and n are symbols) except for that it is much faster.
\vspace{10mm}

%--#] dropsymbols : 
%--#[ else :

\section{else}
\label{substaelse}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & else;
\\ See also & if (\ref{substaif}),
              elseif (\ref{substaelseif}),
              endif (\ref{substaendif})
\end{tabular} \vspace{4mm}

\noindent To be used in combination with an if statement (see 
\ref{substaif}). The statements following the
else\index{else statement}\index{else} statement until the matching 
endif\index{endif statement}\index{endif} 
statement (see \ref{substaendif}) will be executed for the current term if 
the conditions of the matching proceeding if\index{if statement}\index{if} 
statement and/or all corresponding elseif\index{elseif} statements (see 
\ref{substaelseif}) are false. If any of the conditions of the matching 
proceeding if or elseif statements are true the statements following the 
else statement will be skipped. \vspace{10mm}

%--#] else : 
%--#[ elseif :
 
\section{elseif}
\label{substaelseif}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & elseif ( {\tt<}condition{\tt>} );
\\ See also & if (\ref{substaif}),
              else (\ref{substaelse}),
              endif (\ref{substaendif})
\end{tabular} \vspace{4mm}

\noindent Should be proceeded by an if\index{if statement}\index{if} 
statement (see \ref{substaif}) and followed at least by a matching 
endif\index{endif statement}\index{endif} 
statement (see \ref{substaendif}). If the conditions of the proceeding 
matching if statement and all proceeding matching
elseif\index{elseif statement}\index{elseif} statements are false the 
condition of this elseif statement will be evaluated. If it is true, the 
statements following it until the next matching elseif,
else\index{else statement}\index{else} or endif statement will be executed. 
If not, control is passed to this next elseif, else or endif statement. The 
syntax for the condition is exactly the same as for the condition in the if 
statement. \vspace{10mm}
 
%--#] elseif : 
%--#[ emptyspectator :

\section{emptyspectator}
\label{substaemptyspectator}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & emptyspectator {\tt<}spectator;{\tt>};
\end{tabular} \vspace{4mm}

\noindent See chapter\ref{spectators} on spectators.
\vspace{10mm}

%--#] emptyspectator : 
%--#[ endargument :

\section{endargument}
\label{substaendargument}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & endargument; \\
See also & argument (\ref{substaargument})
\end{tabular} \vspace{4mm}

\noindent Terminates an argument environment\index{environment!argument} 
(see \ref{substaargument}). The argument\index{argument} statement and its 
corresponding endargument\index{endargument} statement must belong to the 
same module. Argument environments can be nested with all other 
environments. \vspace{10mm}

%--#] endargument : 
%--#[ enddo :

\section{enddo}
\label{substaenddo}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & enddo;
\\ See also & do (\ref{substado})
\end{tabular} \vspace{4mm}

See the do statement (\ref{substado}).
\vspace{10mm}

%--#] enddo : 
%--#[ endif :

\section{endif}
\label{substaendif}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & endif;
\\ See also & if (\ref{substaif}),
              elseif (\ref{substaelseif}),
              else (\ref{substaelse})
\end{tabular} \vspace{4mm}

\noindent Terminates an if\index{if statement}\index{if} construction (see \ref{substaif}, 
\ref{substaelseif} and \ref{substaelse}). If should be noted that 
if\index{endif statement}\index{endif} 
constructions can be nested.
\vspace{10mm}

%--#] endif : 
%--#[ endinexpression :
 
\section{endinexpression}
\label{substaendinexpression}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & endinexpression;
\\ See also & inexpression(\ref{substainexpression})
\end{tabular} \vspace{4mm}

\noindent Only to be used in combination with the 
inexpression\index{endinexpression}\index{inexpression} statement. The 
combination
\begin{verbatim}
   InExpression,expr;
       Statements;
   EndInExpression;
\end{verbatim}
is a more readable version of the construction
\begin{verbatim}
   if ( expression(expr) );
       Statements;
   endif;
\end{verbatim}
\vspace{10mm}

%--#] endinexpression : 
%--#[ endinside :

\section{endinside}
\label{substaendinside}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & endinside;
\\ See also & inside (\ref{substainside}) and the chapter on \$-variables 
(\ref{dollars})
\end{tabular}\vspace{4mm}

\noindent Terminates an `inside'\index{inside} 
environment\index{environment!inside} (see \ref{substainside}) which is 
used to operate on the contents of \$-variables\index{\$-variable} (see 
\ref{dollars}).\vspace{10mm}

%--#] endinside : 
%--#[ endrepeat :

\section{endrepeat}
\label{substaendrepeat}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & endrepeat;
\\ See also & repeat (\ref{substarepeat}), while (\ref{substawhile})
\end{tabular} \vspace{4mm}

\noindent Ends the repeat\index{repeat} 
environment\index{environment!repeat}. The repeat environment is started 
with a repeat statement (see \ref{substarepeat}). The repeat and its 
matching endrepeat\index{endrepeat} should be inside the same module. 
Repeat environments can be nested with all other environments (and other 
repeat environments). \vspace{10mm}

%--#] endrepeat : 
%--#[ endswitch :
%
\section{endswitch}
\label{substaendswitch}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & endswitch; \\
\\ See also & case (\ref{substacase}), break (\ref{substabreak}),
		 default(\ref{substadefault}), switch (\ref{substaswitch}).
\end{tabular} \vspace{4mm}

\noindent Ends a switch construction. It collects the various cases, puts 
them in order and decides whether the lookup of cases should be done by 
means of a jumptable, or by binary searching. The ratio (spread in 
cases)/(number of cases) determines whether a jumptable is constructed. The 
default value below which a jumptable is constructed is 4. This value can 
be changed in the setups (see the section on the setups \ref{setup}) with 
the variable jumpratio.

\vspace{10mm}
%
%--#] endswitch : 
%--#[ endterm :

\section{endterm}
\label{substaendterm}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & endterm;
\\ See also & term (\ref{substaterm}), sort (\ref{substasort})
\end{tabular} \vspace{4mm}

\noindent Terminates a term\index{term} environment\index{environment!term} 
(see \ref{substaterm}). Term environments\index{endterm} can be nested with 
other term environments and with other environments in general. The whole 
environment should be part of one single module. See also \ref{substasort}. 
\vspace{10mm}

%--#] endterm : 
%--#[ endwhile :

\section{endwhile}
\label{substaendwhile}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & endwhile;
\\ See also & while (\ref{substawhile}), repeat (\ref{substarepeat})
\end{tabular} \vspace{4mm}

\noindent Terminates a while\index{while} environment\index{environment!while} (see \ref{substawhile}). The while 
statement and its corresponding endwhile\index{endwhile} statement must be part of the same 
module. \vspace{10mm}

%--#] endwhile : 
%--#[ exit :

\section{exit}
\label{substaexit}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & exit ["{\tt<}string{\tt>}"];
\\ See also & setexitflag (\ref{substasetexitflag})
\end{tabular} \vspace{4mm}

\noindent Causes execution to be aborted\index{exit}\index{aborted} 
immediately. The string will be printed in the output. This can be used to 
indicate where \FORM\ ran into the exit statement. \vspace{10mm}

%--#] exit : 
%--#[ extrasymbols :

\section{extrasymbols}
\label{substaextrasymbols}

\noindent \begin{tabular}{ll}
Type & Declaration statement\\
Syntax & extrasymbols,array\textbar{}vector\textbar{}underscore,name;
\\ See also & ToPolynomial (\ref{substatopolynomial}), FromPolynomial 
(\ref{substafrompolynomial}), ArgToExtraSymbol (\ref{substaargtoextrasymbol}) 
\\& and extra symbols 
(\ref{sect-extrasymbols}).
\end{tabular} \vspace{4mm}

\noindent Starting with version 4.0 of \FORM{} some built in operations or
statements can only deal with symbols and numbers. Examples of this are 
factorization~(\ref{substafactarg}) (which uses the topolynomial facilities 
automatically) and output simplification (see the Format 
statement \ref{substaformat}).
The ToPolynomial statement\index{topolynomial} takes each term, looks for 
objects that are not symbols to positive powers and replaces them by 
symbols. If the object has been encountered before the same symbol will be 
used, otherwise a new symbol will be defined. The object represented by the 
`extra symbol'\index{extra symbols} is stored internally and can be printed 
if needed with the \%X option in the \#write instruction (\ref{prewrite}). 
The representation of the extra symbols is by default the name Z followed 
by a number and an underscore character. If another name is desired this 
should be specified in an `ExtraSymbols' statement. The name given may 
contain only alphabetic characters! Because some compilers do not like the 
underscore character, there is an alternative notation for the extra 
symbols. This is just for cosmetic reasons and one cannot feed these 
symbols into the compiler this way. This is with an array notation. The 
statement
\begin{verbatim}
   ExtraSymbols,array,Ab;
\end{verbatim}
would cause the second extra symbol to be printed as {\tt Ab(2)}. The total 
number of defined extra symbols is given by the built in symbol 
extrasymbols\_.
The option vector in the ExtraSymbols statement is identical to the option 
array and the option underscore reverts the notation back to the default 
notation with the trailing underscore.
\vspace{10mm}

%--#] extrasymbols : 
%--#[ factarg :

\section{factarg}
\label{substafactarg}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & factarg options \verb:{:{\tt<}name of function/set{\tt>}
                [{\tt<}argument specifications{\tt>}]\verb:}:;
\\ See also & splitarg (\ref{substasplitarg})
\end{tabular} \vspace{4mm}

\noindent Splits\index{factarg} the indicated function\index{function 
arguments} arguments into individual factors. The argument specifications 
are as in the splitarg\index{splitarg} statement (see 
\ref{substasplitarg}). There are a few extra options:

\leftvitem{2cm}{(0)}
\rightvitem{14cm}{Eliminates the coefficient\index{coefficient} of the term 
in the argument. Similar to Normalize,(0),....}

\leftvitem{2cm}{(1)}
\rightvitem{14cm}{The coefficient of the term and its sign are pulled out 
separately.}

\leftvitem{2cm}{(-1)}
\rightvitem{14cm}{The coefficient is pulled out with its sign.}

\noindent In the case of the above options only the coefficient is treated. 
When these options are not used the whole term is treated as in:
% THIS EXAMPLE IS PART OF THE TESTSUITE. CHANGES HERE SHOULD BE APPLIED THERE AS
% WELL!
\begin{verbatim}
    Symbols a,b,c;
    CFunctions f,f1,f2,f3;
    Local F = f(-3*a*b)+f(3*a*b)
             +f1(-3*a*b)+f1(3*a*b)
             +f2(-3*a*b)+f2(3*a*b)
             +f3(-3*a*b)+f3(3*a*b);
    FactArg,f;
    Factarg,(0),f1;
    Factarg,(1),f2;
    Factarg,(-1),f3;
    Print;
    .end

   F =
      f(a,b,-1,3) + f(a,b,3) + 2*f1(a*b) + f2(a*b,-1,3) + f2(a*b,3)
      + f3(a*b,-3) + f3(a*b,3);
\end{verbatim}
When no extra options are used, starting with version 4.0, the whole 
argument is factorized over the rationals. This means that
\begin{verbatim}
    f(x^2+2*x*y+y^2) --> f(y + x,y + x,1)
\end{verbatim}
It should be noticed that \FORM{} can although the internal algorithms can
only factorize expressions with numbers and symbols, \FORM{} redefines all
non-symbol objects temporarily into symbols and at the end substitutes them 
back. This is done with a mechanism that is similar to that of the 
ToPolynomial statement.

See also the On OldfactArg; and Off OldFactArg statements for a 
compatibility mode with versions before version 4.0.
\vspace{10mm}

%--#] factarg : 
%--#[ factdollar :

\section{factdollar}
\label{substafactdollar}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & factdollar {\tt<}name of dollar variable{\tt>};
\\ See also & the chapter on polynomials~\ref{polynomials}.
\end{tabular} \vspace{4mm}

\noindent The FactDollar statement will factorize a dollar expression. If 
the dollar expression was already factorized the old factors will be 
removed first. Unlike expressions (see \ref{substafactorize}) where only 
either the expanded or the factorized version exists, with dollar 
expressions we have both versions simultaneously. This means that one can 
refer to the complete dollar in its unfactorized form and its factors. The 
factors are indicated between braces as in \verb:$x[1]: which would be the 
first factor. The number of factors of \verb:$x: is given by \verb:$x[0]:. 
One can also obtain the number of factors of a dollar variable with the 
numfactors\_ function (see \ref{funnumfactors}).

\noindent The index indicating the number of the factor can be a nonzero 
integer, no greater than the number of factors, or (a factor of) a dollar 
variable that evaluates into such a number. Composite expressions are not 
allowed. They should be worked out first in a separate dollar variable, 
after which this dollar variable can then be used as a factor indicator.
\vspace{10mm}

%--#] factdollar : 
%--#[ factorize :

\section{factorize}
\label{substafactorize}

\noindent \begin{tabular}{ll}
Type & Output control statement\\
Syntax & factorize \verb:{:{\tt<}name of expression(s){\tt>}\verb:}:;
\\ See also & the chapter on polynomials~\ref{polynomials}.
\end{tabular} \vspace{4mm}

\noindent If no expressions are mentioned all expressions will be affected 
by the action of this statement. One may exclude certain expressions with 
the nfactorize statement (see \ref{substanfactorize}). If one or more 
expressions are mentoned they will be added to the list of expressions that 
will be affected.

\noindent The statement causes the output expression(s) that is/are marked 
as such to be factorized after they have been processed and already written 
to the output. This means that each expression, after having been written, 
is read again and factorized. Then the factorized result is written over 
the original output. After that FORM will start executing the statements of 
the current module on the next expression, sort it, write it to output, and 
if necessary read it again and factorize it.

\noindent Expressions never exists in two varieties as the dollar variable 
that have been factorized. It is either unfactorized (default) or 
factorized. An expression remains factorized untill an UnFactorize 
statement is encoutered that mentions that this expression should be 
brought to unfactorized representation (see also 
UnFactorize~\ref{substaunfactorize} and 
NunFactorize~\ref{substanunfactorize}).

\noindent One should realize that factorization of complicated expressions 
can be a rather costly operation.

\vspace{10mm}

%--#] factorize : 
%--#[ fill :

\section{fill}
\label{substafill}

\noindent \begin{tabular}{ll}
Type & Declaration statement\\
Syntax & fill {\tt<}tableelement{\tt>} = {\tt<}expression{\tt>} [,{\tt<}moreexpressions{\tt>}];
\\ See also & table (\ref{substatable}), 
                fillexpression (\ref{substafillexpression}),
                printtable (\ref{substaprinttable})
\end{tabular} \vspace{4mm}

\noindent The standard\index{fill} way to define elements of a 
table\index{table}. In the left hand 
side one specifies the table element without the extra function arguments 
that could potentially occur (see \ref{substatable}). In the right hand 
side one specifies what the table element should be substituted by. 
Example:
\begin{verbatim}
    Table tab(1:2,1:2,x?);
    Fill tab(1,1) = x+y;
    Fill tab(2,1) = (x+y)^2;
    Fill tab(1,2) = tab(1,1)+y;
    Fill tab(2,2) = tab(2,1)+y^2;
\end{verbatim}
The first fill statement is a bit like a continuous attempt to try the 
substitution
\begin{verbatim}
    id  tab(1,1,x?) = x+y;
\end{verbatim}
The last two fill statements show that one could use the table 
recursively\index{recursively}. 
If a real loop occurs the program may terminate due to
stack\index{stack overflow} overflow.

\noindent It is possible to define several table elements in one statement. 
In that case the various elements are separated by commas. The last index 
is the first one to be raised. This means that in the above example one 
could have written:
\begin{verbatim}
    Table tab(1:2,1:2,x?);
    Fill tab(1,1) = x+y,tab(1,1)+y,(x+y)^2,tab(2,1)+y^2;
\end{verbatim}\vspace{10mm}

\noindent One warning\index{warning} is called for. One should avoid using 
expressions in the right hand side of fill statements:
\begin{verbatim}
    Table B(1:1);
    Local dummy = 1;
    .sort
    Fill B(1) = dummy;
    Drop dummy;
    .sort
    Local F = B(1);
    Print;
    .end
\end{verbatim}
In the example a crash will result, because when we use the table element 
the expression dummy doesn't exist anymore. In a fill statement the r.h.s. 
is not expanded. Hence it keeps the reference to the expression dummy. When 
the table element is used the reference to the expression dummy is inserted 
and expanded. Hence one obtains the contents of dummy that exist at the 
moment of use. This is illustrated in the following example:
\begin{verbatim}
    Table B(1:1);
    Local dummy = 1;
    .sort
    Fill B(1) = dummy;
    .sort
    Local F = B(1);
    Print;
    .sort
    Drop;
    .sort
    Local dummy = 2;
    .sort
    Local F = B(1);
    Print;
    .end
\end{verbatim}
The final value of F will be 2, not 1.

\noindent A way to get around this problem is to force the evaluation of 
the table definition by using dollar\index{dollar} 
variables\index{variable!dollar}:
\begin{verbatim}
    Table B(1:1);
    Local dummy = 1;
    .sort
    #$value = dummy;
    Fill B(1) = `$value';
    Drop dummy;
    .sort
    Local F = B(1);
    Print;
    .end
\end{verbatim}
Here we use the character representation of the contents of the dollar 
variable to obtain an expression that doesn't need any further evaluation. 
If we would put
\begin{verbatim}
    fill B(1) = $value;
\end{verbatim}
a reference to the dollar variable would be inserted and it would only be 
evaluated at use again. In principle this could cause similar problems.

\noindent Not dropping the expression dummy can sometimes give the correct 
result, but is potentially still unsafe. 
\begin{verbatim}
    Table B(1:1);
    Local u = 2;
    Local dummy = 1;
    .sort
    Fill B(1) = dummy;
    Drop dummy;
    .sort
    Local v = 5;
    Local F = B(1);
    Print;
    .end
\end{verbatim}
Here the answer will be 5, because after u has been dropped the expressions 
will be renumbered. Hence now dummy becomes the first expression, and 
eventually v becomes the second expression. The references in the table 
elements are not renumbered. Hence the r.h.s. of B(1) keeps pointing at the 
second expression, which at the moment of application has the value 5. One 
can see now also why the original example crashes. First dummy was the 
first expression and at the moment of application F is the first (existing) 
expression. Hence the substitution of B(1) causes a self reference and 
hence an infinite loop. Eventually some buffer will 
overflow\index{overflow}.
\vspace{10mm}

%--#] fill : 
%--#[ fillexpression :
 
\section{fillexpression}
\label{substafillexpression}

\noindent \begin{tabular}{ll}
Type & Declaration statement\\
Syntax & fillexpression {\tt<}table{\tt>} = {\tt<}expression{\tt>}({\tt<}x1{\tt>},...,{\tt<}xn{\tt>});
\\     & fillexpression {\tt<}table{\tt>} = {\tt<}expression{\tt>}({\tt<}funname{\tt>});
\\ See also & table (\ref{substatable}), 
                fill (\ref{substafill}) and the table\_ function 
(\ref{funtable})
\end{tabular}\vspace{4mm}

\noindent Used\index{fillexpression} to dynamically\index{dynamical loading}
load\index{loading dynamically} a table\index{table} during runtime. When 
there are n symbols (here called x1 to xn) it is assumed that the table is 
n-dimensional. The expression must previously have been bracketed in these 
symbols and each of the brackets\index{brackets} has the effect of a 
fill\index{fill} statement in which the powers of the x1 to xn refer to the 
table elements. Brackets that do not have a corresponding table element are 
skipped.

\noindent In the case that only a function name is specified the arguments 
of the function refer to the table elements.
\vspace{10mm}

%--#] fillexpression : 
%--#[ fixindex :
 
\section{fixindex}
\label{substafixindex}

\noindent \begin{tabular}{ll}
Type & Declaration statement\\
Syntax & fi[xindex] \verb:{:{\tt<}number{\tt>}:{\tt<}value{\tt>}\verb:}:;
\\ See also & index (\ref{substaindex}) and chapter \ref{metric}.
\end{tabular} \vspace{4mm}

\noindent Defines \verb:d_(number,number) = value: in which number is the 
number\index{fixindex} of a fixed\index{fixed index} index\index{index} 
(hence a positive short integer with a value less than 
ConstIndex\index{constindex} (see \ref{setup}). The value should be a 
short\index{short integer} integer, i.e. its absolute value should be less 
than $2^{15}$ on 32\index{32 bits} bit computers and less than $2^{31}$ on 
64\index{64 bits} bit 
computers. One can define more than one fixed index in one statement. 
Before one would like to solve problems involving the choice of a metric 
with this statement, one should consult the chapter on the use of a 
metric\index{metric} 
(chapter \ref{metric}).
\vspace{10mm}

%--#] fixindex : 
%--#[ format :

\section{format}
\label{substaformat}

\noindent \begin{tabular}{ll}
Type & Output control statement\\
Syntax & fo[rmat] {\tt<}option{\tt>};
\\ See also & print (\ref{substaprint})
\end{tabular} \vspace{4mm}

\noindent Controls the format\index{format} for the 
printing\index{printing} of expressions. There is a variety of options.

\leftvitem{3.5cm}{$<$number$>$}
\rightvitem{13cm}{Output will be printed using the indicated number of 
characters per line. The default is 72. Numbers outside the range 1-255 are 
corrected to 72. Positive numbers less than 39 are corrected to 39.}

\leftvitem{3.5cm}{float\index{float}\index{format!float} \hfill \\ \null\quad{\tt[}$<$number$>${\tt]}}
\rightvitem{13cm}{Numbers are printed in floating\index{floating point} 
point notation, even though internally they remain fractions. This is 
purely cosmetic. If no number is specified the precision of the output will 
be 10 digits. If a number is specified it indicates the number of digits to 
be used for the precision.}

\leftvitem{3.5cm}{rational\index{rational}\index{format!rational}}
\rightvitem{13cm}{Output format is switched back to rational numbers (in 
contrast to floating point output). This is the default.}

\leftvitem{3.5cm}{nospaces\index{nospaces}\index{format!nospaces}}
\rightvitem{13cm}{The output is printed without the spaces that make the 
output slightly more readable. This gives a more compact output.}

\leftvitem{3.5cm}{spaces\index{spaces}\index{format!spaces}}
\rightvitem{13cm}{The output is printed with extra spaces between the terms 
and around certain operators to make it slightly more readable. This is the 
default.}
 
\leftvitem{3.5cm}{O0\index{optimize}\index{format!optimize}}
\rightvitem{13cm}{\FORM\ will turn off output optimization. See the section 
on output optimization \ref{optimization}}
 
\leftvitem{3.5cm}{O1[options]\index{optimize}\index{format!optimize}}
\rightvitem{13cm}{\FORM\ will use level 1 output optimization. See the section 
on output optimization \ref{optimization}}
 
\leftvitem{3.5cm}{O2[options]\index{optimize}\index{format!optimize}}
\rightvitem{13cm}{\FORM\ will use level 2 output optimization. See the section 
on output optimization \ref{optimization}}
 
\leftvitem{3.5cm}{O3[options]\index{optimize}\index{format!optimize}}
\rightvitem{13cm}{\FORM\ will use level 3 output optimization. See the section 
on output optimization \ref{optimization}.}

\leftvitem{3.5cm}{fortran\index{fortran}\index{format!fortran}}
\rightvitem{13cm}{The output is printed in a way that is readable by a 
fortran compiler. This includes continuation characters and the splitting 
of the output into blocks of no more than 15 continuation lines. This 
number can be changed with the setup parameter ContinuationLines (see 
\ref{setup}). In addition dotproducts are printed with the `dotchar' 
in the place of the period between the vectors. This dotchar can be set in 
the setup file (see \ref{setup}). Its default is the underscore character.}

\leftvitem{3.5cm}{doublefortran\index{doublefortran}\index{format!doublefortran}}
\rightvitem{13cm}{Same as the fortran mode, but fractions are printed with 
double floating point numbers, because some compilers convert numbers like 
1. into 1.E0. With this format \FORM\ will force double precision by using 
1.D0.}

\leftvitem{3.5cm}{quadruplefortran\index{quadruplefortran}\index{format!quadruplefortran}}
\rightvitem{13cm}{Same as the fortran mode, but fractions are printed with 
quadruple floating point numbers, because some compilers convert numbers like 
1. into 1.E0. With this format \FORM\ will force quadruple precision by using 
1.Q0.}

\leftvitem{3.5cm}{quadfortran\index{quadfortran}\index{format!quadfortran}}
\rightvitem{13cm}{Same as quadruplefortran.}

\leftvitem{3.5cm}{fortran90\index{fortran90}\index{format!fortran90}}
\rightvitem{13cm}{Similar to the fortran option, but prints the 
continuation lines according to the syntax of Fortran 90. If the fortran90 
option is followed by a comma and a string that does not contain white space 
or other comma's, this string is attached to all numbers in coefficients of 
terms. Example: \hfill \\
{\tt\ \ \ \ \ \ Format Fortran90,.0\_ki;} \hfill \\
%\begin{verbatim}
%   Format Fortran90,.0_ki;
%\end{verbatim}
which would give in the printout: \hfill \\
{\tt\ \ \ \ \ \ +23.0\_ki/32.0\_ki*a**2\& } \hfill \\
{\tt\ \ \ \ \&\ +34.0\_ki/1325.0\_ki*a**3} \hfill \\
%\begin{verbatim}
%       +23.0_ki/32.0_ki*a**2&
%     & +34.0_ki/1325.0_ki*a**3
%\end{verbatim}
When there is no string attached it defaults to a period as in the regular 
Fortran option.
}

\leftvitem{3.5cm}{C\index{C}\index{format!C}}
\rightvitem{13cm}{Output will be C compatible. The
exponent\index{exponent operator} operator ($\wedge$) is represented by the 
function pow\index{pow}. It is the responsibility of the user that this 
function will be properly defined. Dotproducts are printed with the 
`dotchar'\index{dotchar} in the place of the period between the vectors. 
This dotchar can be set in the setup file (see \ref{setup}). Its default is 
the underscore\index{underscore character} character.}

\leftvitem{3.5cm}{maple\index{maple}\index{format!maple}}
\rightvitem{13cm}{Output will be as much as possible compatible with Maple 
format. It is not guaranteed that this is perfect.}

\leftvitem{3.5cm}{mathematica\index{mathematica}\index{format!mathematica}}
\rightvitem{13cm}{Output will be as much as possible compatible with 
Mathematica format. It is not guaranteed that this is perfect.}

\leftvitem{3.5cm}{reduce\index{reduce}\index{format!reduce}}
\rightvitem{13cm}{Output will be as much as possible compatible with 
Reduce format. It is not guaranteed that this is perfect.}

\noindent The last few formats have not been tried out extensively. The 
author is open for suggestions.
 
\leftvitem{3.5cm}{normal\index{normal}\index{format!normal}}
\rightvitem{13cm}{Will return to the regular \FORM\ formatting mode.}

\noindent If the statement has no arguments the formatting will be reset to 
the mode it was in when the program started.\vspace{4mm}

%\leftvitem{3.5cm}{}
%\rightvitem{13cm}{}

%\leftvitem{3.5cm}{}
%\rightvitem{13cm}{}





\vspace{10mm}

%--#] format : 
%--#[ frompolynomial :

\section{frompolynomial}
\label{substafrompolynomial}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & frompolynomial
\\ See also & factarg (\ref{substafactarg}), ToPolynomial 
(\ref{substatopolynomial}) and ExtraSymbols (\ref{substaextrasymbols},
\ref{sect-extrasymbols}).
\end{tabular} \vspace{4mm}

\noindent Starting with version 4.0 of \FORM{} some built in operations or
statements can only deal with symbols and numbers. Examples of this are 
factorization~(\ref{substafactarg}) and output simplification (still to be 
implemented). Whereas the ToPolynomial statement takes each term, looks for objects 
that are not symbols to positive powers and replaces them by symbols the 
FromPolynomial does the opposite: it replaces the newly defined extra 
symbols and replaces them back by their original meaning.
\vspace{10mm}

%--#] frompolynomial : 
%--#[ functions :
 
\section{functions}
\label{substafunctions}

\noindent \begin{tabular}{ll}
Type & Declaration statement\\
Syntax & f[unctions] {\tt<}list of functions to be declared{\tt>}; \\
See also & cfunctions (\ref{substacfunctions}), 
           tensors (\ref{substatensors}),
           ntensors (\ref{substantensors}), \\ &
           table (\ref{substatable}),
           ntable (\ref{substantable}),
           ctable (\ref{substactable})
\end{tabular} \vspace{4mm}

\noindent Used to declare one or more functions\index{functions}. The functions declared 
with this statement will be noncommuting\index{noncommuting}. For 
commuting\index{commuting} functions one 
should use the cf[unctions] statement (see \ref{substacfunctions}). 
Functions can have a number of properties that can be set in the 
declaration. This is done by appending the options to the name of the 
function. These options are:

\leftvitem{4.1cm}{name{\hash}r}
\rightvitem{12cm}{The function is considered to be a real\index{real} function (default).}

\leftvitem{4.1cm}{name{\hash}c}
\rightvitem{12cm}{The function is considered to be a complex\index{complex} function. This means 
that internally two spaces are reserved. One for the variable name and one 
for its complex conjugate name{\hash}.}

\leftvitem{4.1cm}{name{\hash}i}
\rightvitem{12cm}{The function is considered to be imaginary\index{imaginary}.}

\leftvitem{4.1cm}{name(s[ymmetric])}
\rightvitem{12cm}{The function is totally symmetric\index{symmetric}. This means that during 
normalization {\FORM} will order the arguments according to its internal 
notion of order by trying permutations. The result will depend on the order 
of declaration of variables.}

\leftvitem{4.1cm}{name(a[ntisymmetric])}
\rightvitem{12cm}{The function is totally antisymmetric\index{antisymmetric}. This means that 
during normalization {\FORM} will order the arguments according to its 
internal notion of order and if the resulting permutation of arguments is 
odd the coefficient of the term will change sign. The order will depend on 
the order of declaration of variables.}

\leftvitem{4.1cm}{name(c[yclesymmetric])}
\rightvitem{12cm}{The function is cycle\index{cycle symmetric} 
symmetric\index{symmetric!cycle} in all its arguments. 
This means that during normalization {\FORM} will order the arguments 
according to its internal notion of order by trying cyclic permutations. 
The result will depend on the order of declaration of variables.}

\leftvitem{4.1cm}{name(r[cyclesymmetric)

name(r[cyclic])

name(r[eversecyclic])}
\rightvitem{12cm}{The function is reverse\index{reverse cycle symmetric} 
cycle symmetric\index{symmetric!reverse cycle} in all its arguments. This 
means that during normalization {\FORM} will order the arguments according 
to its internal notion of order by trying cyclic permutations and/or a 
complete reverse order of all arguments. The result will depend on the 
order of declaration of variables.}

\leftvitem{4.1cm}{name<number

name<=number

name>number

name>=number}
\rightvitem{12cm}{The function has a restriction on the number of 
arguments. If the number of arguments of an occurrence of the function is 
not fulfilling the condition during normalization {\FORM} will set the term 
equal to zero.}\vspace{2mm}

\noindent The complexity properties, the symmetric properties and the 
number of arguments restrictions can be 
combined. In that case the complexity properties should come first and the 
argument restrictions should come last as in
\begin{verbatim}
    Function f1#i(symmetric)>=4<8;
    Function f1#i<=8;
\end{verbatim}
\vspace{10mm}

%--#] functions : 
%--#[ funpowers :

\section{funpowers}
\label{substafunpowers}

\noindent \begin{tabular}{ll}
Type & Declaration statement\\
Syntax & funpowers {\tt<}on/off{\tt>};
\\ See also & on (\ref{substaon}), off (\ref{substaoff})
\end{tabular} \vspace{4mm}

\noindent This statement\index{funpowers} is obsolete\index{obsolete}. The 
user should try to use the funpowers option of the on\index{on} (see 
\ref{substaon}) or the off\index{off} (see \ref{substaoff}) statements. 
\vspace{10mm}

%--#] funpowers : 
%--#[ gfactorized :

\section{gfactorized}
\label{substagfactorized}

\noindent \begin{tabular}{ll}
Type & Definition statement\\
Syntax & g[lobal]factorized {\tt<}option{\tt>};
\\ See also & the chapter on polynomials~\ref{polynomials}, the 
factorize statement~\ref{substafactorize} and the LocalFactorized \\ &
statement~\ref{substalfactorized}.\hfill
\end{tabular}
\smallskip

\noindent The syntax is like the syntax of the LocalFactorized (or 
LFactorized) statement~\ref{substalfactorized}. The only difference is that 
now the expression defined by the statement will become a global 
expression (see the Global statement~\ref{substaglobal}).
\vspace{10mm}

%--#] gfactorized : 
%--#[ global :

\section{global}
\label{substaglobal}

\noindent \begin{tabular}{ll}
Type & Definition statement\\
Syntax & g[lobal] {\tt<}name{\tt>} = {\tt<}expression{\tt>}; \\
       & g[lobal] {\tt<}names of expressions{\tt>};
\\ See also & local (\ref{substalocal})
\end{tabular} \vspace{4mm}

\noindent Used to define a global\index{global} 
expression\index{expression}. A global expression is an expression that 
remains active until the first .store\index{.store} instruction. At that 
moment it is stored into the `storage file'\index{storage 
file}\index{file!storage} and stops being manipulated. After this it can 
still be used in the right hand side of expressions and id\index{id} 
statements (see \ref{substaidnew}). Global expressions that have been put 
in the storage file can be saved to a disk file\index{file!disk} with the 
save statement (see \ref{substasave}) for use in later programs.

\noindent There are two versions of the global statement. In the first the 
expression is defined and filled with a right hand side expression. The left 
hand side and the right hand side are separated by an = sign. In this case 
the expression can have arguments which will serve as
dummy\index{dummy arguments} arguments after the global expression has been 
stored with a .store instruction. Note that this use of arguments can often 
be circumvented with the replace\_ function (see \ref{funreplace}) as in
\begin{verbatim}
    Global F(a,b) = (a+b)^2;
    .store
    Local FF = F(x,y);
    Local GG = F*replace_(a,x,b,y);
\end{verbatim}
because both definitions give the same result.

\noindent The second version of the global statement has no = sign and no 
right hand side. It can be used to change a local\index{local} expression 
into a global expression. \vspace{10mm}

%--#] global : 
%--#[ goto :

\section{goto}
\label{substagoto}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & go[to] {\tt<}label{\tt>}; \\
See also & label (\ref{substalabel})
\end{tabular} \vspace{4mm}

\noindent Causes\index{goto} processing to proceed at the indicated 
label\index{label} statement 
(see \ref{substalabel}). This label statement must be in the same module. 
\vspace{10mm}

%--#] goto : 
%--#[ hide :

\section{hide}
\label{substahide}

\noindent \begin{tabular}{ll}
Type & Specification statement\\
Syntax & hide; \\
       & hide {\tt<}list of expressions{\tt>};
\\ See also & nhide (\ref{substanhide}),
              unhide (\ref{substaunhide}),
              nunhide (\ref{substanunhide}),
              pushhide (\ref{substapushhide}),
              pophide (\ref{substapophide})
\end{tabular} \vspace{4mm}

\noindent In the first variety this statement marks all currently active 
expressions for being put in hidden\index{hide} storage. In the second variety it marks 
only the specified active\index{active expressions} expressions as such. \vspace{4mm}

\noindent If an expression is marked for being hidden, it will be copied to 
the `hide\index{hide file} file'\index{file!hide}, a storage which is 
either in memory or on file depending on the combined size of all 
expressions being hidden. If this size exceeds the size of the setup 
parameter scratchsize\index{scratchsize} (see \ref{setup}) the storage will 
be on file. If it is less, the storage will be in memory. An expression 
that has been hidden is not affected by the statements in the modules as 
long as it remains hidden, but it can be used inside other expressions in 
the same way skipped\index{skipped expressions} expressions (see 
\ref{substaskip}) or active expressions can be used. In particular all its 
bracket\index{bracket} information (see \ref{substabracket}) is retained 
and can be accessed, including possible bracket\index{bracket index} 
indexing. \vspace{4mm}

\noindent The hide mechanism is particularly useful if an expression is not 
needed for a large number of modules. It has also advantages over the 
storing of global expressions after a .store\index{.store} instruction (see 
\ref{instrstore}), because the substitution of global expressions is slower 
(name definitions may have changed and have to be checked) and also a 
possible bracket index is not maintained by the .store instruction. 
\vspace{4mm}

\noindent Expressions can be returned from a hidden status into active 
expressions with the unhide\index{unhide} statement (see 
\ref{substaunhide}). One might want to consult the nhide\index{nhide} 
statement (\ref{substahide}) as well. \vspace{4mm}

\noindent When an expression is marked to be hidden it will remain just 
marked until execution starts in the current module. When it is the turn of 
the expression to be executed, it is copied to the hide file instead. 
\vspace{4mm}

\noindent Note that a .store instruction will simultaneously remove all 
expressions from the hide system. \vspace{10mm}

%--#] hide : 
%--#[ identify :

\section{identify}
\label{substaidentify}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & id[entify] [{\tt<}options{\tt>}] {\tt<}pattern{\tt>} = {\tt<}expression{\tt>};
\\ See also & also (\ref{substaalso}),
              idnew (\ref{substaidnew}),
              idold (\ref{substaidold})
\end{tabular}\vspace{4mm}

\noindent The statement\index{id}\index{identify} tries to match the 
pattern\index{pattern}. If the pattern matches one or more times, it will 
be replaced by the expression in the r.h.s. taking the possible 
wildcard\index{wildcard} substitutions into account. For the description of 
the patterns, see chapter \ref{pattern}.

\noindent The options are \vspace{1mm}

\lefttabitem{multi\index{multi}}
\tabitem{This option is for combinations of symbols and dotproducts only 
and it does not use wildcard powers. \FORM\ determines how many times the 
pattern fits in one pattern matching action. Then the r.h.s. is substituted 
to that power. It is the default for these kinds of patterns.}

\lefttabitem{many\index{many}}
\tabitem{This is the default for patterns that contain other objects 
than symbols and dotproducts. The pattern is matched and taken out. Then 
\FORM\ tries again to match the pattern in the remainder of the term. This 
is repeated until there is no further match. Then for each match the r.h.s. 
is substituted (with its own wildcard substitutions).}

\lefttabitem{select\index{select}}
\tabitem{This option should be followed by one or more sets\index{set}. After 
the sets the pattern can be specified. The pattern will only be substituted 
if none of the objects mentioned in the sets will be left after the pattern 
has been taken out. This holds only for objects 'at ground level'; i.e. the 
pattern matcher will not look inside function arguments for this. Note 
that this is a special case of the option 'only'.}

\lefttabitem{once\index{once}}
\tabitem{The pattern is matched only once, even if it occurs more than once 
in the term. The first match that \FORM\ encounters is taken. When wildcards 
are involved, this may depend on the order of declaration of variables. It 
could also be installation dependent. Also the setting of 
properorder\index{properorder} (see \ref{substaon} and \ref{substaoff}) 
could be relevant. Try to write programs in such a way that the outcome 
does not depend on which match is taken.}

\lefttabitem{only\index{only}}
\tabitem{The pattern will match only if there is an exact match in 
the powers of the symbols and dotproducts present.}

\lefttabitem{ifmatch$-\!\!>$\index{ifmatch}}
\tabitem{This option should be followed by the name (or number) of a 
label\index{label}. If the pattern matches, the replacement will be made 
after which the execution continues at the label.}

\lefttabitem{ifnomatch$-\!\!>$\index{ifmatch}}
\tabitem{This option should be followed by the name (or number) of a 
label\index{label}. If the pattern does not match, 
execution continues at the label.}

\lefttabitem{disorder\index{disorder}}
\tabitem{This option is used for products of 
noncommuting\index{noncommuting} functions\index{functions!noncommuting} or 
tensors\index{tensors!noncommuting}. The match will only take place if the 
order of the functions in the match is different from what \FORM\ would have 
made of it if the functions would be commuting\index{commuting}. Hence if 
the functions in the term are in the order that \FORM\ would give them if 
they would be commuting (which depends on the order of declaration) there 
will be no match. This can be rather handy when using wildcards as in {\tt 
F(a?)*F(b?)}.}

\lefttabitem{all\index{all}}
\tabitem{This option is rather special in that it generates all possible 
matches one by one. Normally, when there are many possible matches, \FORM\ 
takes the first one it encounters. In the case of the all option it will 
run through all possible matches and produce all of them. There are however 
severe restrictions. First of all, other options are not allowed 
simultaneously, although ifmatch$-\!\!>$ and ifnomatch$-\!\!>$ are allowed 
because technically they are no options that concern the pattern matching. 
In addition it is not allowed to be in an idold/also statement, and it 
cannot be followed by such a statement. Most severely: it can have only 
functions in the left hand side. These functions can have all kinds of 
arguments, but outside the functions symbols, vectors, dotproducts etc. are 
not allowed. This is due to the fact that the backtracking when a wildcard 
combination fails, does not include such objects and it is this 
backtracking mechanism that is used to generate all matches. For the 
purpose of the all option tensors and unsubstituted tables count as 
functions. It should also be known that the all option cannot be used in 
the if(match()) construction. It would not make sense there anyway.}

\noindent Example:
\begin{verbatim}
    Vector Q,p1,...,p5,q1,...,q5;
    Cfunction V(s),replace;
    Format 60;
    *   This is a t1 topology:
    L   F = V(Q,p1,p4)*V(p1,p2,p5)*
            V(p2,p3,Q)*V(p3,p4,p5);
    $t = term_;
    id,all,$t*replace_(<p1,p1?>,...,<p5,p5?>) =
         $t*replace(<p1,q1>,...,<p5,q5>);
    Print +s;
    .end

   F =
       + V(Q,p1,p4)*V(Q,p2,p3)*V(p1,p2,p5)*V(p3,p4,p5)*
      replace(p1,q1,p2,q2,p3,q3,p4,q4,p5,q5)
       + V(Q,p1,p4)*V(Q,p2,p3)*V(p1,p2,p5)*V(p3,p4,p5)*
      replace(p2,q1,p1,q2,p4,q3,p3,q4,p5,q5)
       + V(Q,p1,p4)*V(Q,p2,p3)*V(p1,p2,p5)*V(p3,p4,p5)*
      replace(p3,q1,p4,q2,p1,q3,p2,q4,p5,q5)
       + V(Q,p1,p4)*V(Q,p2,p3)*V(p1,p2,p5)*V(p3,p4,p5)*
      replace(p4,q1,p3,q2,p2,q3,p1,q4,p5,q5)
      ;
\end{verbatim}
This program produces all renumberings of the momenta in the t1 topology 
that produce the same topology. The interesting thing here is that one does 
not have to know the topology to produce all topologically equivalent 
terms.

There are two options in the id,all statement: \hfill \\
\lefttabitem{all(n[ormalize])}
\tabitem{Here the final answer is divided by the number of matches. In the 
example above that would be 4.}
\lefttabitem{all($<$number$>$)}
\tabitem{The number between the parentheses will be the maximum number of 
matches allowed. This means that once this number is reached, no further 
matches are produced.}
\vspace{10mm}

%--#] identify : 
%--#[ idnew :

\section{idnew}
\label{substaidnew}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & idn[ew] [{\tt<}options{\tt>}] {\tt<}pattern{\tt>} = {\tt<}expression{\tt>};
\\ See also & identify (\ref{substaidentify}),
              also (\ref{substaalso}),
              idold (\ref{substaidold})
\end{tabular} \vspace{4mm}

\noindent This statement\index{idnew} and its options are completely 
identical to the regular id\index{id} or identify\index{identify} statement 
(see \ref{substaidentify}). \vspace{10mm}

%--#] idnew : 
%--#[ idold :

\section{idold}
\label{substaidold}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & ido[ld] [{\tt<}options{\tt>}] {\tt<}pattern{\tt>} = {\tt<}expression{\tt>};
\\ See also & identify (\ref{substaidentify}),
              also (\ref{substaalso}),
              idnew (\ref{substaidnew})
\end{tabular}\vspace{4mm}

\noindent This statement\index{idold} and its options are completely 
identical to the regular also\index{also} statement (see \ref{substaalso}). 
The options are described with the id\index{id} or identify\index{identify} 
statement (see \ref{substaidentify}).
\vspace{10mm}

%--#] idold : 
%--#[ if :
 
\section{if}
\label{substaif}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & if ( {\tt<}condition{\tt>} ); \\
       & if ( {\tt<}condition{\tt>} ) {\tt<}executable statement{\tt>}
\\ See also & elseif (\ref{substaelseif}),
              else (\ref{substaelse}),
              endif (\ref{substaendif})
\end{tabular} \vspace{4mm}

\noindent Used\index{if} for executing parts of code only when certain 
conditions\index{condition} are met. Works together with the 
else\index{else} statement (see \ref{substaelse}), the elseif\index{elseif} 
statement (see \ref{substaelseif}) and the endif\index{endif} statement 
(see \ref{substaendif}). There are two versions. In the first the if 
statement must be accompanied by at least an endif statement. In that case 
the statements between the if statement and the endif statement will be 
executed if the condition is met. It is also possible to use elseif and 
else statements to be more flexible. This is done in the same way as in 
almost all computer languages.

\noindent In the second form the if statement does not terminate with a 
semicolon\index{semicolon}. It is followed by a single regular statement. 
No endif statement should be used. The single statement will be executed if 
the condition is met.

\noindent The condition in the if statement should be enclosed by 
parentheses. Its primary components are:

\leftvitem{3.5cm}{count()\index{count}}
\rightvitem{13cm}{Returns an integer power counting value for the current 
term. Should have arguments that come in pairs. The first element of the 
pair is a variable. The second is its integer weight\index{weight}. The 
types of variables that are allowed are symbols, dotproducts, functions, 
tensors, tables and vectors. The weights can be positive as well as 
negative. They have to be short integers (Absolute value $< 2^{15}$ on 
32\index{32 bits} bit computers and $< 2^{31}$ on 64\index{64 bits} bit 
computers). The vectors can have several options appended to their name. 
This is done by putting a + after the name of the vector and have this 
followed by one or more of the following letters:

\noindent \begin{tabular}{ll}
v & Loose vectors with an index are taken into account. \\
d & Vectors inside dotproducts are taken into account.  \\
f & Vectors inside tensors are taken into account. \\
?set &
\begin{minipage}[t]{11cm}{The set should be a set of functions. Vectors inside 
the functions that are members of the set are taken into account. It is 
assumed that those functions are linear in the given vector}\end{minipage}
\end{tabular} \vspace{1mm}

When no options are specified the result is identical to +vfd.}

\leftvitem{3.5cm}{match()\index{match}}
\rightvitem{13cm}{The argument of the match condition can be any left hand 
side of an id statement, including options as once\index{once}, 
only\index{only}, multi\index{multi}, many\index{many} and 
select\index{select} (see \ref{substaidnew}). The id of the id statement 
should not be included. \FORM\ will invoke the pattern\index{pattern matcher} 
matcher and see how many times the pattern matches. This number is 
returned. In the case of once or only this is of course at most one.}

\leftvitem{3.5cm}{expression()\index{expression}}
\rightvitem{13cm}{The argument(s) of this condition is/are a list of 
expressions. In the case that the current term belongs to any of the given 
expressions the return value is 1. If it does not belong to any of the 
given expressions the return value is 0.}

\leftvitem{3.5cm}{occurs()\index{expression}}
\rightvitem{13cm}{The argument(s) of this condition is/are a list of 
variables. In the case that any of the variables occurs inside the current 
term (including inside function arguments) the 
return value is 1. Otherwise the return value is zero.}

\leftvitem{3.5cm}{findloop()\index{findloop}}
\rightvitem{13cm}{The arguments are as in the 
replaceloop\index{replaceloop} statement (see \ref{substareplaceloop}) with 
the exception of the outfun which should be omitted. If \FORM\ detects an 
index\index{index loop} loop in the current term that fulfils the specified 
conditions the return value is 1. It is 0 otherwise.}
 
\leftvitem{3.5cm}{multipleof()\index{multipleof}}
\rightvitem{13cm}{The argument should be a positive integer. This object is 
to be compared with a number (could be obtained from a condition) and if 
this number is an integer multiple of the argument there will be a match. 
If should be obvious that such a compare only makes sense for the == and != 
operators.}

\leftvitem{3.5cm}{$<$integer$>$}
\rightvitem{13cm}{To be compared either with another number, the result of a 
condition or a multipleof object.}
 
\leftvitem{3.5cm}{coefficient\index{coefficient}}
\rightvitem{13cm}{Represents the coefficient of the current term.}

\leftvitem{3.5cm}{\$-variable}
\rightvitem{13cm}{Will be evaluated at runtime when the if statement is 
encountered. Should evaluate into a numerical value. If it does not, an 
error will result.}

\noindent All the above primary components result in numerical objects. 
Such objects can be compared to each other in structures of the type 
$<$obj1$>$ $<$operator$>$ $<$obj2$>$. The result of such a compare is 
either true (or 1) or false (or 0). The operators are:
 
\leftvitem{2cm}{$>$}
\rightvitem{14cm}{Results in true if object 1 is greater than object 2.}
 
\leftvitem{2cm}{$<$}
\rightvitem{14cm}{Results in true if object 1 is less than object 2.}
 
\leftvitem{2cm}{$=$}
\rightvitem{14cm}{Same as ==.}
 
\leftvitem{2cm}{$==$}
\rightvitem{14cm}{Results in true if both objects have the same value.}
 
\leftvitem{2cm}{$>=$}
\rightvitem{14cm}{Results in true if object 1 is greater than or equal to object 2.}
 
\leftvitem{2cm}{$<=$}
\rightvitem{14cm}{Results in true if object 1 is less than or equal to object 2.}
 
\leftvitem{2cm}{$!=$}
\rightvitem{14cm}{Results in true if object 1 does not have the same value 
as object 2.}

If the condition for true is not met, false is returned. Several of the 
above compares can be combined with logical operators. For this it is 
necessary to enclose the above compares within parentheses. This forces 
\FORM\ to interpret the hierarchy\index{hierarchy} of the operators 
properly. The extra logical operators are
 
\leftvitem{2cm}{$||$}
\rightvitem{14cm}{The or operation. True if at least one of the objects 1 
and 2 is true (or nonzero). False or zero if both are false or zero.}
 
\leftvitem{2cm}{$\&\&$}
\rightvitem{14cm}{The and operation. True if both the objects 1 
and 2 are true (or nonzero). False or zero if at least one is false or zero.}

\noindent Example:
\begin{verbatim}
    if ( ( match(f(1,x)*g(?a)) && ( count(x,1,v+d,1) == 3 ) )
         || ( expression(F1,F2) == 0 ) );
        some statements
    endif;
    if ( ( ( match(f(1,x)*g(?a)) == 0 ) && ( count(x,1,v+d,1) == 3 ) )
         || expression(F1,F2) );
        some statements
    endif;
\end{verbatim}
We see that \verb:match(): is equivalent to \verb:( match() != 0 ): and 
something similar for \verb:expression():. This shorthand\index{shorthand} 
notation can make a program slightly more readable.

{\bf Warning! } The if-statement knows only logical values as the result of 
operations. Hence the answer to anything that contains parenthesis (which 
counts as the evaluation of an expression) is either true (1) or false (0). 
Hence the object (5) evaluates to true. \vspace{10mm}

%--#] if : 
%--#[ ifmatch :

\section{ifmatch}
\label{substaifmatch}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & ifmatch$-\!\!>$ {\tt<}label{\tt>} {\tt<}pattern{\tt>} = {\tt<}expression{\tt>};
\\ See also & identify (\ref{substaidentify})
\end{tabular} \vspace{4mm}

\noindent This statement\index{ifmatch} is identical to the ifmatch option 
of the id statement (see \ref{substaidentify}). Hence
\begin{verbatim}
   ifmatch-> ....
\end{verbatim}
is just a shorthand notation for
\begin{verbatim}
   id ifmatch-> ....
\end{verbatim}
\vspace{10mm}

%--#] ifmatch : 
%--#[ ifnomatch :

\section{ifnomatch}
\label{substaifnomatch}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & ifnomatch$-\!\!>$ {\tt<}label{\tt>} {\tt<}pattern{\tt>} = {\tt<}expression{\tt>};
\\ See also & identify (\ref{substaidentify})
\end{tabular} \vspace{4mm}

\noindent This statement\index{ifnomatch} is identical to the ifnomatch option 
of the id statement (see \ref{substaidentify}). Hence
\begin{verbatim}
   ifnomatch-> ....
\end{verbatim}
is just a shorthand notation for
\begin{verbatim}
   id ifnomatch-> ....
\end{verbatim}
\vspace{10mm}

%--#] ifnomatch : 
%--#[ index :
 
\section{index, indices}
\label{substaindex}

\noindent \begin{tabular}{ll}
Type & Declaration statement\\
Syntax & i[ndex] {\tt<}list of indices to be declared{\tt>}; \\
       & i[ndices] {\tt<}list of indices to be declared{\tt>};
\\ See also & dimension (\ref{substadimension}),
              fixindex (\ref{substafixindex})
\end{tabular} \vspace{4mm}

\noindent Declares one or more indices\index{index}\index{indices}. In the 
declaration of an index one can specify its dimension\index{dimension}. 
This is done by appending one or two options to the name of the index to be 
declared:\vspace{4mm}

\leftvitem{3.5cm}{name=dim}
\rightvitem{13cm}{The dimension is either a nonnegative integer or a 
previously declared symbol. If the dimension is zero\index{zero!dimension} 
this means that no dimension is attached to the index. The consequence is 
that the index cannot be summed over and index contractions are not 
performed for this index. If no dimension is specified the default 
dimension will be assumed (see the dimension statement 
\ref{substadimension}).}

\leftvitem{3.5cm}{name=dim:ext}
\rightvitem{13cm}{The dimension is a symbol as above. Ext is an extra 
symbol which indicates the value of dim-4. This option is useful when 
traces over gamma matrices are considered (see \ref{substatrace} and 
\ref{substatracen}).} \vspace{10mm}

%--#] index : 
%--#[ inexpression :
 
\section{inexpression}
\label{substainexpression}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & inexpression,name(s) of expression(s);
\\ See also & endinexpression~(\ref{substaendinexpression})
\end{tabular} \vspace{4mm}

\noindent The combination\index{inexpression}
\begin{verbatim}
   InExpression,expr;
       Statements;
   EndInExpression;
\end{verbatim}
is a more readable version of the construction
\begin{verbatim}
   if ( expression(expr) );
       Statements;
   endif;
\end{verbatim}
\vspace{10mm}

%--#] inexpression : 
%--#[ inparallel :

\section{inparallel}
\label{substainparallel}

\noindent \begin{tabular}{ll}
Type & Specification statement\\
Syntax & inparallel; \\
       & inparallel {\tt<}list of expressions{\tt>};
\\ See also & NotInParallel (\ref{substanotinparallel}), 
     ModuleOption (\ref{substamoduleoption})
\end{tabular} \vspace{4mm}

\noindent This statement is only active in the context of 
\TFORM\index{TFORM}. It causes 
(small) expressions to be executed side by side. Normally the terms of 
expressions are distributed over the processors and the expressions are 
executed one by one. This isn't very efficient for small expressions 
because there is a certain amount of overhead. When there are many small 
expressions, this statement can cause each expression to be executed by its 
own processor. A consequence is that the expressions now can finish in a 
semi-random order and hence may end up in the output in a order that is 
different from when this statement isn't used. The proper order is restored 
in the first module that comes after and that doesn't use this option. One 
should be careful using this statement for big expressions, because in that 
case the sorting may need sort files and the output may temporarily need 
scratch files and the simultaneous use of many files can slow execution 
down significantly.

\noindent In the case that no expressions are mentioned, all active 
expressions will be affected. When there is a list of expressions, only 
those mentioned will be affected, provided they are active. Several of 
these statements will work cumulatively. This statement doesn't affect 
expressions that are still to be defined inside the current module. If it 
is needed to affect such expressions inside the current module, one should 
use the InParallel option of the 
ModuleOption~\ref{substamoduleoption}\index{ModuleOption} 
statement. This statement works independently of the `On 
Parallel;'~\ref{substaon} and `Off Parallel;'~\ref{substaoff} statements.
\vspace{10mm}

%--#] inparallel : 
%--#[ inside :

\section{inside}
\label{substainside}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & inside {\tt<}list of \$-variables{\tt>};
\\ See also & endinside (\ref{substaendinside}) and the chapter on \$-variables 
(\ref{dollars})
\end{tabular} \vspace{4mm}

\noindent works\index{inside} a bit like the argument\index{argument} 
statement (see \ref{substaargument}) but with 
\$-variables\index{\$-variable} instead of with functions. An inside 
statement should be paired with an endinside\index{endinside} statement 
(see \ref{substaendinside}) inside the same module. The statements 
in-between will then be executed on the contents of the \$-variables that 
are mentioned. One should pay some attention to the order of the action. 
The \$-variables are treated sequentially. Hence, after the first one has 
been treated its contents are substituted by the new value. Then the second 
one is treated. If it uses the contents of the first variable, it will use 
the new value. If the first variable uses the contents of the second 
variable it will use its old value. Redefining any of the listed 
\$-variables in the range of the `inside-environment' is very dangerous. It 
is not specified what \FORM\ will do. Most likely it will be 
unpleasant\index{unpleasant}. 
\vspace{10mm}

%--#] inside : 
%--#[ insidefirst :

\section{insidefirst}
\label{substainsidefirst}

\noindent \begin{tabular}{ll}
Type & Declaration statement\\
Syntax & insidefirst {\tt<}on/off{\tt>};
\\ See also & on (\ref{substaon}), off (\ref{substaoff})
\end{tabular} \vspace{4mm}

\noindent This statement\index{insidefirst} is obsolete\index{obsolete}. 
The user should try to use the insidefirst option of the on (see 
\ref{substaon}) or the off (see \ref{substaoff}) statements. \vspace{10mm}

%--#] insidefirst : 
%--#[ intohide :

\section{intohide}
\label{substaintohide}

\noindent \begin{tabular}{ll}
Type & Specification statement\\
Syntax & intohide; \\
       & intohide {\tt<}list of expressions{\tt>};
\\ See also & hide (\ref{substahide})
\end{tabular} \vspace{4mm}

\noindent In the first variety this statement marks all currently active 
expressions for being put in hidden\index{hide} storage at the end of the 
module, after it has been processed. In the second variety it marks only 
the specified active\index{active expressions} expressions as such. 
\vspace{4mm}

\noindent The difference with the hide (\ref{substahide}) statement is 
that in the hide statement the expression is copied immediately into the 
hide system and it will not be processed in the current module, while in 
the intohide statement the expression is first processed and its final 
output in this module is sent to the hide system rather than to the regular 
scratch system. The effect is the same as not putting the intohide 
statement in the current module and putting a hide statement in the next, 
but it saves one copy operation and it is possibly a bit more economical 
with the disk space.
\vspace{4mm}

\noindent Note that a .store instruction will simultaneously remove all 
expressions from the hide system. \vspace{10mm}
%--#] intohide : 
%--#[ keep :

\section{keep}
\label{substakeep}

\noindent \begin{tabular}{ll}
Type & Specification statement\\
Syntax & keep brackets; \\
See also & bracket (\ref{substabracket}), antibracket 
     (\ref{substaabrackets}) and the chapter on brackets 
     (\ref{brackets})
\end{tabular} \vspace{4mm}

\noindent The effect\index{keep brackets}\index{keep}\index{brackets!keep} 
of this statement is that during execution of the current module the 
contents of the brackets are not considered. The statements only act on the 
`outside' of the brackets. Only when the terms are considered finished and 
are ready for the sorting are they multiplied by the contents of the 
brackets. At times this can save much computer time as complicated pattern 
matching and multiplications of function arguments with large fractions 
have to be done only once, rather than for each complete term separately 
(assuming that each bracket contains a large number of terms).

\noindent There can be some nasty side effects. Assume an expression like:
% THIS EXAMPLE IS PART OF THE TESTSUITE. CHANGES HERE SHOULD BE APPLIED THERE AS
% WELL!
\begin{verbatim}
    F = f(i1,x)*(g(i1,y)+g(i1,z));
    B  f;
    .sort
    Keep Brackets;
    sum i1;
\end{verbatim}
the result will be
\begin{verbatim}
    F = f(N1_?,x)*g(i1,y)+f(N1_?,x)*g(i1,z);
\end{verbatim}
because at the moment of summing over i1 \FORM\ is not looking inside the 
brackets and hence it never sees the second occurrence of i1. There are 
some beneficial applications of the keep statement in the 
`mincer'\index{mincer} package that comes with the \FORM\ distribution. In 
this package the most costly step was made faster by a significant factor 
(depending on the problem) due to the keep brackets statement. 
\vspace{10mm}

%--#] keep : 
%--#[ label :

\section{label}
\label{substalabel}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & la[bel] {\tt<}name of label{\tt>};
\\ See also & goto (\ref{substagoto})
\end{tabular} \vspace{4mm}

\noindent Places a label\index{label} at the current location. The name of 
the label can be any name or positive number. Control can be transfered to the 
position of the label by a goto\index{goto} statement (see 
\ref{substagoto}) or the ifmatch\index{ifmatch} option of an id statement 
(see \ref{substaidentify}). The only condition is that the goto statement 
and the label must be inside the same module. Once the module is terminated 
all existing labels are forgotten. This means that in a later module a 
label with the same name can be used again (this may not improve 
readability though but it is a good thing when third party libraries are 
used). \vspace{10mm}

%--#] label : 
%--#[ lfactorized :

\section{lfactorized}
\label{substalfactorized}

\noindent \begin{tabular}{ll}
Type & Definition statement\\
Syntax & l[ocal]factorized {\tt<}name{\tt>} = {\tt<}expression{\tt>};
\\ See also & the chapter on polynomials~\ref{polynomials} and the 
factorize statement~\ref{substafactorize}.
\end{tabular} \vspace{4mm}

\noindent Used to define a local\index{local} expression in factorized 
notation and keep it that way. The factors are recognized by multiplication 
and division signs at lowest bracket level. For the rest the expression is 
treated as a regular local expression. Example:
\begin{verbatim}
    Symbols x,y,z;
    LocalFactorized F1 = 3*(x+y)*(y+z)*((x+z)*(2*x+1));
    LocalFactorized F2 = 3*(x+y)*(y+z)+((x+z)*(2*x+1));
    Print;
    .end

   F1 =
         ( 3 )
       * ( y + x )
       * ( z + y )
       * ( z + x + 2*x*z + 2*x^2 );

   F2 =
         ( z + 3*y*z + 3*y^2 + x + 5*x*z + 3*x*y + 2*x^2 );
\end{verbatim}
\noindent As one can see in the second expression, the plus at ground level 
makes that there is only one factor. In the first expression the last 
factor is seen as a single factor and not two factor2 because of the extra 
parentheses. Only parentheses at ground level are used to recognize 
factors. If one needs those factors anyway, one should either leave away 
those parentheses or use an extra Factorize statement to have FORM 
refactorize the expression.
\vspace{10mm}

%--#] lfactorized : 
%--#[ load :

\section{load}
\label{substaload}

\noindent \begin{tabular}{ll}
Type & Declaration statement\\
Syntax & loa[d] {\tt<}filename{\tt>} [{\tt<}list of expressions{\tt>}];
\\ See also & save (\ref{substasave}), delete (\ref{substadelete})
\end{tabular} \vspace{4mm}

\noindent Loads\index{load} a previously saved\index{saved file} 
file\index{file!saved} (see \ref{substasave}). If no expressions are 
specified all expressions in the file are put in the storage 
file\index{file!storage} and obtain the status of stored global 
expressions. If a list of expressions is specified all those expressions 
are loaded and possible other expressions are ignored. If a specified 
expression is not present, an error will result. If one does not know 
exactly what expressions are present in a file one could load the file 
without a list of expressions, because \FORM\ will list all expressions that 
it encountered. \vspace{10mm}

%--#] load : 
%--#[ local :
 
\section{local}
\label{substalocal}

\noindent \begin{tabular}{ll}
Type & Definition statement\\
Syntax & l[ocal] {\tt<}name{\tt>} = {\tt<}expression{\tt>}; \\
       & l[ocal] {\tt<}names of expressions{\tt>};
\\ See also & global (\ref{substaglobal})
\end{tabular} \vspace{4mm}

\noindent Used to define a local\index{local} expression. A local 
expression is an expression that will be dropped\index{drop} when a 
.store\index{.store} instruction is encountered. If this is not what is 
intended one should use global\index{global} expressions (see 
\ref{substaglobal}). The statement can also be used to change the status of 
a global expression into that of a local expression. In that case there is 
no = sign and no right hand side. \vspace{10mm}

%--#] local : 
%--#[ makeinteger :

\section{makeinteger}
\label{substamakeinteger}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & makeinteger [{\tt<}argument specifications{\tt>}] \\ &
    \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 
 \verb:{:{\tt<}name of function/set{\tt>}
[{\tt<}argument specifications{\tt>}]\verb:}:; \\
See also & normalize (\ref{substanormalize})
\end{tabular} \vspace{4mm}

\noindent Normalizes\index{makeinteger} the indicated 
argument\index{argument} of the indicated functions(s) in such a way that 
all terms in this argument have integer 
coefficients\index{coefficients!integer} with a their greatest common 
divider being one. This still leaves the possibility that the first term of 
this argument may be negative. If this is not desired one can first 
normalize\index{normalize} the argument and then make its coefficients 
integer. The overall factor that is needed to make the coefficients like 
described is taken from the overall factor of the complete term. Example:
% THIS EXAMPLE IS PART OF THE TESTSUITE. CHANGES HERE SHOULD BE APPLIED THERE AS
% WELL!
\begin{verbatim}
    S   a,b,c;
    CF  f;
    L   F = f(22/3*a+14/5*b+18/7*c);
    MakeInteger,f;
    Print +f;
    .end
   F =
      2/105*f(135*c + 147*b + 385*a);
\end{verbatim}

\noindent Note that this feature can be used to make outputs look much more 
friendly. It can be used in combination with the 
AntiBracket\index{antibracket} statement (\ref{substaabrackets}) and the 
function dum\_\index{dum\_} (\ref{fundum}) to imitate a smart extra level 
of brackets and make outputs shorter.

It is possible to introduce a scale factor when extracting the coefficient 
and multiplying it into the complete term.

\leftvitem{4cm}{MakeInteger,$\wedge<n>$,f;}
\rightvitem{12cm}{The number n must be an integer (may be negative) and if 
the coefficient that is extracted is c the whole term is multiplied by the 
factor $c^n$.}
\vspace{10mm}

%--#] makeinteger : 
%--#[ many :
 
\section{many}
\label{substamany}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & many {\tt<}pattern{\tt>} = {\tt<}expression{\tt>};
\\ See also & identify (\ref{substaidentify})
\end{tabular} \vspace{4mm}

\noindent This statement\index{many} is identical to the many option of the 
id\index{id} statement (see \ref{substaidentify}). Hence
\begin{verbatim}
   many ....
\end{verbatim}
is just a shorthand notation for
\begin{verbatim}
   id many ....
\end{verbatim}
\vspace{10mm}

%--#] many : 
%--#[ merge :
%
\section{merge}
\label{substamerge}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & merge,functionname; \\
       & merge,once,functionname;
\\ See also & shuffle (\ref{substashuffle})
\end{tabular} \vspace{4mm}

\noindent This statement is exactly the same as the shuffle\index{shuffle} 
statement (see \ref{substashuffle}).
\vspace{10mm}
%
%--#] merge : 
%--#[ metric :

\section{metric}
\label{substametric}

\noindent \begin{tabular}{ll}
Type & Declaration statement\\
Syntax & metric {\tt<}option{\tt>};
\end{tabular}
\smallskip

\noindent Remark: statement\index{metric} is inactive\index{inactive}. 
Should have no effect.
\vspace{10mm}

%--#] metric : 
%--#[ moduleoption :

\section{moduleoption}
\label{substamoduleoption}

\noindent \begin{tabular}{ll}
Type & Module control statement\\
Syntax & moduleoption {\tt<}option{\tt>}[,{\tt<}value{\tt>}];
\\ See also & polyfun (\ref{substapolyfun}),
              processbucketsize (\ref{substaprocessbucketsize}),
              dollar variables (\ref{pardollars})
\end{tabular} \vspace{4mm}

\noindent Used\index{moduleoption} to set a mode for just the current 
module. It overrides the normal setting and will revert to this normal 
setting after this module. The settings are:

\leftvitem{3.5cm}{parallel\index{moduleoption!parallel}}
\rightvitem{13cm}{Allows parallel\index{parallel} execution of the current module if all 
other conditions are right. This is the default.}

\leftvitem{3.5cm}{noparallel\index{moduleoption!noparallel}}
\rightvitem{13cm}{Vetoes parallel\index{parallel} execution of the current module.}

\leftvitem{3.5cm}{inparallel\index{moduleoption!inparallel}}
\rightvitem{13cm}{This option is more or less equivalent to the 
InParallel~\ref{substainparallel} statement. The difference is that because 
this statement comes at the end of the module, its effects include also the 
expressions that have been defined inside the current module. This is not 
the case for the InParallel statement. The InParallel option can be 
followed by the names of expressions. If no such names are present, all 
active expressions are affected. Otherwise only the expressions that are 
mentioned are affected. Once this option is mentioned no more options can 
be used inside the same ModuleOption statement. This is to avoid potential 
confusion that could arise when expressions are used with a name identical 
to the name of one of the options.}

\leftvitem{3.5cm}{notinparallel\index{moduleoption!notinparallel}}
\rightvitem{13cm}{This option is more or less equivalent to the 
NotInParallel~\ref{substanotinparallel} statement. The difference is that 
because this statement comes at the end of the module, its effects include 
also the expressions that have been defined inside the current module. This 
is not the case for the NotInParallel statement. The NotInParallel option 
can be followed by the names of expressions. If no such names are present, 
all active expressions are affected. Otherwise only the expressions that 
are mentioned are affected. Once this option is mentioned no more options 
can be used inside the same ModuleOption statement. This is to avoid 
potential confusion that could arise when expressions are used with a name 
identical to the name of one of the options.}

\leftvitem{3.5cm}{polyfun\index{moduleoption!polyfun}}
\rightvitem{13cm}{Possibly followed by the name of a 
`polyfun'\index{polyfun}. Is similar to the polyfun statement (see 
\ref{substapolyfun}) but only valid for the current module.}

\leftvitem{3.5cm}{polyratfun\index{moduleoption!polyfun}}
\rightvitem{13cm}{Possibly followed by the name of a 
`polyratfun'\index{polyratfun}. Is similar to the polyfun statement (see 
\ref{substapolyratfun}) but only valid for the current module. If there is 
second name, it refers to the inverse polyratfun. More complicated options 
of the polyratfun statement cannot be used here.}

\leftvitem{3.5cm}{processbucketsize\index{moduleoption!processbucketsize}}
\rightvitem{13cm}{Followed by a number. Similar to the 
processbucketsize\index{processbucketsize} 
statement (see \ref{substaprocessbucketsize}) but only valid for the current 
module.}

\leftvitem{3.5cm}{local\index{moduleoption!local}}
\rightvitem{13cm}{Should be followed by a list of \$-variables. Indicates 
that the contents of the indicated \$-variables\index{\$-variable} are not 
relevant once the module has been finished and neither is the term by term 
order in which the \$-variables obtain their value. In practise each 
processor\index{processor}/thread\index{thread} will work with its own copy 
of this variable.}

\leftvitem{3.5cm}{maximum\index{moduleoption!maximum}}
\rightvitem{13cm}{Should be followed by a list of 
\$-variables\index{\$-variable}. Indicates that of the contents of the 
indicated \$-variables the maximum is the only thing that is relevant once 
the module has been finished. The term by term order in which the 
\$-variables obtain their value is not relevant.}

\leftvitem{3.5cm}{minimum\index{moduleoption!minimum}}
\rightvitem{13cm}{Should be followed by a list of 
\$-variables\index{\$-variable}. Indicates that of the contents of the 
indicated \$-variables the minimum is the only thing that is relevant once 
the module has been finished. The term by term order in which the 
\$-variables obtain their value is not relevant.}

\leftvitem{3.5cm}{sum\index{moduleoption!sum}}
\rightvitem{13cm}{Should be followed by a list of 
\$-variables\index{\$-variable}. Indicates that the indicated \$-variables 
are representing a sum. The term by term order in which the \$-variables 
obtain their value is not relevant.}

\noindent The options `local', `maximum', `minimum' and `sum' are for 
parallel versions of \FORM. The presence of \$-variables can be a problem 
when the order of processing of the terms is not well defined. These 
options tell \FORM\ what these \$-variables are used for. In the above 
cases \FORM\ can take the appropriate action when gathering information 
from the various processors. This will allow
parallel\index{parallel execution} execution of the current module. If
\$-variables are used in a module and they are defined on a term by term
basis, the normal action of \FORM\ will be to veto parallel execution unless
it is clear that no confusion can occur. See also chapter \ref{parallel} on
the parallel version and section \ref{pardollars} on the dollar variables.\vspace{10mm}

%--#] moduleoption : 
%--#[ modulus :
 
\section{modulus}
\label{substamodulus}

\noindent \begin{tabular}{ll}
Type & Declaration statement\\
Syntax & m[odulus] [option(s)] {\tt<}value{\tt>};
\end{tabular} \vspace{4mm}

\noindent Defines all calculus to be modulus\index{modulus} the given 
integer value, provided this number is positive.

% If this number is less than the 
%(installation dependent but at least 10000) maximum power for symbols and 
%dotproducts the powers of symbols and dotproducts are reduced with the 
%relation $x^{value} = x$.

\noindent The modulus calculus extends itself to 
fractions\index{fractions}. This means that if the value is not a prime 
number division by zero could result. It is the responsibility of the user 
to avoid such problems.

\noindent When the value in the modulus statement is either 0 or 1 the 
statement would be meaningless. It is used as a signal to \FORM\ that modulus 
calculus should be switched off again.

The options are
\begin{description}
\item[NoFunctions] Modulus calculus is not performed inside function 
arguments.
\item[AlsoFunctions] Modulus calculus is also performed inside function 
arguments.
\item[CoefficientsOnly] Modulus calculus is neither performed inside function 
arguments nor on powers of symbols.
\item[PlusMin] The values of numbers are reduced to the range 
$(-value+1)/2$ to $(value-1)/2$.
\item[Positive] The values of numbers are reduced to the range $0$ to 
$value-1$.
\item[NoDollars] The modulus calculus is not performed inside dollar 
variables.
\item[AlsoDollars] The modulus calculus is performed also inside dollar 
expressions.
\item[InverseTable] To speed up calculations all inverses are computed by 
means of a table. If the modulus value is very big, this table may be too 
big for the memory. That would result in an error message.
\item[NoInverseTable] No Table of Inverses is constructed. They are 
calculated whenever needed.
\item[AlsoPowers] Reduction is also used on powers of symbols with the 
relation $x^mod = x$ if mod is the given value
\item[NoPowers] No reduction on powers is done.
\item[PrintPowersOf] The proper syntax is here printpowersof(generator) in 
which generator is supposed to be a generator for calculus modulus the 
given value, which means that all numbers will be written as a power of the 
generator. If the number turns out not to be a proper generator an error 
will be given. Note that finding the powers is done by means of the 
construction of a table. Hence, if the modulus value is very big the table 
might not fit inside memory. This will result in an error message.
\end{description}
The default mode is NoFunctions, Positive, NoInverseTable, NoDollars, 
NoPowers.

The current syntax (version 4.0 and later) differs slightly from the 
previous syntax. As however there were many bugs in the old implementation 
we suspect that a slight change of the options does not inconvenience any 
many users.

%--#] modulus : 
%--#[ multi :
 
\section{multi}
\label{substamulti}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & multi {\tt<}pattern{\tt>} = {\tt<}expression{\tt>};
\\ See also & identify (\ref{substaidentify})
\end{tabular} \vspace{4mm}

\noindent This statement is identical to the multi\index{multi} option of 
the id\index{id} statement (see \ref{substaidentify}). Hence
\begin{verbatim}
   multi ....
\end{verbatim}
is just a shorthand notation for
\begin{verbatim}
   id multi ....
\end{verbatim}
\vspace{10mm}

%--#] multi : 
%--#[ multibracket : ????????????
% 
%\section{multibracket}
%\label{substamultibracket}
%
%\noindent \begin{tabular}{ll}
%Type & Output control statement\\
%Syntax & multibracket ??????????????
%\\ See also & bracket (\ref{substabracket})
%\end{tabular} \vspace{4mm}
%
%\vspace{10mm}
%
%--#] multibracket : 
%--#[ multiply :
 
\section{multiply}
\label{substamultiply}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & mu[ltiply] [{\tt<}option{\tt>}] {\tt<}expression{\tt>};
\end{tabular} \vspace{4mm}

\noindent Statement multiplies\index{multiply} all terms by the given 
expression. It is advisable to use the options when noncommuting variables 
are involved. They are:\vspace{1mm}

\lefttabitem{left\index{multiply!left}}
\tabitem{Multiplication is from the left.}

\lefttabitem{right\index{multiply!right}}
\tabitem{Multiplication is from the right.}

\noindent There is no guarantee\index{guarantee} as to what the default is 
with respect to multiplication from the left or from the right. It is up to 
{\FORM} to decide what it considers to be most efficient when neither 
option is present. \vspace{4mm}

\noindent Note that one should not abbreviate this command to `multi', 
because there is a separate multi\index{multi} command (see 
\ref{substamulti}). \vspace{10mm}

%--#] multiply : 
%--#[ ndrop :

\section{ndrop}
\label{substandrop}

\noindent \begin{tabular}{ll}
Type & Specification statement\\
Syntax & ndrop; \\
       & ndrop {\tt<}list of expressions{\tt>};
\\ See also & drop (\ref{substadrop})
\end{tabular} \vspace{4mm}

In the first variety\index{ndrop} this statement cancels all 
drop\index{drop} plans. This means that all expressions scheduled for being 
dropped will be restored to their previous status of local or global 
expressions. In the second variety this happens only to the expressions 
that are specified. Example:
\begin{verbatim}
   Drop;
   Ndrop F1,F2;
\end{verbatim}
This drops all expressions, except for the expressions \verb:F1: and 
\verb:F2:. \vspace{10mm}

%--#] ndrop : 
%--#[ nfactorize :

\section{nfactorize}
\label{substanfactorize}

\noindent \begin{tabular}{ll}
Type & Output control statement\\
Syntax & nfactorize \verb:{:{\tt<}name of expression(s){\tt>}\verb:}:;
\\ See also & the chapter on polynomials~\ref{polynomials} and 
\ref{substafactorize}.
\end{tabular} \vspace{4mm}

\noindent When one uses a factorize (see \ref{substafactorize}) statement 
without arguments all expressions will be marked for factorization. If one 
would like to exclude a few expressions this can be done with the 
NFactorize statement. There should be at least one expression mentioned as 
in:
\begin{verbatim}
   Factorize;
   NFactorize expr12,expr29;
\end{verbatim}
One can also use the Factorize statement with a number of expressions after 
which the NFactorize statement can remove some from the list again as in:
\begin{verbatim}
   Factorize expr1,...,expr100;
   NFactorize expr12,expr29;
\end{verbatim}

\vspace{10mm}

%--#] nfactorize : 
%--#[ nfunctions :
 
\section{nfunctions}
\label{substanfunctions}

\noindent \begin{tabular}{ll}
Type & Declaration statement\\
Syntax & n[functions] {\tt<}list of functions to be declared{\tt>}; \\
See also & functions (\ref{substafunctions}), cfunctions (\ref{substacfunctions})
\end{tabular} \vspace{4mm}

\noindent This statement\index{nfunction} declares 
noncommuting\index{noncommuting} functions. It is equal to the 
function\index{function} statement (see \ref{substafunctions}) which has 
the noncommuting property as its default. \vspace{10mm}

%--#] nfunctions : 
%--#[ nhide :

\section{nhide}
\label{substanhide}

\noindent \begin{tabular}{ll}
Type & Specification statement\\
Syntax & nhide; \\
       & nhide {\tt<}list of expressions{\tt>};
\\ See also & hide (\ref{substahide}),
              unhide (\ref{substaunhide}),
              nunhide (\ref{substanunhide}),
              pushhide (\ref{substapushhide}),
              pophide (\ref{substapophide})
\end{tabular} \vspace{4mm}

\noindent In its first variety\index{nhide} this statement undoes all 
hide\index{hide} plans that exist thus far in the current module. In the 
second variety it does this only for the specified active\index{active} 
expressions. See the hide statement in \ref{substahide}. Example:
\begin{verbatim}
   Hide;
   Nhide F1,F2;
\end{verbatim}
Here all active expressions will be transferred to the hide file except for 
the expressions \verb:F1: and \verb:F2:. \vspace{10mm}

%--#] nhide : 
%--#[ normalize :

\section{normalize}
\label{substanormalize}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & normalize options \verb:{:{\tt<}name of function/set{\tt>}
         [{\tt<}argument specifications{\tt>}]\verb:}:;
\\ See also & argument (\ref{substaargument}), splitarg 
            (\ref{substasplitarg}), makeinteger (\ref{substamakeinteger})
\end{tabular} \vspace{4mm}

\noindent Normalizes\index{normalize} the indicated 
arguments\index{argument} of the indicated functions. Normalization means 
that the argument will be multiplied by the inverse of its 
coefficient\index{coefficient} 
(provided it is not zero). This holds for single term arguments. For 
multiple term arguments the inverse of the coefficient of the first term of 
the argument is used. The options and the argument specifications are as in 
the SplitArg\index{splitarg} statement (see \ref{substasplitarg}). Under normal 
circumstances the coefficient that is removed from the argument(s) is 
multiplied into the coefficient of the term. This can be avoid with the 
extra option
\verb:(0):. Hence

\leftvitem{4cm}{Normalize,f;}
\rightvitem{12cm}{changes {\tt f(2*x+3*y)} into {\tt 2*f(x+3/2*y)} but}

\leftvitem{4cm}{Normalize,(0),f;}
\rightvitem{12cm}{changes {\tt f(2*x+3*y)} into {\tt f(x+3/2*y)}.}

A more flexible way to extract the coefficient of the (first) term is by 
providing a scale factor as in

\leftvitem{4cm}{Normalize,$\wedge<n>$,f;}
\rightvitem{12cm}{The number n must be an integer (may be negative) and if 
the coefficient of the first term was c the whole term is multiplied by the 
factor $c^n$.}
\vspace{10mm}

%--#] normalize : 
%--#[ notinparallel :

\section{notinparallel}
\label{substanotinparallel}

\noindent \begin{tabular}{ll}
Type & Specification statement\\
Syntax & notinparallel; \\
       & notinparallel {\tt<}list of expressions{\tt>};
\\ See also & InParallel (\ref{substainparallel}), 
     ModuleOption (\ref{substamoduleoption})
\end{tabular} \vspace{4mm}

\noindent This statement is only active in the context of 
\TFORM\index{TFORM}. It vetoes (small) expressions to be executed side by 
side. For a complete explanation of this type of running one should look at 
the InParallel~\ref{substainparallel} statement. Because the default is 
that expressions are executed one by one, the major use of this statement 
is in constructions like:
\begin{verbatim}
   InParallel;
   NotInParallel F1,F25;
\end{verbatim}
which would first mark all expressions to be executed in simultaneous mode 
and then make an exception for {\tt F1} and {\tt F25}.
\vspace{10mm}

%--#] notinparallel : 
%--#[ nprint :

\section{nprint}
\label{substanprint}

\noindent \begin{tabular}{ll}
Type & Output control statement\\
Syntax & np[rint] {\tt<}list of names of expressions{\tt>};
\\ See also & print (\ref{substaprint})
\end{tabular} \vspace{4mm}

\noindent Statement\index{nprint} is used to take expressions from the list 
of expressions to be printed. When a print\index{print} statement is used 
(see \ref{substaprint}) without specification of expressions, all active 
expressions are marked for printing. With this statement one can remove a 
number of them from the list. \vspace{10mm}

%--#] nprint : 
%--#[ nskip :

\section{nskip}
\label{substanskip}

\noindent \begin{tabular}{ll}
Type & Specification statement\\
Syntax & nskip; \\
       & nskip {\tt<}list of expressions{\tt>};
\\ See also & skip (\ref{substaskip})
\end{tabular} \vspace{4mm}

\noindent In the first variety\index{nskip} it causes the cancellation of 
all skip\index{skip} plans (see \ref{substaskip}) for expressions. The 
status of these expressions is restored to their previous status (active 
local or global expressions). In the second variety this is done for the 
specified expressions only. Example:
\begin{verbatim}
   Skip;
   Nskip F1,F2;
\end{verbatim}
This causes all active expressions to be skipped except for the expressions 
\verb:F1: and \verb:F2:. \vspace{10mm}

%--#] nskip : 
%--#[ ntable :

\section{ntable}
\label{substantable}

\noindent \begin{tabular}{ll}
Type & Declaration statement\\
Syntax & ntable {\tt<}options{\tt>} {\tt<}table to be 
declared{\tt>}; \\
See also & functions (\ref{substafunctions}), table (\ref{substatable}),
        ctable (\ref{substactable})
\end{tabular} \vspace{4mm}

\noindent This statement\index{ntable} declares a 
noncommuting\index{noncommuting} table\index{table!noncommuting}. For the 
rest it is identical to the table\index{table} command (see 
\ref{substatable}) which has the commuting property as its default. 
\vspace{10mm}

%--#] ntable : 
%--#[ ntensors :
 
\section{ntensors}
\label{substantensors}

\noindent \begin{tabular}{ll}
Type & Declaration statement\\
Syntax & nt[ensors] {\tt<}list of tensors to be declared{\tt>}; \\
See also & functions (\ref{substafunctions}), tensors 
            (\ref{substatensors}), ctensors (\ref{substactensors})
\end{tabular} \vspace{4mm}

\noindent This statement\index{ntensor} declares 
noncommuting\index{noncommuting} tensors\index{tensor!noncommuting}. For 
the rest it is equal to the tensor\index{tensor} statement (see 
\ref{substatensors}) which has the commuting property as its default.

\noindent The options that exist for properties of tensors are the same as 
those for functions (see \ref{substafunctions}). \vspace{10mm}

%--#] ntensors : 
%--#[ nunfactorize :

\section{nunfactorize}
\label{substanunfactorize}

\noindent \begin{tabular}{ll}
Type & Output control statement\\
Syntax & nunfactorize \verb:{:{\tt<}name of expression(s){\tt>}\verb:}:;
\\ See also & the chapter on polynomials~\ref{polynomials} and 
\ref{substaunfactorize}.
\end{tabular} \vspace{4mm}

\noindent When one uses an UnFactorize (see \ref{substaunfactorize}) 
statement without arguments all expressions will be marked for being 
unfactorized. If one would like to exclude a few expressions this can be 
done with the NUnFactorize statement. There should be at least one expression 
mentioned as in:
\begin{verbatim}
   UnFactorize;
   NUnFactorize expr12,expr29;
\end{verbatim}
One can also use the UnFactorize statement with a number of expressions after 
which the NUnFactorize statement can remove some from the list again as in:
\begin{verbatim}
   UnFactorize expr1,...,expr100;
   NUnFactorize expr12,expr29;
\end{verbatim}

\vspace{10mm}

%--#] nunfactorize : 
%--#[ nunhide :

\section{nunhide}
\label{substanunhide}

\noindent \begin{tabular}{ll}
Type & Specification statement\\
Syntax & nunhide; \\
       & nunhide {\tt<}list of expressions{\tt>};
\\ See also & hide (\ref{substahide}),
              nhide (\ref{substanhide}),
              unhide (\ref{substaunhide}),
              pushhide (\ref{substapushhide}),
              pophide (\ref{substapophide})
\end{tabular} \vspace{4mm}

\noindent In its first variety\index{nunhide} this statement undoes all 
unhide\index{unhide} (see \ref{substaunhide} and \ref{substahide}) plans 
that the system has in the current module. In its second variety this 
happens only with the specified expressions. Example:
\begin{verbatim}
   Unhide;
   Nunhide F1,F2;
\end{verbatim}
All expressions are taken from the hide\index{hide} system, except for the 
expressions \verb:F1: and \verb:F2:. \vspace{10mm}

%--#] nunhide : 
%--#[ nwrite :

\section{nwrite}
\label{substanwrite}

\noindent \begin{tabular}{ll}
Type & Declaration statement\\
Syntax & nw[rite] {\tt<}keyword{\tt>};
\\ See also & on (\ref{substaon}), off (\ref{substaoff})
\end{tabular} \vspace{4mm}

\noindent This statement\index{nwrite} is considered 
obsolete\index{obsolete}. All its varieties have been taken over by the 
off\index{off} statement (see \ref{substaoff}) and the on\index{on} 
statement (see \ref{substaon}). The current version of {\FORM} will still 
recognize it, but the user is advised to avoid its usage. In future 
versions of {\FORM} it is scheduled to be used for a different kind of 
writing and hence its syntax may change considerably. The conversion 
program conv2to3\index{conv2to3} should help in the conversion of programs 
that have been written for version 2. For completeness we still give the 
syntax and how it should be converted.
The keywords are: \vspace{4mm}

\leftvitem{3.5cm}{stats\index{nwrite!stats}}
\rightvitem{13cm}{Same as: Off stats;}

\leftvitem{3.5cm}{statistics\index{nwrite!statistics}}
\rightvitem{13cm}{Same as: Off statistics;}

\leftvitem{3.5cm}{shortstats\index{nwrite!shortstats}}
\rightvitem{13cm}{Same as: Off shortstats;}

\leftvitem{3.5cm}{shortstatistics\index{nwrite!shortstatistics}}
\rightvitem{13cm}{Same as: Off shortstatistics;}

\leftvitem{3.5cm}{warnings\index{nwrite!warnings}}
\rightvitem{13cm}{Same as: Off warnings;}

\leftvitem{3.5cm}{allwarnings\index{nwrite!allwarnings}}
\rightvitem{13cm}{Same as: Off allwarnings;}

\leftvitem{3.5cm}{setup\index{nwrite!setup}}
\rightvitem{13cm}{Same as: Off setup;}

\leftvitem{3.5cm}{names\index{nwrite!names}}
\rightvitem{13cm}{Same as: Off names;}

\leftvitem{3.5cm}{allnames\index{nwrite!allnames}}
\rightvitem{13cm}{Same as: Off allnames;}

\leftvitem{3.5cm}{shortstats\index{nwrite!shortstats}}
\rightvitem{13cm}{Same as: Off shortstats;}

\leftvitem{3.5cm}{highfirst\index{nwrite!highfirst}}
\rightvitem{13cm}{Same as: Off highfirst;}

\leftvitem{3.5cm}{lowfirst\index{nwrite!lowfirst}}
\rightvitem{13cm}{Same as: Off lowfirst;}

\leftvitem{3.5cm}{powerfirst\index{nwrite!powerfirst}}
\rightvitem{13cm}{Same as: Off powerfirst;}
\vspace{10mm}

%--#] nwrite : 
%--#[ off :

\section{off}
\label{substaoff}

\noindent \begin{tabular}{ll}
Type & Declaration statement\\
Syntax & off {\tt<}keyword{\tt>}; \\
       & off {\tt<}keyword{\tt>} {\tt<}option{\tt>};
\\ See also & on (\ref{substaon})
\end{tabular} \vspace{4mm}

\noindent Statement\index{off} to control settings\index{settings} during 
execution. Many of these settings replace older statements. The settings 
and their keywords are:
 
\leftvitem{3.5cm}{allnames\index{off!allnames}}
\rightvitem{13cm}{Turns the allnames mode off. The default.}
 
\leftvitem{3.5cm}{allwarnings\index{off!allwarnings}}
\rightvitem{13cm}{Turns off the printing of all warnings.}

\leftvitem{3.5cm}{checkpoint\index{off!checkpoint}}
\rightvitem{13cm}{Deactivates the checkpoint mechanism. See
\ref{checkpoints}.}

\leftvitem{3.5cm}{compress\index{off!compress}}
\rightvitem{13cm}{Turns compression mode off.}
 
\leftvitem{3.5cm}{finalstats\index{off!finalstats}}
\rightvitem{13cm}{Turns off the last line of statistics that is normally 
printed at the end of the run (introduced in version 3.2).}
 
\leftvitem{3.5cm}{highfirst\index{off!highfirst}}
\rightvitem{13cm}{Puts the sorting in a low first mode.}

\leftvitem{3.5cm}{insidefirst\index{off!insidefirst}}
\rightvitem{13cm}{Not active at the moment.}
 
\leftvitem{3.5cm}{lowfirst\index{off!lowfirst}}
\rightvitem{13cm}{Leaves the default low first mode and puts the sorting in 
a high first mode.}
 
\leftvitem{3.5cm}{names\index{off!names}}
\rightvitem{13cm}{Turns the names mode off. This is the default.}

\leftvitem{3.5cm}{nospacesinnumbers\index{off!nospacesinnumbers}}
\rightvitem{13cm}{\label{staoffnospacesinnumbers}\vspace{1ex}Allows very
long numbers to be printed with leading blank spaces at the beginning of a new
line. The numbers are usually broken up by placing a backslash character at
the end of the line and then continuing at the next line. For cosmetic
purposes \FORM\ puts usually a few blank spaces at the beginning of the line.
\FORM\ itself can read this but some programs cannot. This option can be turned
off by the `on nospacesinnumbers;' statement. The printing of the blank
characters can be restored by turning this variable off. See also page 
\ref{nospacesinnumbers} for a corresponding variable in the setup file.}
 
\leftvitem{3.5cm}{oldfactarg\index{off!oldfactarg}}
\rightvitem{13cm}{\label{staoffoldfactarg}Switches the use of the FactArg 
statement~\ref{substafactarg}\index{factarg} to the new mode of version 4 or 
later in which expressions in the argument of the mentioned function are 
completely factored over the rationals. The default is off.}
 
\leftvitem{3.5cm}{parallel\index{off!parallel}}
\rightvitem{13cm}{Disallows the running of the program in parallel mode 
(only relevant for parallel versions of \FORM).}
 
\leftvitem{3.5cm}{powerfirst\index{off!powerfirst}}
\rightvitem{13cm}{Puts the sorting back into `highfirst' mode.}

\leftvitem{3.5cm}{processstats\index{off!processstats}}
\rightvitem{13cm}{Turns the process by process printing of the statistics 
in \ParFORM{} off. Only the master process will be printing statistics. 
Other versions of \FORM{} will ignore this option.}

\leftvitem{3.5cm}{propercount\index{off!propercount}}
\rightvitem{13cm}{Turns the propercounting mode off. This means that for the 
generated terms in the statistics not only the `ground level' terms are 
counted but also terms that were generated inside function arguments.}
 
\leftvitem{3.5cm}{properorder\index{off!properorder}}
\rightvitem{13cm}{Turns the properorder mode off. This is the default.}
 
\leftvitem{3.5cm}{setup\index{off!setup}}
\rightvitem{13cm}{Switches off the mode in which the setup parameters are 
printed. This is the default.}

\leftvitem{3.5cm}{stats\index{off!stats}}
\rightvitem{13cm}{Same as `Off statistics'.}

\leftvitem{3.5cm}{statistics\index{off!statistics}}
\rightvitem{13cm}{Turns off the printing of statistics.}

\leftvitem{3.5cm}{shortstats\index{off!shortstats}}
\rightvitem{13cm}{Same as `Off shortstatistics'.}

\leftvitem{3.5cm}{shortstatistics\index{off!shortstatistics}}
\rightvitem{13cm}{Takes the writing of the statistics back from shorthand 
mode to the regular statistics mode in which each statistics messages takes 
three lines of text and one blank line.}
 
\leftvitem{3.5cm}{threadloadbalancing\index{off!threadloadbalancing}}
\rightvitem{13cm}{\vspace{1.5ex}Disables the loadbalancing mechanism of 
\TFORM\ in parallel mode. In other versions of \FORM\ this option is 
ignored.}
 
\leftvitem{3.5cm}{threads\index{off!threads}}
\rightvitem{13cm}{Disallows multithreaded running in \TFORM.
In other versions of \FORM\ this option is ignored.}

\leftvitem{3.5cm}{threadstats\index{off!threadstats}}
\rightvitem{13cm}{Turns off the thread by thread printing of the statistics 
in \TFORM. Only the master thread will be printing statistics. Other 
versions of \FORM\ will ignore this option.}
 
\leftvitem{3.5cm}{totalsize\index{off!totalsize}}
\rightvitem{13cm}{Switches the totalsize mode off. For a more detailed 
description of the totalsize mode, see the "On TotalSize;" 
command~\ref{ontotalsize}.}

\leftvitem{3.5cm}{warnings\index{off!warnings}}
\rightvitem{13cm}{Turns off the printing of warnings.}

\leftvitem{3.5cm}{wtimestats\index{off!wtimestats}}
\rightvitem{13cm}{Disables the wall-clock time in the timing information in the 
statistics on the master.}

\noindent If a description is too short, one should also consult the 
description in the on statement (see \ref{substaon}). \vspace{10mm}

%--#] off : 
%--#[ on :
 
\section{on}
\label{substaon}

\noindent \begin{tabular}{ll}
Type & Declaration statement\\
Syntax & on {\tt<}keyword{\tt>}; \\
       & on {\tt<}keyword{\tt>} {\tt<}option{\tt>};
\\ See also & off (\ref{substaoff})
\end{tabular} \vspace{4mm}

\noindent New statement to control settings during execution. Many of these 
settings replace older statements. The settings and their keywords are:
 
\leftvitem{3.5cm}{allnames\index{on!allnames}}
\rightvitem{13cm}{Same as `On names' but additionally all system variables 
are printed as well. Default is off. }
 
\leftvitem{3.5cm}{allwarnings\index{on!allwarnings}}
\rightvitem{13cm}{Puts the printing of warnings in a mode in which all 
warnings, even the very unimportant warnings are printed.}

\leftvitem{3.5cm}{checkpoint\index{on!checkpoint}}
\rightvitem{13cm}{Activates the checkpoint mechanism that allows for
the recovery of a crashed \FORM\ session. See \ref{checkpoints} for
detailed information.}

\leftvitem{3.5cm}{compress\index{on!compress}}
\rightvitem{13cm}{Turns compression mode on. This compression is a 
relatively simple compression that hardly costs extra computer time but 
saves roughly a factor two in disk storage. The old statement was `compress 
on' but this should be avoided in the future. This setting is the default.}

\leftvitem{3.5cm}{compress,gzip\index{gzip}}
\rightvitem{13cm}{This option should be followed by a comma or a space and 
a single digit. It activates the gzip compression for the sort file. This 
compression can make the intermediate sort file considerably shorter at the 
cost of some CPU time. This option can be used when disk space is at a 
premium. The digit indicates the compression level. Zero means no 
compression and 9 is the highest level. The default level is 6. Above that 
the compression becomes very slow and doesn't gain very much extra.}

\leftvitem{3.5cm}{fewerstatistics\index{on!fewerstatistics}}
\rightvitem{13cm}{Determines how many of the statistics \FORM\ prints when a 
small buffer is full. The keyword can be followed by a positive integer in 
which case one out of that many of these statistics will be printed. If no 
number is given the default value of 10 is used. When the number that 
follows is zero, this feature is turned off (same effect as the value one).}

\leftvitem{3.5cm}{fewerstats\index{on!fewerstats}}
\rightvitem{13cm}{Same as the above fewerstatistics.}

\leftvitem{3.5cm}{finalstats\index{on!finalstats}}
\rightvitem{13cm}{Determines whether \FORM\ prints a final line of run time 
statistics at the end of the run. Default is on.}
 
\leftvitem{3.5cm}{highfirst\index{on!highfirst}}
\rightvitem{13cm}{In this mode polynomials are sorted in a way that high 
powers come before low powers.}

%\leftvitem{3.5cm}{indentspace\index{on!indentspace}}
%\rightvitem{13cm}{Not active at the moment.}

\leftvitem{3.5cm}{insidefirst\index{on!insidefirst}}
\rightvitem{13cm}{Not active at the moment.}
 
\leftvitem{3.5cm}{lowfirst\index{on!lowfirst}}
\rightvitem{13cm}{In this mode polynomials are sorted in a way that low 
powers come before high powers. This is the default.}
 
\leftvitem{3.5cm}{names\index{on!names}}
\rightvitem{13cm}{Turns on the mode in which at the end of each module the 
names of all variables that have been defined by the user are printed. This 
is an inspection mode for debugging by the user. Default is off.}

\leftvitem{3.5cm}{nospacesinnumbers\index{on!nospacesinnumbers}}
\rightvitem{13cm}{\label{staonnospacesinnumbers}\vspace{1ex}Makes that very
long numbers are printed with no leading blank spaces at the beginning of a
new line. The numbers are usually broken up by placing a backspace character
at the end of the line and then continuing at the next line. For cosmetic
purposes \FORM\ puts usually a few blank spaces at the beginning of the line.
\FORM\ itself can read this but some programs cannot. Hence this printing of the
blank characters can be omitted by turning this variable on. See also page
\ref{nospacesinnumbers} for a corresponding variable in the setup file.}
 
\leftvitem{3.5cm}{oldfactarg\index{on!oldfactarg}}
\rightvitem{13cm}{\label{staonoldfactarg}Switches the use of the FactArg 
statement~\ref{substafactarg}\index{factarg} to the old mode from before 
version 4. This is a compatibility mode to allow oldprograms that rely on a 
specific working of the FactArg statement to still run. The default is 
off.}
 
\leftvitem{3.5cm}{parallel\index{on!parallel}}
\rightvitem{13cm}{Allows the running of the program in parallel mode unless 
other problems prevent this. This is of course only relevant for parallel 
versions of \FORM. The default is on.}
 
\leftvitem{3.5cm}{powerfirst\index{on!powerfirst}}
\rightvitem{13cm}{In this mode polynomials are sorted in a way that high 
powers come before low powers. The most relevant is however the combined 
power of all symbols.}

\leftvitem{3.5cm}{processstats\index{on!processstats}}
\rightvitem{13cm}{Only active for \ParFORM{}. It determines whether all
processes print their run time statistics or only the master process does so.
Default is on.}

\leftvitem{3.5cm}{propercount\index{on!propercount}}
\rightvitem{13cm}{Sets the counting of the terms during generation into 
`propercount' mode. This means that only terms at the `ground level' are 
counted and terms inside functions arguments are not counted in the 
statistics. This setting is the default.}
 
\leftvitem{3.5cm}{properorder\index{on!properorder}}
\rightvitem{13cm}{Turns the properorder mode on. The default is off. In the 
properorder mode \FORM\ pays particular attention to function arguments when 
bringing terms and expressions to normal form. This may cost a considerable 
amount of extra time. In normal mode \FORM\ is a bit sloppy (and much 
faster) about this, resulting sometimes in an ordering that appears without 
logic. This concerns only function arguments! This mode is mainly intended 
for the few moments in which the proper ordering is important.}
 
\leftvitem{3.5cm}{setup\index{on!setup}}
\rightvitem{13cm}{Causes the printing of the current setup parameters for 
inspection. Default is off.}

\leftvitem{3.5cm}{shortstatistics\index{on!shortstatistics}}
\rightvitem{13cm}{Puts the writing of the statistics in a shorthand mode in 
which the complete statistics are written on a single line only.}
 
\leftvitem{3.5cm}{shortstats\index{on!shortstats}}
\rightvitem{13cm}{Same as `On shortstatistics'.}

\leftvitem{3.5cm}{statistics\index{on!statistics}}
\rightvitem{13cm}{Turns the writing of runtime statistics on. This is the 
default. It is possible to change this default with one of the setup 
parameters in the setup file (see \ref{setup}).}
 
\leftvitem{3.5cm}{stats\index{on!stats}}
\rightvitem{13cm}{Same as `On statistics'.}
 
\leftvitem{3.5cm}{threadloadbalancing\index{on!threadloadbalancing}}
\rightvitem{13cm}{\vspace{1.5ex}Causes the load balancing mechanism in \TFORM
to be turned on or off. Default is on. Ignored by other versions of \FORM.}
 
\leftvitem{3.5cm}{threads\index{on!threads}}
\rightvitem{13cm}{Allows the running of the program in multithreaded mode 
unless other problems prevent this. This is of course only relevant for 
\TFORM. Other versions of \FORM\ ignore this. The default is on.}
 
\leftvitem{3.5cm}{threadstats\index{on!threadstats}}
\rightvitem{13cm}{Only active for \TFORM. It determines whether all threads 
print their run time statistics or only the master thread does so. Default 
is on.}
 
\leftvitem{3.5cm}{totalsize\index{on!totalsize}}
\rightvitem{13cm}{\label{ontotalsize} Puts \FORM\ in a 
mode\index{totalsize} in which it tries to determine 
the maximum space occupied by all expressions at any given moment during 
the execution of the program. This space is the sum of the 
input/output/hide scratch files, the sort file(s) and the .str file. This 
maximum is printed at the end of the program. The same can be obtained with 
the "TotalSize ON" command in the setup (see \ref{setup}) or the -T option 
in the command tail when \FORM\ is started (see \ref{running}).}
 
\leftvitem{3.5cm}{warnings\index{on!warnings}}
\rightvitem{13cm}{Turns on the printing of warnings in regular mode. This 
is the default.}

\leftvitem{3.5cm}{wtimestats\index{on!wtimestats}}
\rightvitem{13cm}{Prints the wall-clock time in the timing information in the 
statistics. The wall-clock time is indicated by `\texttt{WTime}' instead of 
`\texttt{Time}' in the normal statistics with `\texttt{shortstatistics}' turned 
off. For parallel versions, it affects the statistics only on the master, and 
does not change those on the workers. The same can be obtained with the 
\texttt{-W} option in the command line options of \FORM{} (see \ref{running}) 
or `\texttt{WTimeStats ON}' in the setup (see \ref{setup}). Default is off.}

\vspace{10mm}

%--#] on : 
%--#[ once :
 
\section{once}
\label{substaonce}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & once {\tt<}pattern{\tt>} = {\tt<}expression{\tt>};
\\ See also & identify (\ref{substaidentify})
\end{tabular} \vspace{4mm}

\noindent This statement\index{once} is identical to the once option of the 
id\index{id} statement (see \ref{substaidentify}). Hence
\begin{verbatim}
   once ....
\end{verbatim}
is just a shorthand notation for
\begin{verbatim}
   id once ....
\end{verbatim}
\vspace{10mm}

%--#] once : 
%--#[ only :
 
\section{only}
\label{substaonly}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & only {\tt<}pattern{\tt>} = {\tt<}expression{\tt>};
\\ See also & identify (\ref{substaidentify})
\end{tabular} \vspace{4mm}

\noindent This statement\index{only} is identical to the only option of the 
id\index{id} statement (see \ref{substaidentify}). Hence
\begin{verbatim}
   only ....
\end{verbatim}
is just a shorthand notation for
\begin{verbatim}
   id only ....
\end{verbatim}
\vspace{10mm}

%--#] only : 
%--#[ polyfun :

\section{polyfun}
\label{substapolyfun}

\noindent \begin{tabular}{ll}
Type & Declaration statement\\
Syntax & polyfun {\tt<}name of function{\tt>}; \\
       & polyfun;
\\ See also & moduleoption (\ref{substamoduleoption})
\end{tabular}\vspace{4mm}

\noindent Declares the specified\index{polyfun} function to be the 
`polyfun'. The polyfun is a function of which the single 
argument\index{argument} is considered to be the 
coefficient\index{coefficient} of the term. If two terms are otherwise 
identical the arguments of their polyfun will be added during the sorting, 
even if these arguments are little expressions. Hence
% THIS EXAMPLE IS PART OF THE TESTSUITE. CHANGES HERE SHOULD BE APPLIED THERE AS
% WELL!
\begin{verbatim}
    PolyFun acc;
    Local F = 3*x^2*acc(1+y+y^2)+2*x^2*acc(1-y+y^2);
\end{verbatim}
will result in
\begin{verbatim}
    F = x^2*acc(5+y+5*y^2);
\end{verbatim}
Note that the external numerical coefficient\index{coefficient} is also 
pulled inside the polyfun.

\noindent If the polyfun statement has no argument, \FORM\ reverts to its 
default mode in which no polyfun exists. This does not change any terms. If 
one would like to remove the polyfun from the terms one has to do that 
`manually' as in
\begin{verbatim}
    PolyFun;
    id  acc(x?) = x;
\end{verbatim}
in which we assume that previously the function acc had been declared to be 
the `polyfun'. \vspace{10mm}

%--#] polyfun : 
%--#[ polyratfun :

\section{polyratfun}
\label{substapolyratfun}

\noindent \begin{tabular}{ll}
Type & Declaration statement\\
Syntax & polyratfun {\tt<}name of function{\tt>}; \\
       & polyratfun {\tt<}name of function{\tt>},{\tt<}name of function{\tt>}; \\
       & polyratfun;
\\ See also & polyfun (\ref{substapolyfun}),
			  moduleoption (\ref{substamoduleoption})
\end{tabular}\vspace{4mm}

\noindent Declares the specified\index{polyratfun} function to be the 
`polyratfun'. The polyratfun is a function with two 
arguments\index{argument} which together form a rational polynomial that 
acts as the 
coefficient\index{coefficient} of the term. If two terms are otherwise 
identical the arguments of their polyratfun will be added during the sorting, 
even if these arguments are little nontrivial. Hence
\begin{verbatim}
    PolyRatFun acc;
    Local F = 3*x^2*acc(1+y+y^2,1-y)+2*x^2*acc(1-y+y^2,1+y);
\end{verbatim}
will result in
\begin{verbatim}
    F = x^2*acc(-y^3-10*y^2-2*y-5,y^2-1);
\end{verbatim}
Note that the external numerical coefficient\index{coefficient} is also 
pulled inside the polyratfun.

\noindent If the polyratfun statement has no argument, \FORM\ reverts to its 
default mode in which no polyratfun exists. This does not change any terms.

\noindent The polyratfun has many similarities with the polyfun (see 
\ref{substapolyfun}). At any moment there can only be at most either one 
polyfun or one polyratfun. Occurrences of the polyfun or the polyratfun 
with the wrong number or the wrong type of arguments are treated as regular 
functions.

\noindent There is a fundamental difference between the polyfun and the 
polyratfun. The last one is far more restrictive. It can have only numbers 
and symbols for its arguments. Also the ordering of the terms in the 
arguments can be different. In the polyratfun the terms are always sorted 
with the highest power first. In the polyfun the ordering is as with the 
regular terms. By default the lowest powers come first as one usually likes 
for power series expansions.

\noindent When two functions are specified, the first will be the 
PolyRatFun, and the second will be its inverse as in
\begin{verbatim}
    PolyRatFun rat,RAT;
\end{verbatim}
in which case
\begin{verbatim}
        RAT(x1,x2) = rat(x2,x1)
\end{verbatim}
This can be handy when one needs to solve systems of equations by manual 
interference. In that case exchanging numerators and denominators can be 
rather messy, while just changing a name is far less error-prone.

\noindent In many cases it may be very wasteful to keep full track of the 
complete rational polynomial. An example is the reduction of a complicated 
4-loop massless propagator diagram for which the rational polynomials can 
easily have hundreds of powers of the dimension parameter $D=4-2\epsilon$. 
In the end one has to expand in terms of $\epsilon$ although it is not 
known in advance to how many powers. For this there are two extra options 
in the polyratfun statement. The first is
\begin{verbatim}
    PolyRatFun rat(divergence,x);
\end{verbatim}
in which x is the name of the symbol of interest. In this case the 
polyratfun keeps only its most divergent term in this variable x and gives 
it the coefficient one. The result is that terms will never cancel and at 
the end of the calcuation one can see how many poles in x were maximally 
present, and hence how far one has to expand in x. Because the contents of 
the polyratfun are extremely simple, the expensive rational arithmetic is 
completely absent and things should go rather fast.

\noindent In the second option one can specify how far one should expand:
\begin{verbatim}
    PolyRatFun rat(expand,x,power);
\end{verbatim}
In this case the denomnator can only be a polynomial in the variable x. It 
will be expanded and multiplied by the numerator and eventually all terms 
with powers of x that are greater than 'power' will be discarded. The 
remaining incidence of the function rat will then have only one argument, 
like the polyfun (see \ref{substapolyfun}). The advantage is that now the 
addition of two coefficients is a simple and straightforward operation that 
does not need the expensive polynomial GCD computations.

\noindent Of course one can program such expansions externally and maybe 
better suited for the problem at hand, but using this option of the 
polyratfun is much faster and gives fewer chances of mistakes.

\vspace{10mm}

%--#] polyratfun : 
%--#[ pophide :

\section{pophide}
\label{substapophide}

\noindent \begin{tabular}{ll}
Type & Specification statement\\
Syntax & pophide;
\\ See also & hide (\ref{substahide}),
              nhide (\ref{substanhide}),
              unhide (\ref{substaunhide}),
              nunhide (\ref{substanunhide}),
              pushhide (\ref{substapushhide})
\end{tabular} \vspace{4mm}

\noindent Undoes\index{pophide} the action of the most recent 
pushhide\index{pushhide} statement (see \ref{substapushhide}). If there is 
no matching pushhide statement an error will result. \vspace{10mm}

%--#] pophide : 
%--#[ print :
 
\section{print}
\label{substaprint}

\noindent \begin{tabular}{ll}
Type & Print statement\\
Syntax & Print [{\tt<}options{\tt>}]; \\
       & Print \verb:{:[{\tt<}options{\tt>}] {\tt<}expression{\tt>}\verb:}:; \\
       & Print [{\tt<}options{\tt>}] "{\tt<}format string{\tt>}" [{\tt<}objects{\tt>}];
\\ See also & print[\,] (\ref{substaprintc}),
              nprint (\ref{substanprint}),
              printtable (\ref{substaprinttable})
\end{tabular}\vspace{4mm}

\noindent General purpose print\index{print} statement. It has three modes. In 
the first two modes flags are set for the printing of expressions after the 
current module has been finished. The third mode concerns printing during 
execution. This allows the printing of individual terms or 
\$-variables\index{\$-variable} on a term by term basis. It should be 
considered as a useful debugging\index{debugging} device.

\noindent In the first mode all active\index{active} expressions are 
scheduled for printing. The options are

\leftvitem{1cm}{+f}
\rightvitem{15cm}{Printing will be only to the log\index{log} 
file\index{file!log}.}

\leftvitem{1cm}{-f}
\rightvitem{15cm}{Printing will be both to the screen\index{screen} and to 
the log\index{log} file\index{file!log}. This is the default.}

\leftvitem{1cm}{+s}
\rightvitem{15cm}{Each term will start a new line. This is called the 
single\index{single term mode} term mode\index{mode!single term}.}

\leftvitem{1cm}{+ss}
\rightvitem{15cm}{Each term will start a new line. In addition each 
internal group will start a new line. A group is either a single function 
or all symbols together, or all dotproducts together, or all vectors 
together, or all Kronecker delta's together.}

\leftvitem{1cm}{+sss}
\rightvitem{15cm}{Like the +ss option but now each symbol and its power 
will start a new line. The same for individual dotproducts (and their 
power), vectors and Kronecker delta's.}

\leftvitem{1cm}{-s}
\rightvitem{15cm}{Regular term mode. There can be more terms in a line. 
Linebreaks\index{linebreaks} are placed when the line is full. The line 
size is set in the format\index{format} statement (see \ref{substaformat}). 
This is the default.}

\leftvitem{1cm}{-ss}
\rightvitem{15cm}{Lowers the single term mode to -s. If one would like to 
switch off the single term mode altogether, -s suffices.}

\leftvitem{1cm}{-sss}
\rightvitem{15cm}{Lowers the single term mode to -ss. If one would like to 
switch off the single term mode altogether, -s suffices.}

\noindent In the second mode one can specify
individual\index{individual expressions} expressions to be printed. The 
options hold for all the expressions that follow them until new options are 
specified. The options are the same as for the first mode.

\noindent In the third mode there is a format\index{format string} string 
as for the printf\index{printf} command in the C\index{C} programming 
language. Of course the control characters are not exactly the same as for 
the C language because the objects are different. The special characters 
are:

\leftvitem{1cm}{\%t\index{print!\%t}}
\rightvitem{15cm}{The current term will be printed at this position 
including its sign, even if this is a plus sign.}

\leftvitem{1cm}{\%T\index{print!\%T}}
\rightvitem{15cm}{The current term will be printed at this position. If its 
coeficient is positive no leading plus sign is printed.}

\leftvitem{1cm}{\%w\index{print!\%w}}
\rightvitem{15cm}{The number of the current thread will be printed. This is 
for \TFORM\ only. In the sequential version this combination is skipped. The 
number zero refers to the master thread.}
 
\leftvitem{1cm}{\%W\index{print!\%W}}
\rightvitem{15cm}{The number of the current thread and its CPU-time at the 
moment of printing. This is for \TFORM\ only. In the sequential version 
this combination is skipped. The number zero refers to the master thread.}

\leftvitem{1cm}{\%\$\index{print!\%\$}}
\rightvitem{15cm}{A dollar expression will be printed at this position. The 
name(s) of the dollar expression(s) should follow the format string in the 
order in which they are used in the format string.}

\leftvitem{1cm}{\%\%\index{print!\%\%}}
\rightvitem{15cm}{The character \%.}

\leftvitem{1cm}{\%}
\rightvitem{15cm}{If this is the last character of the string no linefeed 
will be printed at the end of the print command.}

\leftvitem{1cm}{$\backslash$n}
\rightvitem{15cm}{A linefeed\index{linefeed}.}

\noindent Each call is terminated with a linefeed\index{linefeed}. Example:
% THIS EXAMPLE IS PART OF THE TESTSUITE. CHANGES HERE SHOULD BE APPLIED THERE AS
% WELL!
\begin{verbatim}
    Symbols a,b,c;
    Local F = 3*a+2*b;
    Print "> %T";
    id  a = b+c;
    Print ">> %t";
    Print;
    .end
> 3*a
>>  + 3*b
>>  + 3*c
> 2*b
>>  + 2*b

   F =
      5*b + 3*c;
\end{verbatim}

\noindent In the third mode one can also use the +/--\,f options of the 
first mode. This should be placed before the format string as in
\begin{verbatim}
    Print +f "(%$) %t",$var;
\end{verbatim}

\noindent Because of the mixed nature of this statement it can occur in 
more than one location in the module. \vspace{10mm}

%--#] print : 
%--#[ print[] :

\section{\texorpdfstring{print[\,]}{print[ ]}}
\label{substaprintc}

\noindent \begin{tabular}{ll}
Type & Output control statement\\
Syntax & print[\,] \verb:{:[{\tt<}options{\tt>}] {\tt<}name{\tt>}\verb:}:;
\\ See also & print (\ref{substaprint})
\end{tabular}\vspace{4mm}

\noindent Print\index{print} statement\index{print[]} to cause the printing 
of expressions at the end of the current module. Is like the first two 
modes of the regular print statement (see \ref{substaprint}), but when 
printing \FORM\ does not print the contents of each bracket\index{bracket}, 
only the number of terms inside the bracket. Is to be used in combination 
with a bracket or an antibracket\index{antibracket} statement (see 
\ref{substabracket} and \ref{substaabrackets}). Apart from this the options 
are identical to those of the first two modes of the print statement. 
\vspace{10mm}

%--#] print[] : 
%--#[ printtable :

\section{printtable}
\label{substaprinttable}

\noindent \begin{tabular}{ll}
Type & Print statement\\
Syntax & printtable [{\tt<}options{\tt>}] {\tt<}tablename{\tt>};  \\
       & printtable [{\tt<}options{\tt>}] {\tt<}tablename{\tt>} $>$ {\tt<}filename{\tt>}; \\
       & printtable [{\tt<}options{\tt>}] {\tt<}tablename{\tt>} $>\!\!>$ {\tt<}filename{\tt>};
\\ See also & print (\ref{substaprint}),
            table (\ref{substatable}),
            fill (\ref{substafill}),
            fillexpression (\ref{substafillexpression}), \\ &
            and the table\_ function (\ref{funtable})
\end{tabular}\vspace{4mm}

\noindent Almost\index{printtable} the opposite of a 
FillExpression\index{fillexpression} statement (see 
\ref{substafillexpression}). Prints\index{print} the contents of a 
table\index{table} according to the current format (see 
\ref{substaformat}). The output can go to standard output, the 
log\index{log} file\index{file!log} or a specified file. The elements of 
the table that have been defined and filled are written in the form of 
fill\index{fill} statements (see \ref{substafill}) in such a way that they 
can be read in a future program to fill the table with the current 
contents. This is especially useful when the fillexpression statement has 
been used to dynamically extend tables based on what \FORM\ has encountered 
during running. This way those elements will not have to be computed again 
in future programs. 

\noindent The options are

\leftvitem{1.3cm}{+f}
\rightvitem{14.7cm}{Output is to the logfile and not to the screen.}

\leftvitem{1.3cm}{-f}
\rightvitem{14.7cm}{Output is both to the logfile and to the screen. This is 
the default.}

\leftvitem{1.3cm}{+s}
\rightvitem{14.7cm}{Output will be in a mode in which each new term starts a 
new line.}

\leftvitem{1.3cm}{-s}
\rightvitem{14.7cm}{Output will be in the regular mode in which new terms 
continue to be written on the same line within the limits of the number of 
characters per line as set in the format statement. Default is 72 
characters per line. This can be changed with the format\index{format} 
statement (see \ref{substaformat}).}

\noindent If redirection to a file is specified output will be only to this 
file. The +f option will be ignored. There are two possibilities:

\leftvitem{2.8cm}{$>$ filename}
\rightvitem{13.2cm}{The old contents of the file with name `filename' will be 
overwritten\index{overwrite}.}

\leftvitem{2.8cm}{$>\!\!>$ filename}
\rightvitem{13.2cm}{The table will be appended\index{append} to the file 
with the name `filename'. This allows the writing of more than one table to 
a file.}
\vspace{10mm}

%--#] printtable : 
%--#[ processbucketsize :

\section{processbucketsize}
\label{substaprocessbucketsize}

\noindent \begin{tabular}{ll}
Type & Declaration statement\\
Syntax & processbucketsize {\tt<}value{\tt>};
\\ See also & moduleoption (\ref{substamoduleoption}), setup 
(\ref{setupprocessbucketsize})
\end{tabular}\vspace{4mm}

\noindent Sets the number of terms\index{processbucketsize} in the buckets that are sent 
to the secondary processors in \ParFORM\index{ParFORM}, one of the 
parallel\index{parallel} versions of \FORM\ (see chapter \ref{parallel}). In 
all other versions this statement is ignored. See also the moduleoption 
(\ref{substamoduleoption}) statement and the corresponding parameter for 
the setup (\ref{setupprocessbucketsize}). \vspace{10mm}

%--#] processbucketsize : 
%--#[ propercount :

\section{propercount}
\label{substapropercount}

\noindent \begin{tabular}{ll}
Type & Declaration statement\\
Syntax & propercount {\tt<}on/off{\tt>};
\\ See also & on (\ref{substaon}), off (\ref{substaoff})
\end{tabular} \vspace{4mm}

\noindent This statement\index{propercount} is obsolete\index{obsolete}. 
The user should try to use the propercount option of the on\index{on} (see 
\ref{substaon}) or the off\index{off} (see \ref{substaoff}) statements. 
\vspace{10mm}

%--#] propercount : 
%--#[ pushhide :

\section{pushhide}
\label{substapushhide}

\noindent \begin{tabular}{ll}
Type & Specification statement\\
Syntax & pushhide;
\\ See also & hide (\ref{substahide}),
              nhide (\ref{substanhide}),
              unhide (\ref{substaunhide}),
              nunhide (\ref{substanunhide}),
              pophide (\ref{substapophide})
\end{tabular} \vspace{4mm}

\noindent Hides\index{hide} all currently\index{pushhide} active 
expressions (see \ref{substahide}). The pophide\index{pophide} statement 
(see \ref{substapophide}) can bring them back to active status again. 
\vspace{10mm}

%--#] pushhide : 
%--#[ putinside :

\section{putinside}
\label{substaputinside}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & putinside {\tt<}name of function{\tt>} [,$<$bracket information$>$];
\\ See also & AntiPutInside (\ref{substaantiputinside})
\end{tabular}\vspace{4mm}

\noindent This statement\index{putinside} puts the complete term inside a 
function argument. The function must be a regular function (hence no tensor 
or table which are special types of functions). If there is 
bracket\index{bracket} information, this information should adhere to the 
syntax of the bracket statement (\ref{substaantiputinside}) and only 
occurrences of the bracket variables will be put inside the function. The 
coefficient will also be put inside the function.
\vspace{10mm}

%--#] putinside : 
%--#[ ratio :
 
\section{ratio}
\label{substaratio}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & ratio {\tt<}symbol1{\tt>} {\tt<}symbol2{\tt>} {\tt<}symbol3{\tt>};
\end{tabular} \vspace{4mm}

\noindent This statement\index{ratio} can be used for limited but fast 
partial\index{partial fractioning} fractioning. In the statement
\begin{verbatim}
   ratio a,b,c;
\end{verbatim}
in which \verb:a:, \verb:b: and \verb:c: should be three symbols {\FORM} 
will assume that $c = b-a$ and then make the substitutions
\begin{eqnarray}
    \frac{1}{a^m}\frac{1}{b^n} & = & \sum_{i=0}^{m-1}\sign(i)
        \binom(n-1+i,n-1)\frac{1}{a^{m-i}}\frac{1}{c^{n+i}}
        +\sum_{i=0}^{n-1}\sign(m)
        \binom(m-1+i,m-1)\frac{1}{b^{n-i}}\frac{1}{c^{m+i}}
        \nonumber \\
    \frac{b^n}{a^m} & = & \sum_{i=0}^n\binom(n,i)\frac{c^i}{a^{m-n+i}}
            \ \ \ \ \ \ \ \hfill m\ge n \nonumber \\
    \frac{b^n}{a^m} & = & \sum_{i=0}^{m-1}\binom(n,i)\frac{c^{n-i}}{a^{m-i}}
        + \sum_{i=0}^{n-m}\binom(m-1+i,m-1)
            c^ib^{n-m-i}
            \ \ \ \ \ \ \ \hfill m<n \nonumber
\end{eqnarray}
\setcounter{equation}{3}
Of course, such substitutions can be made also by the user in a more 
flexible way. This statement has however the advantage of the best speed.
\vspace{4mm}

\noindent Actually the ratio statement is a leftover from the 
Schoonschip\index{Schoonschip} 
inheritance. For most simple partial fractioning one could use
\begin{verbatim}
   repeat id 1/[x+a]/[x+b] = (1/[x+a]-1/[x+b])/[b-a];
   repeat id [x+a]/[x+b] = 1-[b-a]/[x+b];
   repeat id [x+b]/[x+a] = 1+[b-a]/[x+a];
\end{verbatim}
or similar constructions. This does not give the speed of the 
binomials\index{binomials}, but it does make the program more readable and 
it is much more flexible.
\vspace{10mm}

%--#] ratio : 
%--#[ rcyclesymmetrize :
 
\section{rcyclesymmetrize}
\label{substarcyclesymmetrize}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & rc[yclesymmetrize] \verb:{:{\tt<}name of function/tensor{\tt>}
         [{\tt<}argument specifications{\tt>}];\verb:}: \\
See also & symmetrize (\ref{substasymmetrize}), cyclesymmetrize 
(\ref{substacyclesymmetrize}), antisymmetrize (\ref{substaantisymmetrize})
\end{tabular} \vspace{4mm}

\noindent The argument\index{rcyclesymmetrize} specifications are explained 
in the section on the symmetrize\index{symmetrize} statement (see 
\ref{substasymmetrize}). \medskip

\noindent The action of this statement is to
reverse\index{reverse cycle symmetrize}-cycle-symmetrize
\index{symmetrize!reverse cycle} the (specified) arguments of the functions 
that are mentioned. This means that the arguments are brought to `natural 
order' in the notation of \FORM\ by trying cyclic and reverse cyclic 
permutations\index{permutations} of the arguments or groups of arguments. 
The `natural order' may depend on the order of declaration of the 
variables. \vspace{10mm}

%--#] rcyclesymmetrize : 
%--#[ redefine :

\section{redefine}
\label{substaredefine}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & r[edefine] {\tt<}preprocessor variable{\tt>} "{\tt<}string{\tt>}";
\\ See also & preprocessor variables in the chapter on the preprocessor 
    (\ref{preprocessor})
\end{tabular} \vspace{4mm}

\noindent This statement\index{redefine} can be used to change the contents 
of preprocessor\index{preprocessor variables} 
variables\index{variables!preprocessor}. The new contents can be used after 
the current module has finished execution and the preprocessor becomes 
active again for further translation and compilation\index{compilation}. 
This termwise adaptation of the value of a preprocessor variable can be 
very useful in setting up multi module loops until a certain condition is 
not met any longer. Example:
\begin{verbatim}
   #do i = 1,1
      statements;
      if ( condition ) redefine i "0";
      .sort
   #enddo
\end{verbatim}
As long as there is a term that fulfils the condition the loop\index{loop} 
will continue. This defines effectively a while loop\index{loop!while} (see 
\ref{substawhile}) over various modules. Note that the .sort\index{.sort} 
instruction is essential. Note also that a construction like
\begin{verbatim}
   if ( count(x,1) > 3 ) redefine i "`i'+1";
\end{verbatim}
is probably not going to do what the user intends. It is not going to count 
terms with more than three powers of x. The preprocessor will insert the 
compile time value of the preprocessor variable i. If this is 0, then each 
time a term has more than three powers of x, i will get the string value 
\verb:0+1:. If one would like to do such counting, one should use a 
dollar variable\index{\$-variable} (see \ref{dollars}). \vspace{10mm}

%--#] redefine : 
%--#[ removespectator :

\section{removespectator}
\label{substaremovespectator}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & removespectator {\tt<}spectator;{\tt>};
\end{tabular} \vspace{4mm}

\noindent See chapter\ref{spectators} on spectators.
\vspace{10mm}

%--#] removespectator : 
%--#[ renumber :

\section{renumber}
\label{substarenumber}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & renumber {\tt<}number{\tt>};
\\ See also & sum (\ref{substasum})
\end{tabular}\vspace{4mm}

\noindent Renumbers\index{renumber} the dummy\index{dummy} 
indices\index{indices!dummy}. Dummy indices are indices of the type 
\verb:N1_?:. Normally \FORM\ tries to renumber these indices to make the 
internal representation of a term `minimal'. It does not try exhaustively 
though. Especially interference with symmetric or antisymmetric functions 
is far from perfect. This is due to considerations of economy. With the 
renumber statement the user can force \FORM\ to do better. The allowable 
options are:

\leftvitem{1cm}{0}
\rightvitem{15cm}{All exchanges of one pair of dummy indices are tried 
until all pair exchanges yield no improvements. This is the default if no 
option is specified.}

\leftvitem{1cm}{1}
\rightvitem{15cm}{If there are N sets of dummy indices all N! 
permutations\index{permutations} are tried. This can be very costly when a 
large number of indices is involved. Use with care!}\vspace{10mm}

%--#] renumber : 
%--#[ repeat :

\section{repeat}
\label{substarepeat}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & repeat; \\
       & repeat {\tt<}executable statement{\tt>}
\\ See also & endrepeat (\ref{substaendrepeat}), while (\ref{substawhile})
\end{tabular} \vspace{4mm}

\noindent The repeat\index{repeat} statement starts a
repeat\index{repeat environment} environment. It is terminated with an 
endrepeat\index{endrepeat} statement (see \ref{substaendrepeat}). The 
repeat statement and its matching endrepeat statement should be inside the 
same module. \vspace{4mm}

\noindent The statements inside the repeat environment should all be 
executable statements (or print statements) and if any of the executable 
statements inside the environment has changed the current term, the action 
of the endrepeat statement will be to bring control back to the beginning 
of the environment. In that sense the repeat/endrepeat combination acts as
\begin{verbatim}
   do
      executable statements
   while any action due to any of the statements
\end{verbatim}
The second form of the statement is a shorthand\index{shorthand} notation:
\begin{verbatim}
   repeat;
      single statement;
   endrepeat;
\end{verbatim}
is equivalent to
\begin{verbatim}
   repeat single statement;
\end{verbatim}
Particular attention should be given to avoid infinite\index{infinite loop} 
loops\index{loop!infinite} as in
\begin{verbatim}
   repeat id a = a+1;
\end{verbatim}
A more complicated infinite loop is
\begin{verbatim}
   repeat;
      id  S(x1?)*R(x2?) = T(x1,x2,x2-x1);
      id  T(x1?,x2?,x3?pos_) = T(x1,x2-2,x3-1)*X(x2);
      id  T(x1?,x2?,x3?) = S(x1)*R(x2);
   endrepeat;
\end{verbatim}
If the current term is S(2)*R(2), the statements in the loop do not change 
it in the end. Yet the program goes into an infinite loop, because the 
first id statement will change the term (action) and the third statement 
will change it back. {\FORM} does not check that the term is the same 
again. Hence there is action inside the repeat environment and hence the 
statements will be executed again. This kind of hidden action is a major 
source of premature\index{premature} 
terminations\index{termination!premature} of {\FORM} programs. \vspace{4mm}

\noindent Repeat environments can be nested\index{nested} with all other 
environments (and of course also with other repeat/endrepeat combinations). 
\vspace{10mm}

%--#] repeat : 
%--#[ replaceloop :

\section{replaceloop}
\label{substareplaceloop}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & replaceloop {\tt<}parameters{\tt>};
\\ See also & the findloop option of the if statement (\ref{substaif})
\end{tabular}\vspace{4mm}

\noindent This statement\index{replaceloop} causes the substitution of 
index\index{index loop} loops\index{loop!index}. An index loop is a 
sequence of contracted indices in which the indices are arguments of 
various instances of the same function and each contracted\index{contracted 
indices} index\index{index!contracted} occurs once in one instance of the 
function and once in another instance of the function. Such a contraction 
defines a connection and if a number of such connections between 
occurrences of the function form a loop this structure is a candidate for 
replacement. Examples of such loops are:
\begin{verbatim}
    f(i1,i2,j1)*f(i2,i1,j2)
    f(i1,i2,j1)*f(i2,i3,j2)*f(i1,i3,j3)
    f(i1,k1,i2,j1)*f(k2,i2,i3,j2)*f(i1,k3,i3,j3)
\end{verbatim}
The first term has a loop of two functions or vertices\index{vertices} and 
the other two terms each define a loop of three vertices. The parameters 
are:

\leftvitem{4cm}{$<$name$>$}
\rightvitem{12cm}{The name of the function that defines the `vertices'. 
This must always be the first parameter.}

\leftvitem{4cm}{arguments=number}
\rightvitem{12cm}{Only occurrences of the vertex function with the 
specified number of arguments will be considered. The specification of this 
parameter is mandatory.}

\leftvitem{4cm}{loopsize=number}
\rightvitem{12cm}{Only a loop with this number of vertices will be 
considered.}

\leftvitem{4cm}{loopsize=all}
\rightvitem{12cm}{All loop\index{loopsize} sizes will be considered and the 
smallest loop is substituted.}

\leftvitem{4cm}{loopsize$<$number}
\rightvitem{12cm}{Only loops with fewer vertices than `number' will be 
considered and the smallest looop will be substituted.}

\leftvitem{4cm}{outfun=$<$name$>$}
\rightvitem{12cm}{Name of an output function in which the remaining 
arguments of all the vertex functions will be given. This parameter is 
mandatory.}

\leftvitem{4cm}{include-$<$name$>$}
\rightvitem{12cm}{Name of a summable index that must be one of the links in 
the loop. This parameter is optional.}

\noindent The loopsize\index{loopsize} parameter is mandatory. Hence one of 
its options must be specified. The order of the parameters is not 
important. The only important thing is that the name of the vertex function 
must be first. The names of the keywords may be abbreviated as in
\begin{verbatim}
    ReplaceLoop f,a=3,l=all,o=ff,i=i2;
\end{verbatim}
although this does not improve the readability of the program. Hence a more 
readable abbreviated version might be
\begin{verbatim}
    ReplaceLoop f,arg=3,loop=all,out=ff,inc=i2;
\end{verbatim}

\noindent The action of the statement is to remove the vertex functions 
that constitute the loop and replace them by the output function. This 
outfun will have the arguments of all the vertex functions minus the 
contracted indices that define the loop. The order of the arguments is the 
order in which they are encountered when following the loop. The order of 
the arguments in the outfun depends however on the order in which \FORM\ 
encounters the vertices. Hence the outfun will often be 
cyclesymmetric\index{symmetric!cycle}\index{cyclesymmetric} (see 
\ref{substafunctions} and \ref{substacyclesymmetrize}). If \FORM\ has to 
exchange indices to make a `proper loop' (i.e. giving relevance to the 
first index as if it is something incoming and the second index as if it is 
something outgoing) and if the vertex function is 
antisymmetric\index{antisymmetric}\index{symmetric!anti}, each exchange will 
result in a minus sign. Examples:
% THIS EXAMPLE IS PART OF THE TESTSUITE. CHANGES HERE SHOULD BE APPLIED THERE AS
% WELL!
\begin{verbatim}
    Functions f(antisymmetric),ff(cyclesymmetric);
    Indices i1,...,i8;
    Local F = f(i1,i4,i2)*f(i5,i2,i3)*f(i3,i1,i6)*f(i4,i7,i8);
    ReplaceLoop f,arg=3,loop=3,out=ff;
\end{verbatim}
would result in
\begin{verbatim}
    -f(i4,i7,i8)*ff(i4,i5,i6)
\end{verbatim}
and
\begin{verbatim}
    Functions f(antisymmetric),ff(cyclesymmetric);
    Indices i1,...,i9;
    Local F = f(i1,i4,i2)*f(i5,i2,i3)*f(i3,i1,i6)*f(i4,i7,i8)
            *f(i6,i7,i8);
    ReplaceLoop f,arg=3,loop=all,out=ff;
\end{verbatim}
would give
\begin{verbatim}
    -f(i1,i4,i2)*f(i5,i2,i3)*f(i3,i1,i6)*ff(i4,i6)
\end{verbatim}
because the smallest loop will be taken. A number of examples can be found 
in the package\index{package!color} `color'\index{color package} for group 
theory\index{group theory} invariants that is part of the \FORM\ 
distribution. 

\noindent A related object is the findloop\index{findloop} option of the 
if\index{if} statement (see \ref{substaif}). This option just probes 
whether a loop is present but makes no replacements.\vspace{10mm}

%--#] replaceloop : 
%--#[ save :

\section{save}
\label{substasave}

\noindent \begin{tabular}{ll}
Type & Declaration statement\\
Syntax & sa[ve] {\tt<}filename{\tt>} [{\tt<}names of global expressions{\tt>}];
\\ See also & load (\ref{substaload})
\end{tabular}\vspace{4mm}

\noindent Saves\index{save} the contents of the store\index{store file} 
file\index{file!store} (all global expressions that were stored in 
.store\index{.store} 
instructions) to a file with the indicated name. If a list of expressions 
is provided only those expressions are saved and the others are ignored. 

\noindent Together with the load\index{load} statement (see 
\ref{substaload}) the save statement provides a mechanism to transfer data 
in internal notation from one program to another. It is the preferred method 
to keep results of a lengthy job for further analysis without the need for 
the long initial running time.

\noindent In order to avoid confusion .sav\label{ex:sav}\index{.sav} is the 
preferred extension\index{extension!.sav} of saved files.\vspace{10mm}

%--#] save : 
%--#[ select :

\section{select}
\label{substaselect}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & select {\tt<}list of sets{\tt>} {\tt<}pattern{\tt>} = {\tt<}expression{\tt>};
\\ See also & identify (\ref{substaidentify})
\end{tabular} \vspace{4mm}

\noindent This statement\index{select} is identical to the select option of 
the id\index{id} statement (see \ref{substaidentify}). Hence
\begin{verbatim}
   select ....
\end{verbatim}
is just a shorthand notation for
\begin{verbatim}
   id select ....
\end{verbatim}
\vspace{10mm}

%--#] select : 
%--#[ set :

\section{set}
\label{substaset}

\noindent \begin{tabular}{ll}
Type & Declaration statement\\
Syntax & set {\tt<}set to be declared{\tt>}[(option)]:{\tt<}element{\tt>} [{\tt<}more elements{\tt>}];
\end{tabular} \vspace{4mm}

\noindent Declares a single set\index{set} and specifies its 
elements\index{elements}. Sets have a type of variables connected to them. 
There can be sets of symbols, sets of functions, sets of vectors, sets of 
indices and sets of numbers. For the purpose of sets tensors\index{tensor} 
and tables\index{table} count as functions.

\noindent There can also be mixed sets\index{set!mixed} of indices and 
numbers. When a number could be either a fixed index or just a number \FORM\ 
will keep the type of the set unfixed. This can change either when the next 
element is a symbolic index or a number that cannot be a fixed index (like 
a negative number). If the status does not get resolved the set can be used 
in the wildcarding of both symbols and indices. Normally sets of numbers 
can be used only in the wildcarding of symbols.

Currently the only option is the ordered 
set\index{set!ordered}\index{ordered set}, indicated by
\begin{verbatim}
    Set name(ordered):x4,x3,x1,x6,x2;
\end{verbatim}
which would be stored as x1,x2,x3,x4,x6 if that would be the order of 
declaration.

\vspace{10mm}

%--#] set : 
%--#[ setexitflag :

\section{setexitflag}
\label{substasetexitflag}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & setexitflag;
\\ See also & exit (\ref{substaexit})
\end{tabular} \vspace{4mm}

\noindent Causes\index{setexitflag} termination\index{termination} of the 
program after execution\index{execution} of the current module has 
finished. \vspace{10mm}

%--#] setexitflag : 
%--#[ shuffle :
%
\section{shuffle}
\label{substashuffle}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & shuffle,functionname; \\
       & shuffle,once,functionname;
\\ See also & stuffle (\ref{substastuffle}) \\
            & merge (\ref{substamerge})
\end{tabular} \vspace{4mm}

\noindent This statement is exactly the same as the merge\index{merge} 
statement. It takes two occurrences of the mentioned function and outputs 
terms, each with one function in which the two argument lists have been 
merged in all different ways, keeping the relative ordering of the two 
lists preserved. It is the opposite of the 
distrib\_\index{distrib\_}\index{function!distrib\_} function (see 
\ref{fundistrib}). Hence
% THIS EXAMPLE IS PART OF THE TESTSUITE. CHANGES HERE SHOULD BE APPLIED THERE AS
% WELL!
\begin{verbatim}
   Local F = f(a,b)*f(c,d);
   shuffle,f;
\end{verbatim}
will result in
\begin{verbatim}
      +f(a,b,c,d)+f(a,c,b,d)+f(a,c,d,b)+f(c,a,b,d)+f(c,a,d,b)+f(c,d,a,b)
\end{verbatim}
One can also obtain the same result with the statements
\begin{verbatim}
   Multiply,ff;
   repeat id f(x1?,?a)*f(x2?,?b)*ff(?c) =
            +f(?a)*f(x2,?b)*ff(?c,x1)
            +f(x1,?a)*f(?b)*ff(?c,x2);
   id f(?a)*f(?b)*ff(?c) = f(?c,?a,?b);
\end{verbatim}
but the advantage of the shuffle statement is that is also does a certain 
amount of combinatorics when there are identical arguments. Unfortunately 
the combinatorics doesn't extend over groups of arguments that are 
identical as in
\begin{verbatim}
    CF  f;
    L   F = f(0,1,0,1,0,1)*f(0,1,0,1,0,1);
    Shuffle,f;
    .end

Time =       0.00 sec    Generated terms =        141
               F         Terms in output =         32
                         Bytes used      =        892
\end{verbatim}
It does get the combinatorics between two zeroes or two ones, but it cannot 
handle the groups. The explicit method above however doesn't do any 
combinatorics and generates 924 terms.

One of the applications of this statement is in the field of harmonic 
sums\index{harmonic sum}, 
harmonic polylogarithms\index{harmonic polylogarithm} and multiple zeta 
values\index{multiple zeta value}\index{MZV}. Its twin brother is the 
stuffle statement\index{stuffle} (see \ref{substastuffle}).

When the option once is mentioned, only one pair will be contracted this 
way. Without this option all occurrences of the function inside a term will 
be treated till there are only terms with a single occurrence of the 
function.
\vspace{10mm}
%
%--#] shuffle : 
%--#[ skip :

\section{skip}
\label{substaskip}

\noindent \begin{tabular}{ll}
Type & Specification statement\\
Syntax & skip; \\
       & skip {\tt<}list of expressions{\tt>};
\\ See also & nskip (\ref{substanskip})
\end{tabular} \vspace{4mm}

\noindent In the first\index{skip} variety this statement marks all 
active\index{active} expressions that are in existence at the moment this 
statement is compiled, to be skipped. In the second variety this is done 
only to the active expressions that are specified. If an expression is 
skipped in a given module, the statements in the module have no effect on 
it. Also it will not be sorted\index{sort} again at the end of the module. 
This means that any bracket\index{bracket} information (see 
\ref{substabracket}) in the expression remains the way it was. Consult also 
the nskip\index{nskip} statement in \ref{substanskip}. \vspace{4mm}

\noindent Skipped expressions can be used in the expressions in the r.h.s.\ 
of id\index{id} statements (see \ref{substaidentify}) or 
multiply\index{multiply} statements (see \ref{substamultiply}), etc. 
\vspace{10mm}

%--#] skip : 
%--#[ sort :

\section{sort}
\label{substasort}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & sort;
\\ See also & term (\ref{substaterm}), endterm (\ref{substaendterm})
\end{tabular} \vspace{4mm}

\noindent Statement\index{sort} to be used inside the term\index{term} 
environment\index{environment!term} (see \ref{substaterm} and 
\ref{substaendterm}). It forces a sort in the same way as a 
.sort\index{.sort} instruction forces a sort for entire expressions. 
\vspace{10mm}

%--#] sort : 
%--#[ splitarg :

\section{splitarg}
\label{substasplitarg}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & splitarg options \verb:{:{\tt<}name of function/set{\tt>}
             [{\tt<}argument specifications{\tt>}]\verb:}:;
\\ See also & splitfirstarg (\ref{substasplitfirstarg}),
             splitlastarg (\ref{substasplitlastarg}),
             factarg (\ref{substafactarg})
\end{tabular}\vspace{4mm}

\noindent Takes\index{splitarg} the indicated argument\index{argument} of a 
function and if such an argument is a subexpression that consists on more 
than one term, all terms become single arguments of the function as in
\begin{verbatim}
   f(a+b-5*c*d) --> f(a,b,-5*c*d)
\end{verbatim}
The way arguments are indicated is rather similar to the way this is done 
in the argument\index{argument statement} statement (see 
\ref{substaargument}). One can however indicate only a single group of 
functions in one statement. Additionally there are other options. All 
options are in the order that they should be specified:

\leftvitem{5cm}{(term)}
\rightvitem{11cm}{Only terms that are a numerical multiple of the given 
term are split off. The terms that are split off will trail the remainder.}

\leftvitem{5cm}{((term))}
\rightvitem{11cm}{Only terms that contain the given term will be split off. 
The terms that are split off will trail the remainder.}

\noindent The statement is terminated with a sequence of functions or 
sets\index{set} of functions. The splitting action will apply only to the 
specified functions or to members of the set(s). If no functions or sets of 
functions are specified all functions will be treated, including the built 
in functions.
 
\noindent The argument specifications consist of a list of numbers, 
indicating the arguments that should be treated. If no arguments are 
specified, all arguments will be treated. \vspace{10mm}

%--#] splitarg : 
%--#[ splitfirstarg :

\section{splitfirstarg}
\label{substasplitfirstarg}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & splitfirstarg \verb:{:{\tt<}name of function/set{\tt>}
         [{\tt<}argument specifications{\tt>}]\verb:}:;
\\ See also & splitarg (\ref{substasplitarg}),
             splitlastarg (\ref{substasplitlastarg})
\end{tabular}\vspace{4mm}

\noindent A little\index{splitfirstarg} bit like the 
SplitArg\index{splitarg} statement (see \ref{substasplitarg}). Splits the 
given argument(s) into its first term and a remainder. Then replaces the 
argument by the remainder\index{remainder}, followed by the first term.

\noindent The statement is terminated with a sequence of functions or sets 
of functions. The splitting action will apply only to the specified 
functions or to members of the set(s). If no functions or sets\index{set} 
of functions are specified all functions will be treated, including the 
built in functions.
 
\noindent The argument specifications consist of a list of numbers, 
indicating the arguments that should be treated. If no arguments are 
specified all arguments will be treated. \vspace{10mm}

%--#] splitfirstarg : 
%--#[ splitlastarg :

\section{splitlastarg}
\label{substasplitlastarg}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & splitlastarg \verb:{:{\tt<}name of function/set{\tt>}
         [{\tt<}argument specifications{\tt>}]\verb:}:;
\\ See also & splitarg (\ref{substasplitarg}),
             splitfirstarg (\ref{substasplitfirstarg})
\end{tabular}\vspace{4mm}

\noindent A little\index{splitlastarg} bit like the 
SplitArg\index{splitarg} statement (see \ref{substasplitarg}). Splits the 
given argument(s) into its last term and a remainder. Then replaces the 
argument by the remainder, followed by the last term.

\noindent The statement is terminated with a sequence of functions or sets 
of functions. The splitting action will apply only to the specified 
functions or to members of the set(s). If no functions or sets\index{set} 
of functions are specified all functions will be treated, including the 
built in functions.
 
\noindent The argument specifications consist of a list of numbers, 
indicating the arguments that should be treated. If no arguments are 
specified all arguments will be treated. \vspace{10mm}

%--#] splitlastarg : 
%--#[ stuffle :
%
\section{stuffle}
\label{substastuffle}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & stuffle,functionname+; \\
       & stuffle,functionname-; \\
       & stuffle,once,functionname+; \\
       & stuffle,once,functionname-; \\
\\ See also & shuffle (\ref{substashuffle})
\end{tabular} \vspace{4mm}

\noindent This statement 
takes two occurrences of the mentioned function and outputs 
terms, each with one function in which the two argument lists have been 
merged according to the rules for nested sums. The plus and minus signs 
refer to ones favorite definition for nested sums. In the case of the plus 
sign, the definition is
\begin{eqnarray}
    \sum_{i=1}^N \sum_{i=1}^N & = & \sum_{i=1}^N \sum_{j=1}^{i-1}
        + \sum_{j=1}^N \sum_{i=1}^{j-1}
        + \sum_{i=j=1}^N
\end{eqnarray}
\setcounter{equation}{4}
while in the case of the minus the definition is
\begin{eqnarray}
    \sum_{i=1}^N \sum_{i=1}^N & = & \sum_{i=1}^N \sum_{j=1}^{i}
        + \sum_{j=1}^N \sum_{i=1}^{j}
        - \sum_{i=j=1}^N
\end{eqnarray}
\setcounter{equation}{5}
It is assumed that we have harmonic sums\index{harmonic sum} (see the 
summer library in the \FORM\ distribution). For such sums we expect 
functions with lists of nonzero integer arguments. Example:
% THIS EXAMPLE IS PART OF THE TESTSUITE. CHANGES HERE SHOULD BE APPLIED THERE AS
% WELL!
\begin{verbatim}
    CF  S,R;
    Symbols N,n;
    L   F = S(R(1,-3),N)*S(R(-5,1),N);
    id  S(R(?a),n?)*S(R(?b),n?) = S(?a)*S(?b)*R(n);
    Stuffle,S-;
    id  S(?a)*R(n?) = S(R(?a),n);
    Print +s;
    .end

Time =       0.00 sec    Generated terms =         12
               F         Terms in output =         12
                         Bytes used      =        462

   F =
       + S(R(-6,-4),N)
       - S(R(-6,-3,1),N)
       - S(R(-6,1,-3),N)
       - S(R(-5,1,-4),N)
       + S(R(-5,1,-3,1),N)
       + 2*S(R(-5,1,1,-3),N)
       - S(R(-5,2,-3),N)
       - S(R(1,-5,-4),N)
       + S(R(1,-5,-3,1),N)
       + S(R(1,-5,1,-3),N)
       + S(R(1,-3,-5,1),N)
       - S(R(1,8,1),N)
      ;
\end{verbatim}
The above program is equivalent to the basis procedure in the summer 
library. As with the shuffle\index{shuffle} statement (see 
\ref{substashuffle}) a certain amount of combinatorics has been built in.

When the option once is mentioned, only one pair will be contracted this 
way. Without this option all occurrences of the function inside a term will 
be treated till there are only terms with a single occurrence of the 
function.

The stuffle command takes also the effect of roots of 
unity~\ref{rootofunity}\index{root of unity} into account in the same way 
that the signs of alternating sums are taken into account. This means that 
the sum indices don't have to be integers, but could be multiples of a 
single symbol that has been declared to be a root of 
unity~\ref{substasymbols}.
\vspace{10mm}
%
%--#] stuffle : 
%--#[ sum :

\section{sum}
\label{substasum}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & sum {\tt<}list of indices{\tt>};
\\ See also & renumber (\ref{substarenumber})
\end{tabular}\vspace{4mm}

\noindent The given indices will be summed\index{sum} over. There are two 
varieties. In the first the index is followed by a sequence of nonnegative 
short integers. In that case the summation means that for each of the 
integers a new instance of the term is created in which the index is 
replaced by that integer. In the second variety the index is either the 
last object in the statement or followed by another index. In that case the 
index is replaced by an internal dummy\index{dummy} 
index\index{index!dummy} of the type \verb:N1_?: (or with another number 
instead of the 1). Such indices have the current
default\index{default dimension} dimension\index{dimension!default} and can 
be renamed at will by \FORM\ to bring terms into standard notation. For 
example:
\begin{verbatim}
   f(N2_?,N1_?)*g(N2_?,N1_?)
\end{verbatim}
will be changed into
\begin{verbatim}
   f(N1_?,N2_?)*g(N1_?,N2_?).
\end{verbatim}
The user can use these dummy indices in the left hand side of 
id\index{id} statements.
\vspace{10mm}

%--#] sum : 
%--#[ switch :
%
\section{switch}
\label{substaswitch}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & switch,\$-variable; \\
\\ See also & case (\ref{substacase}), break (\ref{substabreak}),
		 default(\ref{substadefault}), endswitch (\ref{substaendswitch}).
\end{tabular} \vspace{4mm}

\noindent The argument of the switch statement should be a dollar variable 
which evaluates into an integer that first inside a {\FORM} word.
On a 64-bit processor this would be an integer in the range $-2^{31}$ to 
$2^{31}-1$. The switch statement should be paired with an endswitch 
statement. Between the two there will be a number of cases, each marked by 
an integer. If the value of the dollar variable corresponds to the value of 
one of these cases, execution will continue with the first statement after 
the corresponding case statement. Example:
\begin{verbatim}
    id  f(x?$x) = f(x);
    switch $x;
      case -1;
        some statements
      break;
      case 3;
        more statements
      break;
      case 4;
      case 5;
        and a few more
      break;
      default;
        and the default action
      break;
    endswitch;
\end{verbatim}
In principle the action is the same as in any computer language that has a 
switch construction, including the fall-through between case 4 and case 5. 
Whether the selection of the cases goes by binary search in a sorted list 
or by jumptable is determined by the endswitch statement.


\vspace{10mm}
%
%--#] switch : 
%--#[ symbols :
 
\section{symbols}
\label{substasymbols}

\noindent \begin{tabular}{ll}
Type & Declaration statement\\
Syntax & s[ymbols] {\tt<}list of symbols to be declared{\tt>};
\end{tabular}\vspace{4mm}

\noindent Declares one or more symbols\index{symbol}. Each symbol can be 
followed by a number of options. These are (assuming that x is the symbol 
to be declared):

\leftvitem{2.4cm}{x\hash{}r}
\rightvitem{13.8cm}{The symbol is real\index{real}. This is the default.}

\leftvitem{2.4cm}{x\hash{}c}
\rightvitem{13.8cm}{The symbol is complex\index{complex}. This means that two 
spaces are reserved for this symbol, one for x and one for x\hash (the 
complex conjugate).}

\leftvitem{2.4cm}{x\hash{}i}
\rightvitem{13.8cm}{The symbol is imaginary\index{imaginary}.}

\leftvitem{2.4cm}{x\hash{}=number}
\rightvitem{13.8cm}{The symbol is a number-th root of
unity\index{root of unity}\label{rootofunity} This means that the number-th 
power of the symbol will be replaced by one and half this power (if even) 
by -1. Negative powers will be replaced by corresponding positive powers.}

\leftvitem{2.4cm}{x(:5)}
\rightvitem{13.8cm}{The symbol has the maximum power 5. This means that $x^6$ 
and higher powers are automatically eliminated during the 
normalization\index{normalization} of a term. Of course any other number, 
positive or negative, is allowed.}

\leftvitem{2.4cm}{x(-3:)}
\rightvitem{13.8cm}{The symbol has the minimum power -3. This means that 
$x^{-4}$ and lower powers are automatically eliminated during the 
normalization of a term. Of course any other number, positive or negative, 
is allowed. Note that when the minimum power is positive, terms that have 
no power of x should technically be eliminated, but \FORM\ will not do so. 
Such an action can be achieved at any moment with a combination of the 
count\index{if!count}\index{count} option of an if\index{if} statement (see 
\ref{substaif}) and a discard\index{discard} statement (see 
\ref{substadiscard}).}

\leftvitem{2.4cm}{x(-3:5)}
\rightvitem{13.8cm}{The combination of a maximum and a minimum power 
restriction (see above).}\vspace{4mm}

\noindent Complexity properties and power restrictions can be combined. In 
that case the complexity properties come first and then the power 
restrictions.\vspace{10mm}

%--#] symbols : 
%--#[ symmetrize :

\section{symmetrize}
\label{substasymmetrize}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & symm[etrize] \verb:{:{\tt<}name of function/tensor{\tt>}
         [{\tt<}argument specifications{\tt>}];\verb:}: \\
See also & antisymmetrize (\ref{substaantisymmetrize}), cyclesymmetrize 
(\ref{substacyclesymmetrize}), rcyclesymmetrize (\ref{substarcyclesymmetrize})
\end{tabular} \vspace{4mm}

\noindent The arguments\index{symmetrize} consist of the name of a function 
(or a tensor), possibly followed by some specifications. Hence we have the 
following varieties: \vspace{1mm}

\leftvitem{5cm}{{\tt<}name{\tt>}}
\rightvitem{11cm}{The function is symmetrized in all its arguments.}

\leftvitem{5cm}{{\tt<}name{\tt><}numbers{\tt>}}
\rightvitem{11cm}{The function is symmetrized in the arguments that are 
mentioned. If there are fewer arguments than the highest number mentioned 
in the list or arguments, no symmetrization will take place.}

\leftvitem{5cm}{{\tt<}name{\tt>:<}number{\tt>}}
\rightvitem{11cm}{Only functions with the specified number of arguments 
will be considered. Note: the number should follow the colon directly 
without intermediate space or comma.}

\leftvitem{5cm}{{\tt<}name{\tt>:<}number{\tt><}numbers{\tt>}}
\rightvitem{11cm}{If there is a number immediately following the colon, 
only functions with exactly that number of arguments will be considered. If 
the list of arguments contains numbers greater than this number, they will 
be ignored. If no number follows the colon directly, this indicates that 
symmetrization will take place, no matter the number of arguments of the 
function. If the list of arguments has numbers greater than the number of 
arguments of the function, these numbers will be ignored.}

\leftvitem{5cm}{{\tt<}name{\tt>}

{\tt<}(groups of numbers){\tt>}}
\rightvitem{11cm}{The groups are specified as lists of numbers of arguments 
between parenthesis. All groups must have the same number of arguments or 
there will be a compile error. The groups are symmetrized as groups. The 
arguments do not have to be adjacent. Neither do they have to be ordered. 
The symmetrization\index{symmetrization} takes place in a way that the first elements of the 
groups are most significant, etc. If any argument number is greater than 
the number of arguments of the function, no symmetrization will take place.}

\leftvitem{5cm}{{\tt<}name{\tt>:<}number{\tt>}

{\tt<}(groups of numbers){\tt>}}
\rightvitem{11cm}{The groups are specified as lists of numbers of arguments 
between parenthesis. All groups must have the same number of arguments or 
there will be a compile error. The groups are symmetrized as groups. The 
arguments do not have to be adjacent. Neither do they have to be ordered. 
The symmetrization takes place in a way that the first elements of the 
groups are most significant, etc. If no number follows the colon directly 
symmetrization takes place no matter the number of arguments of the 
function. Groups that contain a number that is greater than the number of 
arguments of the function will be ignored. If a number follows the colon 
directly, only functions with that number of arguments will be symmetrized. 
Again, groups that contain a number that is greater than the number of 
arguments of the function will be ignored.}
\vspace{3mm}

\noindent The action of this statement is to symmetrize the 
(specified) arguments of the functions that are mentioned. This means that 
the arguments are brought to `natural order' in the notation of \FORM\ by 
trying permutations\index{permutation} of the arguments or groups of 
arguments. The `natural order' may depend on the order of declaration of 
the variables. \vspace{4mm}

\noindent Examples:
\begin{verbatim}
   Symmetrize Fun;
   Symmetrize Fun 1,2,4;
   Symmetrize Fun:5;
   Symmetrize Fun: 1,2,4;
   Symmetrize Fun:5 1,2,4;
   Symmetrize Fun (1,6),(7,3),(5,2);
   Symmetrize Fun:8 (1,6),(7,3),(5,2);
   Symmetrize Fun: (1,6),(7,3),(5,2);
\end{verbatim}
 \vspace{10mm}

%--#] symmetrize : 
%--#[ table :

\section{table}
\label{substatable}

\noindent \begin{tabular}{ll}
Type & Declaration statement\\
Syntax & table {\tt<}options{\tt>} {\tt<}table to be 
declared{\tt>}; \\
See also & functions (\ref{substafunctions}), ctable (\ref{substactable}),
        ntable (\ref{substantable}), fill (\ref{substafill})
\end{tabular}\vspace{4mm}

\noindent The statement declares a single table\index{table}. A table is a 
very special instance of a function. Hence it can be either 
commuting\index{commuting} or noncommuting\index{noncommuting}. The table 
statement declares its function to be commuting. A noncommuting table is 
declared with the ntable\index{ntable} statement (see \ref{substantable}). 
A table has a number of table\index{table indices} indices (in the case of 
zero indices the table has to be sparse) and after that it can have a 
number of regular function arguments with or without wildcarding. The table 
indices can come in two varieties: matrix\index{matrix like} like or 
sparse\index{sparse}. In the case of a matrix like table\index{table!matrix 
like}, for each of the indices a range has to be specified. \FORM\ then 
reserves a location for each of the potential elements. For a sparse 
table\index{table!sparse} one only specifies the number of indices. Sparse 
tables take less space, but they require more time searching whether an 
element has been defined. For a matrix like table \FORM\ can look directly 
whether an element has been defined. Hence one has a tradeoff between space 
and speed. A zero-dimensional (sparse) table has of course only a single 
element.\vspace{4mm}

\noindent Table elements are defined with the fill\index{fill} statement (see 
\ref{substafill}). Fill statements for table elements cannot be used before 
the table has been declared with a table or ntable statement.\vspace{4mm}

\noindent When \FORM\ encounters an unsubstituted table it will look for its 
indices. Then it can check whether the table element has been defined. If 
not, it can either complain (when the `strict'\index{strict} option is 
used) or continue without substitution. Note that an unsubstituted table 
element is a rather expensive object as \FORM\ will frequently check whether 
it can be substituted (new elements can be defined in a variety of 
ways....). If the indices match a defined table element, \FORM\ will check 
whether the remaining arguments of the table will match the function-type 
arguments given in the table declaration in the same way regular function 
arguments are matched. Hence these arguments can contain 
wildcards\index{wildcards} and even argument\index{argument field} field 
wildcards. If a match occurs, the table is replaced immediately.

\noindent The options are

\lefttabitem{check\index{table!check}}
\tabitem{A check is executed on table boundaries. An element that is 
outside the table boundaries (regular matrix type tables only) will cause 
an error message and execution will be halted.}

\lefttabitem{relax\index{table!relax}}
\tabitem{Normally all elements of a table should be defined during 
execution and an undefined element will give an error message. The relax 
option switches this off and undefined elements will remain as if they are 
regular functions.}

\lefttabitem{sparse\index{table!sparse}}
\tabitem{The table is considered to be sparse. In the case of a sparse 
table only the number of indices should be specified. Ranges are not 
relevant. Each table element is stored separately. Searching for table 
elements is done via a balanced tree\index{tree!balanced}. This takes of 
course more time than the matrix type search with is just by indexing. A 
matrix like table\index{table!matrix like} is the default.}

\lefttabitem{strict\index{table!strict}}
\tabitem{If this option is specified all table elements that are 
encountered during execution should be defined. An undefined table element 
will result in an error and execution is halted. Additionally all table 
elements should be properly defined at the end of the module in which the 
table has been defined.}

\lefttabitem{zerofill\index{table!zerofill}}
\tabitem{Any undefined table element is considered to be 
zero.}

\lefttabitem{onefill\index{table!onefill}}
\tabitem{Any undefined table element is considered to be 
one.}\vspace{10mm}

\noindent The defaults are that the table is matrix like and table elements 
that cannot be substituted will result in an error.\vspace{4mm}

\noindent Ranges for indices in matrix like tables are indicated with a 
colon as in
\begin{verbatim}
   Symbol x;
   Table t1(1:3,-2:4);
   Table t2(0:3,0:3,x?);
   Table sparse,t3(4);
\end{verbatim}
The table \verb:t1: is two dimensional and has 21 elements. The table 
\verb:t2: is also two dimensional and has 16 elements. In addition there is 
an extra argument which can be anything that a wildcard symbol will match. 
The table \verb:t3: is a sparse table with 4 indices.\vspace{4mm}

\noindent If the computer on which \FORM\ runs is a 32\index{32 bits} bit 
computer no table can have more than $2^{15} = 32768$ elements. On a 
64\index{64 bits} bit computer the limit is $2^{31}$, but one should take 
into account that each element declared causes some overhead. \vspace{4mm}

\noindent If the wildcarding in the declaration of a table involves the 
definition of a dollar variable\index{\$-variable} (this is allowed! See 
\ref{dollars}) parallel execution of the entire remainder of the \FORM\ 
program is switched off. This is of course only relevant for parallel 
versions of \FORM. But if at all possible one should try to find better 
solutions than this use of dollar variables, allowing future parallel 
processing of the program.

\noindent In some cases tables are built up slowly during the execution of 
a program and used incrementally. This means that more and more CPU memory 
is needed. Eventually this can cause a crash by lack of memory. In the case 
that the earlier elements of the table aren't needed anymore, one could use 
the ClearTable~\ref{substacleartable} statement.
\vspace{10mm}

%--#] table : 
%--#[ tablebase :

\section{tablebase}
\label{substatablebase}

\noindent This statement is explained in the chapter on 
tablebases\index{tablebase} (\ref{tablebase}).
\vspace{10mm}

%--#] tablebase : 
%--#[ tensors :
 
\section{tensors}
\label{substatensors}

\noindent \begin{tabular}{ll}
Type & Declaration statement\\
Syntax & t[ensors] {\tt<}list of tensors to be declared{\tt>}; \\
See also & functions (\ref{substafunctions}), ctensors 
        (\ref{substactensors}), ntensors (\ref{substantensors})
\end{tabular}\vspace{4mm}

\noindent A tensor\index{tensor} is a special function that can have only 
indices for its arguments. If an index a contracted with the index of a 
vector Schoonschip\index{Schoonschip} notation is used. This means that the 
vector is written as a pseudo argument of the tensor. It should always be 
realized that in that case in principle the actual argument is a dummy 
index. Tensors come in two varieties: commuting\index{commuting} and 
noncommuting\index{noncommuting}. The tensor statement declares a tensor to 
be commuting. In order to declare a tensor to be noncommuting one should 
use the ntensor\index{ntensor} statement (see \ref{substantensors}).

\noindent The options that exist for properties of tensors are the same as 
those for functions (see \ref{substafunctions}). \vspace{10mm}

%--#] tensors : 
%--#[ term :

\section{term}
\label{substaterm}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & term;
\\ See also & endterm (\ref{substaendterm}), sort (\ref{substasort})
\end{tabular} \vspace{4mm}

\noindent Begins the term\index{term} environment\index{environment!term}. 
This environment is terminated with the endterm\index{endterm} statement 
(see \ref{substaendterm}). The action is that temporarily the current term 
is seen as a little expression by itself. The statements inside the 
environment are applied to it and one can even sort the results with the 
sort\index{sort} statement (see \ref{substasort}) which should not be 
confused with the .sort\index{.sort} instruction that terminates a module. 
Inside the term environment one can have only executable statements and 
possibly term-wise print statements (see \ref{substaprint}). When the end 
of the term environment is reached, the results are sorted (as would be 
done with an expression at the end of a module) and execution continues 
with the resulting terms. This environment can be nested\index{nested}. 
\vspace{10mm}

%--#] term : 
%--#[ testuse :

\section{testuse}
\label{substatestuse}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & testuse ["{\tt<}tablename(s){\tt>}"];
\\ See also & tablebases (\ref{tablebase}), testuse (\ref{tbltestuse})
\end{tabular} \vspace{4mm}

\noindent This statement\index{testuse} is explained in the chapter on 
tablebases\index{tablebase}.\vspace{10mm}

%--#] testuse : 
%--#[ threadbucketsize :
 
\section{threadbucketsize}
\label{substathreadbucketsize}

\noindent \begin{tabular}{ll}
Type & Declaration\\
Syntax & ThreadBucketSize,number;
\\ See also & the section on \TFORM (\ref{tform})
\end{tabular} \vspace{4mm}

\noindent This statement\index{threadbucketsize} is only active in 
\TFORM\index{TFORM}. In all other versions of \FORM\ it is ignored. It sets 
the size of the buckets\index{bucket} that the master\index{master} thread 
prepares for treatment by the workers. Bigger buckets means less overhead 
in signals, but when the buckets are too big the workers may have to wait 
too long before getting tasks. The best bucket size is usually between 100 
and 1000, although this depends very much on the problem. The default value 
is currently 500. For more ways to set this variable one should consult the 
section on \TFORM\ (\ref{tform}). To find out what its value is, use the
`ON,setup;' statement (\ref{substaon} and \ref{setup}). \vspace{10mm}

%--#] threadbucketsize : 
%--#[ topolynomial :

\section{topolynomial}
\label{substatopolynomial}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & topolynomial[,OnlyFunctions[,{\tt<}list of functions{\tt>}]];
\\ See also & factarg (\ref{substafactarg}), FromPolynomial 
(\ref{substafrompolynomial}), ArgToExtraSymbol (\ref{substaargtoextrasymbol}) 
\\& and ExtraSymbols (\ref{substaextrasymbols},
\ref{sect-extrasymbols}).
\end{tabular} \vspace{4mm}

\noindent Starting with version 4.0 of \FORM{} some built in operations or
statements can only deal with symbols and numbers. Examples of this are 
factorization~(\ref{substafactarg}) and output simplification (still to be 
implemented). The ToPolynomial statement takes each term, looks for objects 
that are not symbols to positive powers and replaces them by symbols. If 
the object has been encountered before, the same symbol will be used, 
otherwise a new symbol will be defined. The object represented by the 
`extra symbol' is stored internally and can be printed if needed with the 
\%X option in the \#write instruction (\ref{prewrite}). Note that negative 
powers of symbols will also be replaced.

In some cases one would like to do this only for a subset of objects. It is 
possible to do this only for functions, using the OnlyFunctions option. If 
no functions are specified, all functions will be replaced by extra 
symbols. If a list of functions is specified, only those functions will be 
replaced.
\vspace{10mm}

%--#] topolynomial : 
%--#[ tospectator :

\section{tospectator}
\label{substatospectator}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & tospectator {\tt<}spectator;{\tt>};
\end{tabular} \vspace{4mm}

\noindent See chapter\ref{spectators} on spectators.
\vspace{10mm}

%--#] tospectator : 
%--#[ totensor :

\section{totensor}
\label{substatotensor}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & totensor [nosquare] [functions] [!{\tt<}vector or set{\tt>}] {\tt<}vector{\tt>} {\tt<}tensor{\tt>}; \\
       & totensor [nosquare] [functions] [!{\tt<}vector or set{\tt>}] {\tt<}tensor{\tt>} {\tt<}vector{\tt>};
\\ See also & tovector (\ref{substatovector})
\end{tabular} \vspace{4mm}

\noindent Looks for multiple\index{totensor} occurrences of the given 
vector, either inside dotproducts, contracted with a tensor, as argument of 
a function or as a loose vector with an index. In all occurrences in 
which the vector has been contracted a dummy index is introduced to make 
the contraction apparent. Then all these vectors with their indices are 
replaced by the specified tensor with all the indices of these vectors. To 
make this clearer:
\begin{eqnarray}
    p^{\mu_1}p^{\mu_2}p^{\mu_3} \rightarrow t^{\mu_1\mu_2\mu_3} \nonumber
\end{eqnarray}
\setcounter{equation}{6}
and hence
\begin{verbatim}
   p.p1^2*f(p,p1)*p(mu)*tt(p1,p,p2,p)
\end{verbatim}
gives after \verb:totensor p,t;:
\begin{verbatim}
   f(N1_?,p1)*tt(p1,N2_?,p2,N3_?)*t(p1,p1,mu,N1_?,N2_?,N3_?)
\end{verbatim}\vspace{4mm}

\noindent The options are

\leftvitem{3.5cm}{nosquare\index{totensor!nosquare}}
\rightvitem{13cm}{Dotproducts with twice the specified vector (square of 
the vector) are not taken into account.}

\leftvitem{3.5cm}{functions\index{totensor!functions}}
\rightvitem{13cm}{Vectors that are arguments of regular functions will also 
be considered. By default this is not done.}

\leftvitem{3.5cm}{!vector\index{totensor!"!vector}}
\rightvitem{13cm}{Dotproducts involving the specified vector are not 
treated.}

\leftvitem{3.5cm}{!set\index{totensor!"!set}}
\rightvitem{13cm}{The set should be a set of vectors. All dotproducts 
involving a vector of the set are not treated.}\vspace{10mm}

%--#] totensor : 
%--#[ tovector :

\section{tovector}
\label{substatovector}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & tovector {\tt<}tensor{\tt>} {\tt<}vector{\tt>}; \\
       & tovector {\tt<}vector{\tt>} {\tt<}tensor{\tt>};
\\ See also & totensor (\ref{substatotensor})
\end{tabular} \vspace{4mm}

\noindent The opposite\index{tovector} of the totensor\index{totensor} 
statement. The tensor is replaced by a product of the given vectors, each 
with one of the indices of the tensor as in:
\begin{eqnarray}
    t^{\mu_1\mu_2\mu_3} \rightarrow p^{\mu_1}p^{\mu_2}p^{\mu_3} \nonumber
\end{eqnarray}\vspace{10mm}
\setcounter{equation}{7}

%--#] tovector : 
%--#[ trace4 :

\section{trace4}
\label{substatrace}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & trace4 [{\tt<}options{\tt>}] {\tt<}index{\tt>}; \\
See also & tracen (\ref{substatracen}), chisholm (\ref{substachisholm}),
    unittrace (\ref{substaunittrace}) \\ &
    and the chapter on gamma algebra (\ref{gammaalgebra})
\end{tabular} \vspace{4mm}

\noindent Takes the trace\index{trace4} of the gamma\index{gamma matrices} 
matrices with the given trace\index{trace line} line 
index\index{index!trace line}. It assumes that the matrices are 
defined in four dimensions, hence it uses some relations that are only 
valid in four dimensions. For details about these relations and other 
methods used, consult chapter~\ref{gammaalgebra} on gamma matrices. The 
options are: \vspace{4mm}

\lefttabitem{contract\index{trace4!contract}}
\tabitem{Try to use the Chisholm\index{Chisholm} identity to eliminate this 
trace and contract it with other gamma matrices. See also 
\ref{substachisholm}. This is the default.}

\lefttabitem{nocontract\index{trace4!nocontract}}
\tabitem{Do not use the Chisholm\index{Chisholm} identity to eliminate this 
trace and contract it with other gamma matrices. See also 
\ref{substachisholm}.}

\lefttabitem{nosymmetrize\index{trace4!nosymmetrize}}
\tabitem{When using the Chisholm\index{Chisholm} identity to eliminate this 
trace and contract it with other gamma matrices, do not do it in the 
symmetric fashion, but use the first contraction encountered. See also 
\ref{substachisholm}.}

\lefttabitem{notrick\index{trace4!notrick}}
\tabitem{The final stage of trace taking, when all indices are different 
and there are no contractions with identical vectors, as well as no 
$\gamma_5$ matrices present, is done with n-dimensional methods, rather 
than with 4-dimensional tricks.}

\lefttabitem{symmetrize}
\tabitem{When using the Chisholm identity to eliminate this trace and 
contract it with other gamma matrices, try to do it in the symmetric 
fashion. See also \ref{substachisholm}.}

\lefttabitem{trick}
\tabitem{The final stage of trace taking, when all indices are different 
and there are no contractions with identical vectors is done using the 
4-dimensional relation

$\gamma^a\gamma^b\gamma^c = \epsilon^{abcd}\gamma_5\gamma^d
    +\gamma^a\delta^{bc}-\gamma^b\delta^{ac}+\gamma^c\delta^{ab}$

This gives a shorter result for long traces. It is the default.
} \vspace{10mm}

%--#] trace4 : 
%--#[ tracen :

\section{tracen}
\label{substatracen}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & tracen {\tt<}index{\tt>}; \\
See also & trace4 (\ref{substatrace}), chisholm (\ref{substachisholm}),
    unittrace (\ref{substaunittrace}) \\ &
    and the chapter on gamma algebra (\ref{gammaalgebra})
\end{tabular} \vspace{4mm}

\noindent Takes\index{tracen} the trace of the gamma\index{gamma matrices} 
matrices with the spin\index{spin line} line indicated by the index. It is 
assumed that the trace is over a symbolic number of dimensions. Hence no 
special 4-dimensional tricks are used. The presence of $\gamma_5$, 
$\gamma_6$ or $\gamma_7$ is not tolerated. When indices are contracted 
{\FORM} will try to use the special symbol for the dimension$-4$ if it has 
been defined in the declaration of the index (see \ref{substaindex}. This 
results in relatively compact expressions. For more details on the 
algorithm used, see chapter~\ref{gammaalgebra} on gamma matrices. 
\vspace{10mm}

%--#] tracen : 
%--#[ transform :
 
\section{transform}
\label{substatransform}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & transform,function(s),{\tt<}one or more transformations{\tt>};
\end{tabular} \vspace{4mm}

\noindent Statement\index{Transform} to manipulation function arguments and 
fields of arguments. Allows speedy transformations without the need of 
multiple statements or repeat loops.

The function(s) is/are indicated as individual, comma or blank space 
separated, functions or sets of functions.

If there is more than one transformation, the transformations are separated 
by comma's (or blanks, unless the blank space would not induce a comma).

Each transformation consists of its keyword, indicating its type, followed 
by a range of arguments that is enclosed by parentheses. After that 
specific information may follow. The range\index{last}\index{range} is as 
in
\begin{verbatim}
	(1,4)
	(3,last)
	(last-6,last-2)
\end{verbatim}
hence two indicators, separated by a comma. If the first number is bigger 
than the second the arguments will be processed in reverse order whenever 
this is relevant. In the descriptions below we will indicate the range by 
(r1,r2). The numbers in the above examples may be also dollar variables, 
provided they evaluate into numbers at the time of execution. Hence
\begin{verbatim}
	($x,$y)
	($x,last)
	(last-$x,last-2)
\end{verbatim}
are potentially legal ranges. One may not use \verb:$x+2: or other 
expressions that still need evaluation.

The transformations that are allowed currently are:
 
\leftvitem{3.2cm}{replace\index{transform!replace}\index{replace}}
\rightvitem{13cm}{replace(r1,r2)=(from1,to1,from2,to2,...,fromn,ton) in 
which the from-to pairs are as in the replace\_ function. Here however 
there are more options than in the replace\_ function as we can specify 
(small) numbers as well as in \\
replace(1,last)=(0,1,1,0) which would replace arguments that are zero by 
one and arguments that are one by zero. Generic arguments are indicated by 
the new variables xarg\_, iarg\_, parg\_ and farg\_ as in \\
replace(1,last)=(xarg\_,2\*xarg\_+1,p) which would replace f(2,a) by f(5,
2\*a+1,p) if a is a symbol and p a vector. To catch p one would need to use 
parg\_.}

\leftvitem{3.2cm}{encode\index{transform!encode}\index{encode}}
\rightvitem{13cm}{encode(r1,r2):base=number will interprete the arguments as 
the digits in a base 2 number system, compute the complete number and 
replace the arguments by a single argument that is that number. The number 
must fit inside a single FORM word and so must each of the original 
arguments. They should actually be smaller than the number of the base.}

\leftvitem{3.2cm}{decode\index{transform!decode}\index{decode}}
\rightvitem{13cm}{decode(r1,r2):base=number will do the opposite of encode. 
It will take a single argument (the smallest of the two given) and expand 
it into digits in a number system given by the base. It will create the 
specified number of digits and replace the original number by the given 
number of arguments representing these digits. If r2 is less than r1 the 
digits will be in reverse order.}

\leftvitem{3.2cm}{tosumnotation\index{transform!tosumnotation}\index{tosumnotation}
\index{transform!implode}\index{implode}}
\rightvitem{13cm}{tosumnotation(r1,r2) or implode(r1,r2) realizes an 
encoding in which zeroes are absorbed as extra values in the first nonzero 
argument that is following. This is used when dealing with harmonic sums 
and harmonic polylogarithms. An example is that (0,0,1,0,a,0,0,0,-1) (which 
is in integral notation) goes into (3,2*a,-4) (which is in sum notation). 
Currently only a single symbol is allowed and the numbers should be (small) 
integers because otherwise the reverse operation (explode) would generate 
too many arguments. Instead of ``tosumnotation'' one may also use the word 
``implode'' in accordance with the argimplode statement.}

\leftvitem{3.2cm}{tointegralnotation\index{transform!tointegralnotation}
\index{tointegralnotation}\index{transform!explode}\index{explode}}
\rightvitem{13cm}{tointegralnotation(r1,r2) or explode(r1,r2) undoes what 
implode might have done. Hence each integer with an absolute value $n$ 
generates $n-1$ zeroes and leaves something with absolute value one. 
Instead of ``tointegralnotation'' one may also use the word 
``explode'' in accordance with the argexplode statement.}

\leftvitem{3.2cm}{permute\index{transform!permute}\index{permute}}
\rightvitem{13cm}{permute(1,3,5)(2,6) will permute the arguments 
according to the cycles indicated. The cycles are executed in order and may 
overlap. Their number is not restricted. In the above example
f(a1,a2,a3,a4,a5,a6,a7) $\rightarrow$ f(a3,a6,a5,a4,a1,a2,a7).
It is allowed to use \$-variables in the cycles, including \$-variables 
that are obtained by matching argument field wildcards.}

\leftvitem{3.2cm}{reverse\index{transform!reverse}\index{reverse}}
\rightvitem{13cm}{reverse(r1,r2) reverses the order of the arguments in 
specified range.}

\leftvitem{3.2cm}{dedup\index{transform!dedup}\index{dedup}}
\rightvitem{13cm}{dedup(r1,r2) removes duplicates from the arguments in the range, keeping the first.}

\leftvitem{3.2cm}{cycle\index{transform!cycle}\index{cycle}}
\rightvitem{13cm}{cycle(r1,r2)=+/-number will perform a cyclic permutation 
of the indicated range of arguments. If the number is preceeded by a - the 
cycling is to the left. If there is a plus sign the cycling is to the 
right. Note that either the plus or the minus sign is mandatory. The number 
following the +/- sign is also allowed to be a dollar variable provided it 
evaluates to a legal number during execution.}

\leftvitem{3.2cm}{islyndon\index{transform!islyndon}\index{islyndon}}
\rightvitem{13cm}{islyndon(r1,r2)=(yes,no) will test whether the indicated 
range of arguments forms a Lyndon word\index{Lyndon word} according to the 
ordering of arguments in FORM. The yes and no arguments are what the main 
term will be multiplied by when the range forms a Lyndon word or does not 
respectively. Because the definition of a Lyndon word is the unique minimal 
cyclic permutation of the arguments, and because often we may need the 
unique maximal cyclic permutation there are varieties: for the minimum one 
may also use islyndon$<$(r1,r2)=(yes,no) or islyndon-(r1,r2)=(yes,no), 
while for the maximum one may use islyndon$>$(r1,r2)=(yes,no) or 
islyndon+(r1,r2)=(yes,no).}

\leftvitem{3.2cm}{tolyndon\index{transform!tolyndon}\index{tolyndon}}
\rightvitem{13cm}{tolyndon(r1,r2)=(yes,no) will permute the given range in 
a cyclic manner till it is (if possible) a Lyndon word\index{Lyndon word} 
according to the ordering of arguments in FORM. The yes and no arguments 
are what the main term will be multiplied by when afterwards the range 
forms a Lyndon word or does not respectively. Because the definition of a 
Lyndon word is the unique minimal cyclic permutation of the arguments, and 
because often we may need the unique maximal cyclic permutation there are 
varieties: for the minimum one may also use tolyndon$<$(r1,r2)=(yes,no) or 
tolyndon-(r1,r2)=(yes,no), while for the maximum one may use 
tolyndon$>$(r1,r2)=(yes,no) or tolyndon+(r1,r2)=(yes,no). If the output is 
not a Lyndon word, this will be due to that it is a minimum or maximum that 
is not unique.}

\leftvitem{3.2cm}{addargs\index{transform!addargs}\index{addargs}}
\rightvitem{13cm}{addargs(r1,r2) replaces the indicated range of arguments 
by their sum. This is effectively the inverse of the SplitArg statement.}

\leftvitem{3.2cm}{mulargs\index{transform!mulargs}\index{mulargs}}
\rightvitem{13cm}{mulargs(r1,r2) replaces the indicated range of arguments 
by their product. This is effectively the inverse of the FactArg statement.}

\leftvitem{3.2cm}{dropargs\index{transform!dropargs}\index{dropargs}}
\rightvitem{13cm}{dropargs(r1,r2) removes the indicated range of arguments.}

\leftvitem{3.2cm}{selectargs\index{transform!selectargs}\index{selectargs}}
\rightvitem{13cm}{selectargs(r1,r2) removes all arguments with the exception 
of the indicated range of arguments.}

Some Examples. Assume that we have some Multiple Zeta Values\index{Multiple 
Zeta Value}\index{MZV} (see the papers on harmonic sums\index{harmonic 
sums}, harmonic polylogarithms\index{harmonic polylogarithm} and the MZV 
data mine\index{MZV data mine}) in the sum notation, but for calculational 
reason we want to use a binary encoding (as used in the MZV programs). We 
could have

\begin{verbatim}
    Symbol x,x1,x2;
    CF  H,H1;
    Off Statistics;
    L   F = H(3,4,2,6,1,1,1,2);
    repeat id H(?a,x?!{0,1},?b) = H(?a,0,x-1,?b);
    Print;
    .sort

   F =
      H(0,0,1,0,0,0,1,0,1,0,0,0,0,0,1,1,1,1,0,1);

    Multiply H1;
    repeat id H(x?,?a)*H1(?b) = H(?a)*H1(?b,1-x);
    id  H1(?a)*H = H(?a);
    Print;
    .sort

   F =
      H(1,1,0,1,1,1,0,1,0,1,1,1,1,1,0,0,0,0,1,0);

    repeat id H(x1?,x2?,?a) = H(2*x1+x2,?a);
    Print;
    .end

   F =
      H(907202);
\end{verbatim}
The new version of the same program would be
\begin{verbatim}
    Symbol x,x1,x2;
    CF  H,H1;
    Off Statistics;
    L   F = H(3,4,2,6,1,1,1,2);
    Transform,H,explode(1,last),
                replace(1,last)=(0,1,1,0),
                encode(1,last):base=2;
    Print;
    .end

   F =
      H(907202);
\end{verbatim}
It should be clear that this is simpler and faster. On a 64-bits computer 
it is faster by more than a factor 100.

\vspace{10mm}

%--#] transform : 
%--#[ tryreplace :

\section{tryreplace}
\label{substatryreplace}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & tryreplace \verb:{:{\tt<}name{\tt>} {\tt<}replacement{\tt>}\verb:}:;
\\ See also & the replace\_ function (\ref{funreplace})
\end{tabular} \vspace{4mm}

\noindent The list\index{tryreplace} of potential replacements should be 
similar to the arguments of the replace\_\index{replace\_} 
function\index{function!replace\_} (see \ref{funreplace}). {\FORM} will 
make a copy of the current term, try the replacement and if the replacement 
results in a term which, by the internal ordering of {\FORM}, comes before 
the current term, the current term is replaced by the new variety. 
\vspace{10mm}

%--#] tryreplace : 
%--#[ unfactorize :

\section{unfactorize}
\label{substaunfactorize}

\noindent \begin{tabular}{ll}
Type & Output control statement\\
Syntax & unfactorize \verb:{:{\tt<}name of expression(s){\tt>}\verb:}:;
\\ See also & the chapter on polynomials~\ref{polynomials} and the 
factorize statement~\ref{substafactorize}.
\end{tabular} \vspace{4mm}

\noindent Without arguments the statement causes all expressions that were 
factorized to be 'unfactorized'. This means that all factors are multiplied 
and the expression is replaced by this new version. Like the factorize 
statement this statement is an output control statement, which means that 
it takes effect after an expression has been processed in the current 
module (see also the factorize~\ref{substafactorize} statement).

\noindent Because an immediate multiplication of all factors is sometimes 
far from optimal, FORM uses a binary scheme to combine factors. After each 
step there will be a sort operation. This means that when statistics are 
printed, there may be several statistics for this step.

\noindent When the statement has arguments, these arguments should be names 
of expressions. In that case the unfactorization is applied only to the 
expressions that are specified.

\noindent If one likes to unfactorized all expressions except for a few 
ones, one can use the unfactorize statement without arguments and then 
exclude the few expressions that should not be treated with the 
nunfactorize statement (see \ref{substanunfactorize}).
\vspace{10mm} 

%--#] unfactorize : 
%--#[ unhide :

\section{unhide}
\label{substaunhide}

\noindent \begin{tabular}{ll}
Type & Specification statement\\
Syntax & unhide; \\
       & unhide {\tt<}list of expressions{\tt>};
\\ See also & hide (\ref{substahide}),
              nhide (\ref{substanhide}),
              nunhide (\ref{substanunhide}),
              pushhide (\ref{substapushhide}),
              pophide (\ref{substapophide})
\end{tabular} \vspace{4mm}

\noindent In its\index{unhide} first variety this statement causes all 
statements in the hide\index{hide} file\index{file!hide} to become 
active\index{active} expressions again. In its second variety only the 
specified expressions are taken from the hide system and become active 
again. An expression that is made active again can be manipulated again in 
the module in which the unhide statement occurs. For more information one 
should look at the hide statement in \ref{substahide}. \vspace{4mm}

\noindent Note that if only a number of expressions is taken from the hide 
system, the hide file may be left with `holes', i.e. space between the 
remaining expressions that contain no relevant information any longer. 
{\FORM} contains no mechanism to use the space in these holes. Hence if 
space is at a premium and many holes develop one should unhide all 
expressions (this causes the hide system to be started from zero size 
again) and then send the relevant expressions back to the hide system. 
\vspace{10mm}

%--#] unhide : 
%--#[ unittrace :

\section{unittrace}
\label{substaunittrace}

\noindent \begin{tabular}{ll}
Type & Declaration statement\\
Syntax & u[nittrace] {\tt<}value{\tt>}; \\
See also & trace4 (\ref{substatrace}), tracen (\ref{substatracen}),
    chisholm (\ref{substachisholm}) \\ &
    and the chapter on gamma algebra (\ref{gammaalgebra}).
\end{tabular} \vspace{4mm}

\noindent Sets\index{unittrace} the value of the trace of the 
unit\index{unit matrix} matrix\index{matrix!unit} in the Dirac\index{Dirac} 
algebra\index{algebra!Dirac} (i.e. the object \verb:g1_(n): for trace line 
\verb:n:)). The parameter \verb:value: can be either a short positive 
number or any symbol with the exception of \verb:i_:. See also 
chapter~\ref{gammaalgebra}. \vspace{10mm}

%--#] unittrace : 
%--#[ vectors :

\section{vectors}
\label{substavectors}

\noindent \begin{tabular}{ll}
Type & Declaration statement\\
Syntax & v[ectors] {\tt<}list of vectors to be declared{\tt>};
\end{tabular} \vspace{4mm}

\noindent Used for the declaration of vectors\index{vector}. Example:
\begin{verbatim}
   Vectors p,q,q1,q2,q3;
\end{verbatim}
\vspace{10mm}

%--#] vectors : 
%--#[ while :

\section{while}
\label{substawhile}

\noindent \begin{tabular}{ll}
Type & Executable statement\\
Syntax & while ( condition );
\\ See also & endwhile (\ref{substaendwhile}), repeat (\ref{substarepeat}),
            if (\ref{substaif})
\end{tabular} \vspace{4mm}

\noindent This statement\index{while} starts the while 
environment\index{environment!while}. It should be paired with an 
endwhile\index{endwhile} statement (see \ref{substaendwhile}) which 
terminates the while environment. The statements between the while and the 
endwhile statements will be executed as long as the condition is met. For 
the description of the condition one should consult the if\index{if} 
statement (see \ref{substaif}). The while/endwhile combination is 
equivalent to the construction
\begin{verbatim}
   repeat;
      if ( condition );


      endif;
   endrepeat;
\end{verbatim}
If only a single statement is inside the environment one can also use
\begin{verbatim}
   while ( condition ) statement;
\end{verbatim}
Of course one should try to avoid infinite\index{infinite loop} 
loops\index{loops!infinite}. In order to maximize the speed of {\FORM} not 
all internal stacks are protected and hence the result may be that {\FORM} 
may crash. It is also possible that {\FORM} may detect a shortage of buffer 
space and quit with an error message. \vspace{4mm}

\noindent For each term for which execution reaches the endwhile statement, 
control is brought back to the while statement. For each term that reaches 
the while statement the condition is checked and if it is met, the 
statements inside the environment are executed again on this term. If the 
condition is not met, execution continues after the endwhile statement. 
\vspace{10mm}

%--#] while : 
%--#[ write :

\section{write}
\label{substawrite}

\noindent \begin{tabular}{ll}
Type & Declaration statement\\
Syntax & w[rite] {\tt<}keyword{\tt>};
\\ See also & on (\ref{substaon}), off (\ref{substaoff})
\end{tabular} \vspace{4mm}

\noindent This statement\index{write} is considered 
obsolete\index{obsolete}. All its varieties have been taken over by the 
on\index{on} statement (see \ref{substaon}) and the off\index{off} 
statement (see \ref{substaoff}). The current version of {\FORM} will still 
recognize it, but the user is advised to avoid its usage. In future 
versions of {\FORM} it is scheduled to be used for a different kind of 
writing and hence its syntax may change considerably. The conversion 
program conv2to3 should help in the conversion of programs written for 
version 2. For completeness we still give the syntax and how it should be 
converted. The keywords are: \vspace{4mm}
 
\leftvitem{3.5cm}{allnames\index{write!allnames}}
\rightvitem{13cm}{Same as: On allnames;}

\leftvitem{3.5cm}{allwarnings\index{write!allwarnings}}
\rightvitem{13cm}{Same as: On allwarnings;}
 
\leftvitem{3.5cm}{highfirst\index{write!highfirst}}
\rightvitem{13cm}{Same as: On highfirst;}
 
\leftvitem{3.5cm}{lowfirst\index{write!lowfirst}}
\rightvitem{13cm}{Same as: On lowfirst;}

\leftvitem{3.5cm}{names\index{write!names}}
\rightvitem{13cm}{Same as: On names;}
 
\leftvitem{3.5cm}{powerfirst\index{write!powerfirst}}
\rightvitem{13cm}{Same as: On powerfirst;}
 
\leftvitem{3.5cm}{setup\index{write!setup}}
\rightvitem{13cm}{Same as: On setup;}
 
\leftvitem{3.5cm}{shortstatistics\index{write!shortstatistics}}
\rightvitem{13cm}{Same as: On shortstatistics;}

\leftvitem{3.5cm}{shortstats\index{write!shortstats}}
\rightvitem{13cm}{Same as: On shortstats;}
 
\leftvitem{3.5cm}{statistics\index{write!statistics}}
\rightvitem{13cm}{Same as: On statistics;}
 
\leftvitem{3.5cm}{stats\index{write!stats}}
\rightvitem{13cm}{Same as: On stats;}
 
\leftvitem{3.5cm}{warnings\index{write!warnings}}
\rightvitem{13cm}{Same as: On warnings;}

\vspace{10mm}

%--#] write :