File: evaluate.c

package info (click to toggle)
form 5.0.0-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 8,312 kB
  • sloc: ansic: 110,546; cpp: 20,395; sh: 5,874; makefile: 545
file content (760 lines) | stat: -rw-r--r-- 20,624 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
/** @file evaluate.c
 *
 *   Evaluation of functions for the floating-point system, by interfacing with MPFR.
 */
/* #[ License : */
/*
 *   Copyright (C) 1984-2026 J.A.M. Vermaseren
 *   When using this file you are requested to refer to the publication
 *   J.A.M.Vermaseren "New features of FORM" math-ph/0010025
 *   This is considered a matter of courtesy as the development was paid
 *   for by FOM the Dutch physics granting agency and we would like to
 *   be able to track its scientific use to convince FOM of its value
 *   for the community.
 *
 *   This file is part of FORM.
 *
 *   FORM is free software: you can redistribute it and/or modify it under the
 *   terms of the GNU General Public License as published by the Free Software
 *   Foundation, either version 3 of the License, or (at your option) any later
 *   version.
 *
 *   FORM is distributed in the hope that it will be useful, but WITHOUT ANY
 *   WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 *   FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
 *   details.
 *
 *   You should have received a copy of the GNU General Public License along
 *   with FORM.  If not, see <http://www.gnu.org/licenses/>.
 */
/* #] License : */
/*
  	#[ includes :
*/

#include "form3.h"
#include <gmp.h>
#include <mpfr.h>

#define EXTRAPRECISION 4

#define RND MPFR_RNDN

#define auxr1 (((mpfr_t *)(AT.auxr_))[0])
#define auxr2 (((mpfr_t *)(AT.auxr_))[1])
#define auxr3 (((mpfr_t *)(AT.auxr_))[2])
#define auxr4 (((mpfr_t *)(AT.auxr_))[3])
#define auxr5 (((mpfr_t *)(AT.auxr_))[4])

mpf_t ln2;

int PackFloat(WORD *,mpf_t);
int UnpackFloat(mpf_t,WORD *);
void RatToFloat(mpf_t, UWORD *, int);
void FormtoZ(mpz_t,UWORD *,WORD);

/*
  	#] includes : 
  	#[ mpfr_ :
 		#[ IntegerToFloatr :

		Converts a Form long integer to a mpfr_ float of default size.
		We assume that sizeof(unsigned long int) = 2*sizeof(UWORD).
*/

void IntegerToFloatr(mpfr_t result, UWORD *formlong, int longsize)
{
	mpz_t z;
	mpz_init(z);
	FormtoZ(z,formlong,longsize);
	mpfr_set_z(result,z,RND);
	mpz_clear(z);
}

/*
 		#] IntegerToFloatr : 
 		#[ RatToFloatr :

		Converts a Form rational to a gmp float of default size.
*/

void RatToFloatr(mpfr_t result, UWORD *formrat, int ratsize)
{
	GETIDENTITY
	int nnum, nden;
	UWORD *num, *den;
	int sgn = 0;
	if ( ratsize < 0 ) { ratsize = -ratsize; sgn = 1; }
	nnum = nden = (ratsize-1)/2;
	num = formrat; den = formrat+nnum;
	while ( nnum > 1 && num[nnum-1] == 0 ) { nnum--; }
	while ( nden > 1 && den[nden-1] == 0 ) { nden--; }
	IntegerToFloatr(auxr4,num,nnum);
	IntegerToFloatr(auxr5,den,nden);
	mpfr_div(result,auxr4,auxr5,RND);
	if ( sgn > 0 ) mpfr_neg(result,result,RND);
}

/*
 		#] RatToFloatr : 
 		#[ SetfFloatPrecision :

	The AC.DefaultPrecision is in bits.
	prec is in limbs.
	fprec is NOT in bits for mpfr_ which is slightly less than in mpf_
	We also set the auxr1,auxr2,auxr3,auxr4,auxr5 variables.
*/

void SetfFloatPrecision(LONG prec)
{
/*
	mpfr_prec_t fprec = prec * mp_bits_per_limb - EXTRAPRECISION;
*/
	mpfr_prec_t fprec = prec + 1;
	mpfr_set_default_prec(fprec);
#ifdef WITHPTHREADS
	int totnum = AM.totalnumberofthreads, id;
	mpfr_t *a;
  #ifdef WITHSORTBOTS
	totnum = MaX(2*AM.totalnumberofthreads-3,AM.totalnumberofthreads);
  #endif
    for ( id = 0; id < totnum; id++ ) {
		AB[id]->T.auxr_ = (void *)Malloc1(sizeof(mpfr_t)*5,"AB[id]->T.auxr_");
		a = (mpfr_t *)AB[id]->T.auxr_;
/*
		We work here with a[0] etc because the aux1 etc contain B which
		in the current routine would be AB[0] only
*/
		mpfr_inits2(fprec,a[0],a[1],a[2],a[3],a[4],(mpfr_ptr)0);
	}
#else
	AT.auxr_ = (void *)Malloc1(sizeof(mpfr_t)*5,"AT.auxr_");
	mpfr_inits2(fprec,auxr1,auxr2,auxr3,auxr4,auxr5,(mpfr_ptr)0);
#endif
}

/*
 		#] SetfFloatPrecision : 
 		#[ ClearfFloat :
*/

void ClearfFloat(void)
{
#ifdef WITHPTHREADS
	int totnum = AM.totalnumberofthreads, id;
	mpfr_t *a;
  #ifdef WITHSORTBOTS
	totnum = MaX(2*AM.totalnumberofthreads-3,AM.totalnumberofthreads);
  #endif
	if ( AB[0]->T.auxr_ ) {
	    for ( id = 0; id < totnum; id++ ) {
			a = (mpfr_t *)AB[id]->T.auxr_;
			mpfr_clears(a[0],a[1],a[2],a[3],a[4],(mpfr_ptr)0);
			M_free(AB[id]->T.auxr_,"AB[id]->T.auxr_");
			AB[id]->T.auxr_ = 0;
		}
	}
#else
	if ( AT.auxr_ ) {
		mpfr_clears(auxr1,auxr2,auxr3,auxr4,auxr5,(mpfr_ptr)0);
		M_free(AT.auxr_,"AT.auxr_");
		AT.auxr_ = 0;
	}
#endif
}

/*
 		#] ClearfFloat : 
 		#[ GetFloatArgument :

		Convert an argument to an mpfr float if possible.
		Return value: 0: was converted successfully.
		              -1: could not convert.
		Note: arguments with more than one term should be evaluated first
		inside an Argument environment. If there is still more than one
		term remaining we get the code: "could not convert".
		par tells which argument we need. If it is negative it should also
		be the last argument.
*/

int GetFloatArgument(PHEAD mpfr_t f_out,WORD *fun,int par)
{
	WORD *term, *tn, *t, *tstop, first, ncoef, *arg, *argp, abspar;
	arg = fun+FUNHEAD;
	abspar = ABS(par);
	while ( arg < fun+fun[1] && abspar > 1 ) { abspar--; NEXTARG(arg) }
	if ( arg >= fun+fun[1] || abspar!= 1 ) return(-1);
	if ( par < 0 ) {
		argp = arg; NEXTARG(argp); if ( argp != fun+fun[1] ) return(-1);
	}
	if ( *arg < 0 ) {
		if ( *arg == -SNUMBER ) {
			mpfr_set_si(f_out,(LONG)(arg[1]),RND);
		}
		else if ( *arg == -SYMBOL && ( arg[1] == PISYMBOL ) ) {
			mpfr_const_pi(f_out,RND);
		}
		else if ( *arg == -INDEX && arg[1] >= 0 && arg[1] < AM.OffsetIndex ) {
			mpfr_set_ui(f_out,(ULONG)(arg[1]),RND);
		}
		else { return(-1); }
		return(0);
	}
	else if ( arg[0] != arg[ARGHEAD]+ARGHEAD ) {	/* more than one term */
		return(-1);
	}
	term = arg+ARGHEAD;
	tn = term+*term;
	tstop = tn-ABS(tn[-1]);
	t = term+1;
	first = 1;
	while ( t <= tstop ) {
		if ( t == tstop ) { /* Fraction */
			if ( first ) RatToFloatr(f_out,(UWORD *)tstop,tn[-1]);
			else {
				RatToFloatr(auxr4,(UWORD *)tstop,tn[-1]);
				mpfr_mul(f_out,f_out,auxr4,RND);
			}
			return(0);
		}
		else if ( *t == FLOATFUN ) {
			if ( t+t[1] != tstop ) return(-1);
			if ( UnpackFloat(aux5,t) < 0 ) return(-1);
			if ( first ) {
				mpfr_set_f(f_out,aux5,RND);
				first = 0;
			}
			else {
				mpfr_set_f(auxr4,aux5,RND);
				mpfr_mul(f_out,f_out,auxr4,RND);
			}
			first = 0;
			if ( tn[-1] < 0 ) { /* change sign */
				ncoef = -tn[-1];
				mpfr_neg(f_out,f_out,RND);
			}
			else ncoef = tn[-1];
			if ( ncoef == 3 && tn[-2] == 1 && tn[-3] == 1 ) return(0);
/*
			If the argument was properly normalized we are not supposed to come here.
*/
			MLOCK(ErrorMessageLock);
			MesPrint("Unnormalized argument in GetFloatArgument: %a",*term,term);
			MUNLOCK(ErrorMessageLock);
			Terminate(-1);
		}
		else if ( t[0] == SYMBOL && t[1] == 4 && t[2] == PISYMBOL && t[3] == 1 ) {
			if ( first ) {
				mpfr_const_pi(f_out,RND);
				first = 0;
			}
			else {
				mpfr_const_pi(auxr5,RND);
				mpfr_mul(f_out,f_out,auxr5,RND);
			}
		}
		else {	/* This we do not / cannot do */
			return(-1);
		}
		t += t[1];
	}
	return(0);
}

/*
 		#] GetFloatArgument : 
 		#[ GetPiArgument :

		Tests for sin,cos,tan whether the argument is a simple
		multiple of pi or can be reduced to such.
		Return value: -1: the answer is no.
		0-23: we have 0, 1/12*pi_,...,23/12*pi_
		With success most values can be worked out by simple means.
*/

int GetPiArgument(PHEAD WORD *arg)
{
	UWORD *coef, *co, *tco, twelve, *numer, *denom, *c, *d;
	WORD i, ii, i2, iflip, nc, nd, *t, *tn, *tstop;
	int rem;
/*
	One: determine whether there is a rational coefficient and a pi_:
*/
	if ( *arg == -SNUMBER && arg[1] == 0 ) return(0);
	if ( *arg == -SYMBOL && arg[1] == PISYMBOL ) return(12);
	if ( *arg < 0 ) return(-1);
	if ( arg[ARGHEAD] != *arg-ARGHEAD ) return(-1);
	t = arg+ARGHEAD+1;
	tn = arg+*arg; tstop = tn - ABS(tn[-1]);
	if ( *t != SYMBOL || t[1] != 4 || t[2] != PISYMBOL || t[3] != 1
		|| t+t[1] != tstop ) return(-1);
/*
	The denominator must be a divisor of 12
	1: copy the coefficient
*/
	co = coef = NumberMalloc("GetPiArgument");
	tco = (UWORD *)tstop;
	i = tn[-1]; if ( i < 0 ) { i = -i; iflip = 1; } else iflip = 0;
	ii = (i-1)/2;
	twelve = 12;
	NCOPY(co,tco,i);
	co = coef;
	Mully(BHEAD co,&ii,&twelve,1);
/*
	Now the denominator should be 1
*/
	i = ii; i2 = i-1;
	numer = co; denom = numer + i;
	if ( i > 1 ) {
		while ( i2 > 0 ) {
			if ( denom[i2--] != 0 ) {
				NumberFree(co,"GetPiArgument");
				return(-1);
			}
		}
	}
	if ( *denom != 1 ) {
		NumberFree(co,"GetPiArgument");
		return(-1);
	}
/*
	Now we need the numerator modulus 24.
*/
	if ( i == 1 ) {
		rem = *numer % 24;
	}
	else {
		c = NumberMalloc("GetPiArgument");
		d = NumberMalloc("GetPiArgument");
		twelve *= 2;
		DivLong(numer,i,&twelve,1,c,&nc,d,&nd);
		rem = *d % 24;
		NumberFree(d,"GetPiArgument");
		NumberFree(c,"GetPiArgument");
	}
	NumberFree(co,"GetPiArgument");
	if ( iflip && rem != 0 ) rem = 24-rem;
	return(rem);
}

/*
 		#] GetPiArgument : 
 		#[ EvaluateFun :

		What we need to do is:
		1: look for a function to be treated.
		2: make sure its argument is treatable.
		3: call the proper mpfr_ function.
		4: accumulate the result.
		For some functions we have to insert 'smart' shortcuts as is
		the case with sin_(pi_) or sin_(pi_/6) of sqrt(4/9) etc.
		Otherwise we may have to insert a value for pi_ first.
		There are several types of arguments:
		a: (short) integers.
		b: rationals.
		c: floats.
		We accumulate the result(s) in auxr2. The argument comes in aux5
		and a result in auxr3 which then gets multiplied into auxr2.
		In the end we have to combine auxr2 with whatever coefficient
		existed already.

		When the float system is started we need for aux only 3 variables
		per thread. auxr1-auxr3. This should be done separately.
		The main problem is the conversion of mpfr_t to float_ and/or mpf_t
		and back.
*/


int EvaluateFun(PHEAD WORD *term, WORD level, WORD *pars)
{
	WORD *t, *tstop, *tt, *tnext, *newterm, i;
	WORD *oldworkpointer = AT.WorkPointer, nsize, nsgn, nsgn2;
	int retval = 0, first = 1, pimul;

	tstop = term + *term; tstop -= ABS(tstop[-1]);
	if ( AT.WorkPointer < term+*term ) AT.WorkPointer = term + *term;
	t = term+1;
	mpfr_set_ui(auxr2,1L,RND);
	while ( t < tstop ) {
		if ( pars[2] == *t ) {	/* have to do this one if possible */
TestArgument:
/*
			There must be a single argument, except for the AGM or atan2 functions
*/
			tnext = t+t[1]; tt = t+FUNHEAD; NEXTARG(tt);
			if( *t == SYMBOL) {
				for ( WORD* ti = t+2; ti < t+t[1]; ti+=2 ) {
					if( ( *ti == PISYMBOL || *ti == EESYMBOL  || *ti == EMSYMBOL )
					 && ( pars[2] == ALLFUNCTIONS || pars[3] == *ti ) ) {
						if ( *ti == PISYMBOL )
							mpfr_const_pi(auxr3,RND);
						else if ( *ti == EESYMBOL ) {
							mpfr_set_ui(auxr3,1,RND);
							mpfr_exp(auxr3,auxr3,RND);
						}
						else if ( *ti == EMSYMBOL )
							mpfr_const_euler(auxr3,RND);
						if ( ti[1] != 1 )
							mpfr_pow_si(auxr3,auxr3,ti[1],RND);
						mpfr_mul(auxr2,auxr2,auxr3,RND);
						ti[1] = 0;
						first = 0;
					}
				}
				goto nextfun;
			}
			if ( tt != tnext && *t != AGMFUNCTION && *t != ATAN2FUNCTION) goto nextfun;
			if ( *t == SINFUNCTION ) {
				pimul = GetPiArgument(BHEAD t+FUNHEAD);
				if ( pimul >= 0 && pimul < 24 ) {
					if ( pimul == 0 || pimul == 12 ) goto getout;
					if ( pimul > 12 ) { pimul = 24-pimul; nsgn = -1; }
					else nsgn = 1;
					if ( pimul > 6 ) pimul = 12-pimul;
					switch ( pimul ) {
						case 1:
label1:
							mpfr_sqrt_ui(auxr3,3L,RND);
							mpfr_sub_ui(auxr3,auxr3,1L,RND);
							mpfr_sqrt_ui(auxr1,2L,RND);
							mpfr_div_ui(auxr1,auxr1,4L,RND);
							mpfr_mul(auxr3,auxr3,auxr1,RND);
							if ( nsgn < 0 ) mpfr_neg(auxr3,auxr3,RND);
							mpfr_mul(auxr2,auxr2,auxr3,RND);
							break;
						case 2:
label2:
							mpfr_div_ui(auxr2,auxr2,2L,RND);
							if ( nsgn < 0 ) mpfr_neg(auxr2,auxr2,RND);
							break;
						case 3:
label3:
							mpfr_sqrt_ui(auxr3,2L,RND);
							mpfr_div_ui(auxr3,auxr3,2L,RND);
							if ( nsgn < 0 ) mpfr_neg(auxr3,auxr3,RND);
							mpfr_mul(auxr2,auxr2,auxr3,RND);
							break;
						case 4:
label4:
							mpfr_sqrt_ui(auxr3,3L,RND);
							mpfr_div_ui(auxr3,auxr3,2L,RND);
							if ( nsgn < 0 ) mpfr_neg(auxr3,auxr3,RND);
							mpfr_mul(auxr2,auxr2,auxr3,RND);
							break;
						case 5:
label5:
							mpfr_sqrt_ui(auxr3,3L,RND);
							mpfr_add_ui(auxr3,auxr3,1L,RND);
							mpfr_sqrt_ui(auxr1,2L,RND);
							mpfr_div_ui(auxr1,auxr1,4L,RND);
							mpfr_mul(auxr3,auxr3,auxr1,RND);
							if ( nsgn < 0 ) mpfr_neg(auxr3,auxr3,RND);
							mpfr_mul(auxr2,auxr2,auxr3,RND);
							break;
						case 6:
label6:
							if ( nsgn < 0 ) mpfr_neg(auxr2,auxr2,RND);
							break;
					}
					*t = 0; first = 0;
					goto nextfun;
				}
			}
			else if ( *t == COSFUNCTION ) {
				pimul = GetPiArgument(BHEAD t+FUNHEAD);
				if ( pimul >= 0 && pimul < 24 ) {
					if ( pimul > 12 ) pimul = 24-pimul;
					if ( pimul > 6 ) { pimul = 12-pimul; nsgn = -1; }
					else nsgn = 1;
					if ( pimul == 6 ) goto getout;
					switch ( pimul ) {
						case 0: goto label6;
						case 1: goto label5;
						case 2: goto label4;
						case 3: goto label3;
						case 4: goto label2;
						case 5: goto label1;
					}
				}
			}
			else if ( *t == TANFUNCTION ) {
				pimul = GetPiArgument(BHEAD t+FUNHEAD);
				if ( pimul >= 0 && pimul < 24 ) {
					if ( pimul == 6 || pimul == 18 ) goto nextfun;
					if ( pimul == 0 || pimul == 12 ) goto getout;
					if ( pimul > 12 ) { pimul = 24-pimul; nsgn = -1; }
					else nsgn = 1;
					if ( pimul > 6 ) { pimul = 12-pimul; nsgn = -nsgn; }
					switch ( pimul ) {
						case 1:
							mpfr_sqrt_ui(auxr3,3L,RND);
							mpfr_sub_ui(auxr3,auxr3,2L,RND);
							if ( nsgn > 0 ) mpfr_neg(auxr3,auxr3,RND);
							mpfr_mul(auxr2,auxr2,auxr3,RND);
							break;
						case 2:
							mpfr_sqrt_ui(auxr3,3L,RND);
							mpfr_div_ui(auxr3,auxr3,3L,RND);
							if ( nsgn < 0 ) mpfr_neg(auxr3,auxr3,RND);
							mpfr_mul(auxr2,auxr2,auxr3,RND);
							break;
						case 3:
							break;
						case 4:
							mpfr_sqrt_ui(auxr3,3L,RND);
							if ( nsgn < 0 ) mpfr_neg(auxr3,auxr3,RND);
							mpfr_mul(auxr2,auxr2,auxr3,RND);
							break;
						case 5:
							mpfr_sqrt_ui(auxr3,3L,RND);
							mpfr_add_ui(auxr3,auxr3,2L,RND);
							if ( nsgn < 0 ) mpfr_neg(auxr3,auxr3,RND);
							mpfr_mul(auxr2,auxr2,auxr3,RND);
							break;
					}
					*t = 0; first = 0;
					goto nextfun;
				}
			}

			if ( *t == AGMFUNCTION || *t == ATAN2FUNCTION ) {
				if ( GetFloatArgument(BHEAD auxr1,t,1) < 0 ) goto nextfun;
				if ( GetFloatArgument(BHEAD auxr3,t,-2) < 0 ) goto nextfun;
			}
			else if ( GetFloatArgument(BHEAD auxr1,t,-1) < 0 ) goto nextfun;
			nsgn = mpfr_sgn(auxr1);

			switch ( *t ) {
				case SQRTFUNCTION:
					if ( nsgn < 0 ) goto nextfun;
					if ( nsgn == 0 ) goto getout;
					else mpfr_sqrt(auxr3,auxr1,RND);
					mpfr_mul(auxr2,auxr2,auxr3,RND);
				break;
				case LNFUNCTION:
					if ( nsgn <= 0 ) goto nextfun;
					if ( mpfr_cmp_ui(auxr1,1L) == 0 ) goto getout;
					else mpfr_log(auxr3,auxr1,RND);
					mpfr_mul(auxr2,auxr2,auxr3,RND);
				break;
				case EXPFUNCTION:
					mpfr_exp(auxr3,auxr1,RND);
					mpfr_mul(auxr2,auxr2,auxr3,RND);
				break;
				case LI2FUNCTION: /* should be between -1 and +1 */
					if ( nsgn == 0 ) goto getout;
					mpfr_abs(auxr3,auxr1,RND);
					if ( mpfr_cmp_ui(auxr3,1L) > 0 ) goto nextfun;
					mpfr_li2(auxr3,auxr1,RND);
					mpfr_mul(auxr2,auxr2,auxr3,RND);
				break;
				case GAMMAFUN:
/*
					We cannot do this when the argument is a non-positive integer
*/
					if ( t[FUNHEAD] == -SNUMBER && t[FUNHEAD+1] <= 0 ) goto nextfun;
					if ( t[FUNHEAD] == t[1]-FUNHEAD && ABS(t[t[1]-1]) ==
						t[FUNHEAD]-ARGHEAD-1 && t[t[1]-1] < 0 ) {
						nsize = (-t[t[1]-1]-1)/2;
						if ( t[t[1]-1-nsize] == 1 ) {
							for ( i = 1; i < nsize; i++ ) {
								if ( t[t[1]-1-nsize+i] != 0 ) break;
							}
							if ( i >= nsize ) goto nextfun;
						}
					}
					mpfr_gamma(auxr3,auxr1,RND);
					mpfr_mul(auxr2,auxr2,auxr3,RND);
				break;
				case AGMFUNCTION:
					nsgn = mpfr_sgn(auxr1);
					nsgn2 = mpfr_sgn(auxr3);
					if ( nsgn == 0 || nsgn2 == 0) goto getout;
					if ( nsgn < 0 || nsgn2 < 0 ) goto nextfun;
					mpfr_agm(auxr3,auxr1,auxr3,RND);
					mpfr_mul(auxr2,auxr2,auxr3,RND);
				break;
				case SINHFUNCTION:
					if ( nsgn == 0 ) goto getout;
					mpfr_sinh(auxr3,auxr1,RND);
					mpfr_mul(auxr2,auxr2,auxr3,RND);
				break;
				case COSHFUNCTION:
					mpfr_cosh(auxr3,auxr1,RND);
					mpfr_mul(auxr2,auxr2,auxr3,RND);
				break;
				case TANHFUNCTION:
					if ( nsgn == 0 ) goto getout;
					mpfr_tanh(auxr3,auxr1,RND);
					mpfr_mul(auxr2,auxr2,auxr3,RND);
				break;
				case ASINHFUNCTION:
					if ( nsgn == 0 ) goto getout;
					mpfr_asinh(auxr3,auxr1,RND);
					mpfr_mul(auxr2,auxr2,auxr3,RND);
				break;
				case ACOSHFUNCTION:
					if ( mpfr_cmp_ui(auxr1,1L) < 0 ) goto nextfun;
					if ( mpfr_cmp_ui(auxr1,1L) == 0 ) goto getout;
					mpfr_acosh(auxr3,auxr1,RND);
					mpfr_mul(auxr2,auxr2,auxr3,RND);
				break;
				case ATANHFUNCTION:
					if ( nsgn == 0 ) goto getout;
					mpfr_abs(auxr3,auxr1,RND);
					if ( mpfr_cmp_ui(auxr3,1L) >= 0 ) goto nextfun;
					mpfr_atanh(auxr3,auxr1,RND);
					mpfr_mul(auxr2,auxr2,auxr3,RND);
				break;
				case ASINFUNCTION:
					if ( nsgn == 0 ) goto getout;
					mpfr_abs(auxr3,auxr1,RND);
					if ( mpfr_cmp_ui(auxr3,1L) > 0 ) goto nextfun;
					mpfr_asin(auxr3,auxr1,RND);
					mpfr_mul(auxr2,auxr2,auxr3,RND);
				break;
				case ACOSFUNCTION:
					if ( mpfr_cmp_ui(auxr1,1L) == 0 ) goto getout;
					mpfr_abs(auxr3,auxr1,RND);
					if ( mpfr_cmp_ui(auxr3,1L) > 0 ) goto nextfun;
					mpfr_acos(auxr3,auxr1,RND);
					mpfr_mul(auxr2,auxr2,auxr3,RND);
				break;
				case ATANFUNCTION:
					if ( nsgn == 0 ) goto getout;
					mpfr_atan(auxr3,auxr1,RND);
					mpfr_mul(auxr2,auxr2,auxr3,RND);
				break;
				case ATAN2FUNCTION:
					nsgn = mpfr_sgn(auxr1);
					nsgn2 = mpfr_sgn(auxr3);
					// We follow the conventions of mpfr here:
					if ( nsgn == 0 && nsgn2 >= 0) goto getout;
					mpfr_atan2(auxr3,auxr1,auxr3,RND);
					mpfr_mul(auxr2,auxr2,auxr3,RND);
				break;
				case SINFUNCTION:
					mpfr_sin(auxr3,auxr1,RND);
					mpfr_mul(auxr2,auxr2,auxr3,RND);
				break;
				case COSFUNCTION:
					mpfr_cos(auxr3,auxr1,RND);
					mpfr_mul(auxr2,auxr2,auxr3,RND);
				break;
				case TANFUNCTION:
					mpfr_tan(auxr3,auxr1,RND);
					mpfr_mul(auxr2,auxr2,auxr3,RND);
				break;
				default:
					goto nextfun;
				break;
			}
			first = 0;
			*t = 0;
			goto nextfun;
		}
		else if ( pars[2] == ALLFUNCTIONS ) {
/*
			Now we have to test whether this is one of our functions
*/
			if ( t[1] == FUNHEAD ) goto nextfun;
			switch ( *t ) {
				case SQRTFUNCTION:
				case LNFUNCTION:
				case LI2FUNCTION:
				case LINFUNCTION:
				case EXPFUNCTION:
				case ASINFUNCTION:
				case ACOSFUNCTION:
				case ATANFUNCTION:
				case ATAN2FUNCTION:
				case SINHFUNCTION:
				case COSHFUNCTION:
				case TANHFUNCTION:
				case ASINHFUNCTION:
				case ACOSHFUNCTION:
				case ATANHFUNCTION:
				case SINFUNCTION:
				case COSFUNCTION:
				case TANFUNCTION:
				case AGMFUNCTION:
				case SYMBOL:
					goto TestArgument;
				case MZV:
				case EULER:
				case MZVHALF:
				default:
					goto nextfun;
			}
		}
		else goto nextfun;
nextfun:
		t += t[1];
	}
	if ( first == 1 ) return(Generator(BHEAD term,level));
	mpfr_get_f(aux4,auxr2,RND);
/*
	Step 3:
	Now the regular coefficient, if it is not 1/1.
	We have two cases: size +- 3, or bigger.
*/
	
	nsize = term[*term-1];
	if ( nsize < 0 ) { nsize = -nsize; nsgn = -1; }
	else nsgn = 1;
	if ( aux4->_mp_size < 0 ) {
		aux4->_mp_size = -aux4->_mp_size;
		nsgn = -nsgn;
	}

	if ( nsize == 3 ) {
		if ( tstop[0] != 1 ) {
			mpf_mul_ui(aux4,aux4,(ULONG)((UWORD)tstop[0]));
		}
		if ( tstop[1] != 1 ) {
			mpf_div_ui(aux4,aux4,(ULONG)((UWORD)tstop[1]));
		}
	}
	else {
		RatToFloat(aux5,(UWORD *)tstop,nsize);
		mpf_mul(aux4,aux4,aux5);
	}
/*
	Now we have to locate possible other float_ functions.
	Note possible incompatibilities between the mpf and mpfr formats.
*/
	t = term+1;
	while ( t < tstop ) {
		if ( *t == FLOATFUN ) {
			UnpackFloat(aux5,t);
			mpf_mul(aux4,aux4,aux5);
		}
		t += t[1];
	}
/*
	Now we should compose the new term in the WorkSpace.
*/
	t = term+1;
	newterm = AT.WorkPointer;
	tt = newterm+1;
	while ( t < tstop ) {
		if ( *t == 0 || *t == FLOATFUN ) t += t[1];
		else {
			i = t[1]; NCOPY(tt,t,i);
		}
	}
	PackFloat(tt,aux4);
	tt += tt[1];
	*tt++ = 1; *tt++ = 1; *tt++ = 3*nsgn;
	*newterm = tt-newterm;
	AT.WorkPointer = tt;
	retval = Generator(BHEAD newterm,level);
getout:
	AT.WorkPointer = oldworkpointer;
	return(retval);
}

/*
 		#] EvaluateFun : 
  	#] mpfr_ : 
*/