1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238
|
/** @file flintinterface.cc
*
* Contains functions which interface with FLINT functions to perform arithmetic with uni- and
* multi-variate polynomials and perform factorization.
*/
/* #[ License : */
/*
* Copyright (C) 1984-2026 J.A.M. Vermaseren
* When using this file you are requested to refer to the publication
* J.A.M.Vermaseren "New features of FORM" math-ph/0010025
* This is considered a matter of courtesy as the development was paid
* for by FOM the Dutch physics granting agency and we would like to
* be able to track its scientific use to convince FOM of its value
* for the community.
*
* This file is part of FORM.
*
* FORM is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* FORM is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along
* with FORM. If not, see <http://www.gnu.org/licenses/>.
*/
/* #] License : */
#ifdef HAVE_CONFIG_H
#ifndef CONFIG_H_INCLUDED
#define CONFIG_H_INCLUDED
#include <config.h>
#endif
#endif
extern "C" {
#include "form3.h"
}
#include "flintinterface.h"
/*
#[ Types
* Use fixed-size integer types (int32_t, uint32_t, int64_t, uint64_t) except when we refer
* specifically to FORM term data, when we use WORD. This code has only been tested on 64bit
* systems where WORDs are int32_t, and some functions (fmpz_get_form, fmpz_set_form) require this
* to be the case. Enforce this:
*/
static_assert(sizeof(WORD) == sizeof(int32_t), "flint interface expects 32bit WORD");
static_assert(sizeof(UWORD) == sizeof(uint32_t), "flint interface expects 32bit WORD");
static_assert(BITSINWORD == 32, "flint interface expects 32bit WORD");
static_assert(sizeof(ulong) == sizeof(uint64_t), "flint interface expects ulong is uint64_t");
static_assert(sizeof(slong) == sizeof(int64_t), "flint interface expects slong is int64_t");
/*
* Flint functions take arguments or return values which may be "slong" or "ulong" in its
* documentation, and these are int64_t and uint64_t respectively.
*
#] Types
*/
/*
* FLINT's univariate poly has a dense representation. For sufficiently sparse polynomials it is
* faster to use mpoly instead, which is sparse. For a density <= this threshold we switch, where
* the density defined as is "number of terms" / "maximum degree".
*/
#define UNIVARIATE_DENSITY_THR 0.02f
/*
#[ flint::cleanup :
*/
void flint::cleanup(void) {
flint_cleanup();
}
/*
#] flint::cleanup :
#[ flint::cleanup_master :
*/
void flint::cleanup_master(void) {
flint_cleanup_master();
}
/*
#] flint::cleanup_master :
#[ flint::divmod_mpoly :
*/
WORD* flint::divmod_mpoly(PHEAD const WORD *a, const WORD *b, const bool return_rem,
const WORD must_fit_term, const var_map_t &var_map) {
flint::mpoly_ctx ctx(var_map.size());
flint::mpoly pa(ctx.d), pb(ctx.d), denpa(ctx.d), denpb(ctx.d);
flint::from_argument_mpoly(pa.d, denpa.d, a, false, var_map, ctx.d);
flint::from_argument_mpoly(pb.d, denpb.d, b, false, var_map, ctx.d);
// The input won't have any symbols with negative powers, but there may be rational
// coefficients. Verify this:
if ( fmpz_mpoly_is_fmpz(denpa.d, ctx.d) != 1 ) {
MLOCK(ErrorMessageLock);
MesPrint("flint::divmod_mpoly: error: denpa is non-constant");
MUNLOCK(ErrorMessageLock);
Terminate(-1);
}
if ( fmpz_mpoly_is_fmpz(denpb.d, ctx.d) != 1 ) {
MLOCK(ErrorMessageLock);
MesPrint("flint::divmod_mpoly: error: denpb is non-constant");
MUNLOCK(ErrorMessageLock);
Terminate(-1);
}
flint::fmpz scale;
flint::mpoly div(ctx.d), rem(ctx.d);
fmpz_mpoly_quasidivrem(scale.d, div.d, rem.d, pa.d, pb.d, ctx.d);
// The quotient must be multiplied by the denominator of the divisor
fmpz_mpoly_mul(div.d, div.d, denpb.d, ctx.d);
// The overall denominator of both div and rem is given by scale*denpa. This we will pass to
// to_argument_mpoly's "denscale" argument which performs the division in the result. We have
// already checked denpa is just an fmpz.
fmpz_mul(scale.d, scale.d, fmpz_mpoly_term_coeff_ref(denpa.d, 0, ctx.d));
// Determine the size of the output by passing write = false.
const bool with_arghead = false;
bool write = false;
const uint64_t prev_size = 0;
const uint64_t out_size = return_rem ?
(uint64_t)flint::to_argument_mpoly(BHEAD NULL, with_arghead, must_fit_term, write, prev_size,
rem.d, var_map, ctx.d, scale.d)
:
(uint64_t)flint::to_argument_mpoly(BHEAD NULL, with_arghead, must_fit_term, write, prev_size,
div.d, var_map, ctx.d, scale.d)
;
WORD* res = (WORD *)Malloc1(sizeof(WORD)*out_size, "flint::divrem_mpoly");
// Write out the result
write = true;
if ( return_rem ) {
(uint64_t)flint::to_argument_mpoly(BHEAD res, with_arghead, must_fit_term, write, prev_size,
rem.d, var_map, ctx.d, scale.d);
}
else {
(uint64_t)flint::to_argument_mpoly(BHEAD res, with_arghead, must_fit_term, write, prev_size,
div.d, var_map, ctx.d, scale.d);
}
return res;
}
/*
#] flint::divmod_mpoly :
#[ flint::divmod_poly :
*/
WORD* flint::divmod_poly(PHEAD const WORD *a, const WORD *b, const bool return_rem,
const WORD must_fit_term, const var_map_t &var_map) {
flint::poly pa, pb, denpa, denpb;
flint::from_argument_poly(pa.d, denpa.d, a, false);
flint::from_argument_poly(pb.d, denpb.d, b, false);
// The input won't have any symbols with negative powers, but there may be rational
// coefficients. Verify this:
if ( fmpz_poly_length(denpa.d) != 1 ) {
MLOCK(ErrorMessageLock);
MesPrint("flint::divmod_poly: error: denpa is non-constant");
MUNLOCK(ErrorMessageLock);
Terminate(-1);
}
if ( fmpz_poly_length(denpb.d) != 1 ) {
MLOCK(ErrorMessageLock);
MesPrint("flint::divmod_poly: error: denpb is non-constant");
MUNLOCK(ErrorMessageLock);
Terminate(-1);
}
flint::fmpz scale;
uint64_t scale_power = 0;
flint::poly div, rem;
// Get the leading coefficient of pb. fmpz_poly_pseudo_divrem returns only the scaling power.
fmpz_poly_get_coeff_fmpz(scale.d, pb.d, fmpz_poly_degree(pb.d));
fmpz_poly_pseudo_divrem(div.d, rem.d, (ulong*)&scale_power, pa.d, pb.d);
// The quotient must be multiplied by the denominator of the divisor
fmpz_poly_mul(div.d, div.d, denpb.d);
// The overall denominator of both div and rem is given by scale^scale_power*denpa. This we will
// pass to to_argument_poly's "denscale" argument which performs the division in the result. We
// have already checked denpa is just an fmpz.
fmpz_pow_ui(scale.d, scale.d, scale_power);
fmpz_mul(scale.d, scale.d, fmpz_poly_get_coeff_ptr(denpa.d, 0));
// Determine the size of the output by passing write = false.
const bool with_arghead = false;
bool write = false;
const uint64_t prev_size = 0;
const uint64_t out_size = return_rem ?
(uint64_t)flint::to_argument_poly(BHEAD NULL, with_arghead, must_fit_term, write, prev_size,
rem.d, var_map, scale.d)
:
(uint64_t)flint::to_argument_poly(BHEAD NULL, with_arghead, must_fit_term, write, prev_size,
div.d, var_map, scale.d)
;
WORD* res = (WORD *)Malloc1(sizeof(WORD)*out_size, "flint::divrem_poly");
// Write out the result
write = true;
if ( return_rem ) {
(uint64_t)flint::to_argument_poly(BHEAD res, with_arghead, must_fit_term, write, prev_size,
rem.d, var_map, scale.d);
}
else {
(uint64_t)flint::to_argument_poly(BHEAD res, with_arghead, must_fit_term, write, prev_size,
div.d, var_map, scale.d);
}
return res;
}
/*
#] flint::divmod_poly :
#[ flint::factorize_mpoly :
*/
WORD* flint::factorize_mpoly(PHEAD const WORD *argin, WORD *argout, const bool with_arghead,
const bool is_fun_arg, const var_map_t &var_map) {
flint::mpoly_ctx ctx(var_map.size());
flint::mpoly arg(ctx.d), den(ctx.d), base(ctx.d);
flint::from_argument_mpoly(arg.d, den.d, argin, with_arghead, var_map, ctx.d);
// The denominator must be 1:
if ( fmpz_mpoly_is_one(den.d, ctx.d) != 1 ) {
MLOCK(ErrorMessageLock);
MesPrint("flint::factorize_mpoly error: den != 1");
MUNLOCK(ErrorMessageLock);
Terminate(-1);
}
// Now we can factor the mpoly:
flint::mpoly_factor arg_fac(ctx.d);
fmpz_mpoly_factor(arg_fac.d, arg.d, ctx.d);
const int64_t num_factors = fmpz_mpoly_factor_length(arg_fac.d, ctx.d);
flint::fmpz overall_constant;
fmpz_mpoly_factor_get_constant_fmpz(overall_constant.d, arg_fac.d, ctx.d);
// FORM should always have taken the overall constant out in the content. Thus this overall
// constant factor should be +- 1 here. Verify this:
if ( ! ( fmpz_equal_si(overall_constant.d, 1) || fmpz_equal_si(overall_constant.d, -1) ) ) {
MLOCK(ErrorMessageLock);
MesPrint("flint::factorize_mpoly error: overall constant factor != +-1");
MUNLOCK(ErrorMessageLock);
Terminate(-1);
}
// Construct the output. If argout is not NULL, we write the result there.
// Otherwise, allocate memory.
// The output is zero-terminated list of factors. If with_arghead, each has an arghead which
// contains its size. Otherwise, the factors are zero separated.
// We only need to determine the size of the output if we are allocating memory, but we need to
// loop through the factors to fix their signs anyway. Do both together in one loop:
// Initially 1, for the final trailing 0.
uint64_t output_size = 1;
// For finding the highest symbol, in FORM's lexicographic ordering
var_map_t var_map_inv;
for ( auto x: var_map ) {
var_map_inv[x.second] = x.first;
}
// Store whether we should flip the factor sign in the ouput:
vector<int32_t> base_sign(num_factors, 0);
for ( int64_t i = 0; i < num_factors; i++ ) {
fmpz_mpoly_factor_get_base(base.d, arg_fac.d, i, ctx.d);
const int64_t exponent = fmpz_mpoly_factor_get_exp_si(arg_fac.d, i, ctx.d);
// poly_factorize makes sure the highest power of the "highest symbol" (in FORM's
// lexicographic ordering) has a positive coefficient. Check this, update overall_constant
// of the factorization if necessary.
// Store the sign per factor, so that we can flip the signs in the output without re-checking
// the individual terms again.
uint32_t max_var = 0; // FORM symbols start at 20, 0 is a good initial value.
int32_t max_pow = -1;
vector<int64_t> base_term_exponents(var_map.size(), 0);
for ( int64_t j = 0; j < fmpz_mpoly_length(base.d, ctx.d); j++ ) {
fmpz_mpoly_get_term_exp_si((slong*)base_term_exponents.data(), base.d, (slong)j, ctx.d);
for ( size_t k = 0; k < var_map.size(); k++ ) {
if ( base_term_exponents[k] > 0 && ( var_map_inv.at(k) > max_var ||
( var_map_inv.at(k) == max_var && base_term_exponents[k] > max_pow ) ) ) {
max_var = var_map_inv.at(k);
max_pow = base_term_exponents[k];
base_sign[i] = fmpz_sgn(fmpz_mpoly_term_coeff_ref(base.d, j, ctx.d));
}
}
}
// If this base's sign will be flipped an odd number of times, there is a contribution to
// the overall sign of the whole factorization:
if ( ( base_sign[i] == -1 ) && ( exponent % 2 == 1 ) ) {
fmpz_neg(overall_constant.d, overall_constant.d);
}
// Now determine the output size of the factor, if we are allocating the memory
if ( argout == NULL ) {
const bool write = false;
for ( int64_t j = 0; j < exponent; j++ ) {
output_size += (uint64_t)flint::to_argument_mpoly(BHEAD NULL, with_arghead,
is_fun_arg, write, 0, base.d, var_map, ctx.d);
}
}
}
if ( fmpz_sgn(overall_constant.d) == -1 && argout == NULL ) {
// Add space for a fast-notation number or a normal-notation number and zero separator
output_size += with_arghead ? 2 : 4+1;
}
// Now make the allocation if necessary:
if ( argout == NULL ) {
argout = (WORD*)Malloc1(sizeof(WORD)*output_size, "flint::factorize_mpoly");
}
// And now comes the actual output:
WORD* old_argout = argout;
// If the overall sign is negative, first write a full-notation -1. It will be absorbed into the
// overall factor in the content by the caller.
if ( fmpz_sgn(overall_constant.d) == -1 ) {
if ( with_arghead ) {
// poly writes in fast notation in this case. Fast notation is expected by the caller, to
// properly merge it with the overall factor of the content.
*argout++ = -SNUMBER;
*argout++ = -1;
}
else {
*argout++ = 4; // term size
*argout++ = 1; // numerator
*argout++ = 1; // denominator
*argout++ = -3; // coeff size, negative number
*argout++ = 0; // factor separator
}
}
for ( int64_t i = 0; i < num_factors; i++ ) {
fmpz_mpoly_factor_get_base(base.d, arg_fac.d, i, ctx.d);
const int64_t exponent = fmpz_mpoly_factor_get_exp_si(arg_fac.d, i, ctx.d);
if ( base_sign[i] == -1 ) {
fmpz_mpoly_neg(base.d, base.d, ctx.d);
}
const bool write = true;
for ( int64_t j = 0; j < exponent; j++ ) {
argout += flint::to_argument_mpoly(BHEAD argout, with_arghead, is_fun_arg, write,
argout-old_argout, base.d, var_map, ctx.d);
}
}
// Final trailing zero to denote the end of the factors.
*argout++ = 0;
return old_argout;
}
/*
#] flint::factorize_mpoly :
#[ flint::factorize_poly :
*/
WORD* flint::factorize_poly(PHEAD const WORD *argin, WORD *argout, const bool with_arghead,
const bool is_fun_arg, const var_map_t &var_map) {
flint::poly arg, den;
flint::from_argument_poly(arg.d, den.d, argin, with_arghead);
// The denominator must be 1:
if ( fmpz_poly_is_one(den.d) != 1 ) {
MLOCK(ErrorMessageLock);
MesPrint("flint::factorize_poly error: den != 1");
MUNLOCK(ErrorMessageLock);
Terminate(-1);
}
// Now we can factor the poly:
flint::poly_factor arg_fac;
fmpz_poly_factor(arg_fac.d, arg.d);
// fmpz_poly_factor_t lacks some convenience functions which fmpz_mpoly_factor_t has.
// I have worked out how to get the factors by looking at how fmpz_poly_factor_print works.
const long num_factors = (arg_fac.d)->num;
// Construct the output. If argout is not NULL, we write the result there.
// Otherwise, allocate memory.
// The output is zero-terminated list of factors. If with_arghead, each has an arghead which
// contains its size. Otherwise, the factors are zero separated.
if ( argout == NULL ) {
// First we need to determine the size of the output. This is the same procedure as the
// loop below, but we don't write anything in to_argument_poly (write arg: false).
// Initially 1, for the final trailing 0.
uint64_t output_size = 1;
for ( long i = 0; i < num_factors; i++ ) {
fmpz_poly_struct* base = (arg_fac.d)->p + i;
const long exponent = (arg_fac.d)->exp[i];
const bool write = false;
for ( long j = 0; j < exponent; j++ ) {
output_size += (uint64_t)flint::to_argument_poly(BHEAD NULL, with_arghead,
is_fun_arg, write, 0, base, var_map);
}
}
argout = (WORD*)Malloc1(sizeof(WORD)*output_size, "flint::factorize_poly");
}
WORD* old_argout = argout;
for ( long i = 0; i < num_factors; i++ ) {
fmpz_poly_struct* base = (arg_fac.d)->p + i;
const long exponent = (arg_fac.d)->exp[i];
const bool write = true;
for ( long j = 0; j < exponent; j++ ) {
argout += flint::to_argument_poly(BHEAD argout, with_arghead, is_fun_arg, write,
argout-old_argout, base, var_map);
}
}
*argout = 0;
return old_argout;
}
/*
#] flint::factorize_poly :
#[ flint::form_sort :
*/
// Sort terms using form's sorting routines. Uses a custom (faster) compare routine, since here
// only symbols can appear.
// This is a modified poly_sort from polywrap.cc.
void flint::form_sort(PHEAD WORD *terms) {
if ( terms[0] < 0 ) {
// Fast notation, there is nothing to do
return;
}
const WORD oldsorttype = AR.SortType;
AR.SortType = SORTHIGHFIRST;
const WORD in_size = terms[0] - ARGHEAD;
WORD out_size;
if ( NewSort(BHEAD0) ) {
Terminate(-1);
}
AR.CompareRoutine = (COMPAREDUMMY)(&CompareSymbols);
// Make sure the symbols are in the right order within the terms
for ( WORD i = ARGHEAD; i < terms[0]; i += terms[i] ) {
if ( SymbolNormalize(terms+i) < 0 || StoreTerm(BHEAD terms+i) ) {
AR.SortType = oldsorttype;
AR.CompareRoutine = (COMPAREDUMMY)(&Compare1);
LowerSortLevel();
Terminate(-1);
}
}
if ( ( out_size = EndSort(BHEAD terms+ARGHEAD, 1) ) < 0 ) {
AR.SortType = oldsorttype;
AR.CompareRoutine = (COMPAREDUMMY)(&Compare1);
Terminate(-1);
}
// Check the final size
if ( in_size != out_size ) {
MLOCK(ErrorMessageLock);
MesPrint("flint::form_sort: error: unexpected sorted arg length change %d->%d", in_size,
out_size);
MUNLOCK(ErrorMessageLock);
Terminate(-1);
}
AR.SortType = oldsorttype;
AR.CompareRoutine = (COMPAREDUMMY)(&Compare1);
terms[1] = 0; // set dirty flag to zero
}
/*
#] flint::form_sort :
#[ flint::from_argument_mpoly :
*/
// Convert a FORM argument (or 0-terminated list of terms: with_arghead == false) to a
// (multi-variate) fmpz_mpoly_t poly. The "denominator" is return in denpoly, and contains the
// overall negative-power numeric and symbolic factor.
uint64_t flint::from_argument_mpoly(fmpz_mpoly_t poly, fmpz_mpoly_t denpoly, const WORD *args,
const bool with_arghead, const var_map_t &var_map, const fmpz_mpoly_ctx_t ctx) {
// Some callers re-use their poly, denpoly to avoid calling init/clear unnecessarily.
// Make sure they are 0 to begin.
fmpz_mpoly_set_si(poly, 0, ctx);
fmpz_mpoly_set_si(denpoly, 0, ctx);
// First check for "fast notation" arguments:
if ( *args == -SNUMBER ) {
fmpz_mpoly_set_si(poly, *(args+1), ctx);
fmpz_mpoly_set_si(denpoly, 1, ctx);
return 2;
}
if ( *args == -SYMBOL ) {
// A "fast notation" SYMBOL has a power and coefficient of 1:
vector<uint64_t> exponents(var_map.size(), 0);
exponents[var_map.at(*(args+1))] = 1;
fmpz_mpoly_set_coeff_ui_ui(poly, (ulong)1, (ulong*)exponents.data(), ctx);
fmpz_mpoly_set_ui(denpoly, (ulong)1, ctx);
return 2;
}
// Now we can iterate through the terms of the argument. If we have
// an ARGHEAD, we already know where to terminate. Otherwise we'll have
// to loop until the terminating 0.
const WORD* arg_stop = with_arghead ? args+args[0] : (WORD*)UINT64_MAX;
uint64_t arg_size = 0;
if ( with_arghead ) {
arg_size = args[0];
args += ARGHEAD;
}
// Search for numerical or symbol denominators to create "denpoly".
flint::fmpz den_coeff, tmp;
fmpz_set_si(den_coeff.d, 1);
vector<uint64_t> neg_exponents(var_map.size(), 0);
for ( const WORD* term = args; term < arg_stop; term += term[0] ) {
const WORD* term_stop = term+term[0];
const WORD coeff_size = (term_stop)[-1];
const WORD* symbol_stop = term_stop - ABS(coeff_size);
const WORD* t = term;
t++;
if ( t == symbol_stop ) {
// Just a number, no symbols
}
else {
t++; // this entry is SYMBOL
t++; // this entry just has the size of the symbol array, but we can use symbol_stop
for ( const WORD* s = t; s < symbol_stop; s += 2 ) {
if ( *(s+1) < 0 ) {
neg_exponents[var_map.at(*s)] =
MaX(neg_exponents[var_map.at(*s)], (uint64_t)(-(*(s+1))) );
}
}
}
// Now check for a denominator in the coefficient:
if ( *(symbol_stop+ABS(coeff_size/2)) != 1 ) {
flint::fmpz_set_form(tmp.d, (UWORD*)(symbol_stop+ABS(coeff_size/2)), ABS(coeff_size/2));
// Record the LCM of the coefficient denominators:
fmpz_lcm(den_coeff.d, den_coeff.d, tmp.d);
}
if ( !with_arghead && *term_stop == 0 ) {
// + 1 for the terminating 0
arg_size = term_stop - args + 1;
break;
}
}
// Assemble denpoly.
fmpz_mpoly_set_coeff_fmpz_ui(denpoly, den_coeff.d, (ulong*)neg_exponents.data(), ctx);
// For the term coefficients
flint::fmpz coeff;
for ( const WORD* term = args; term < arg_stop; term += term[0] ) {
const WORD* term_stop = term+term[0];
const WORD coeff_size = (term_stop)[-1];
const WORD* symbol_stop = term_stop - ABS(coeff_size);
const WORD* t = term;
vector<uint64_t> exponents(var_map.size(), 0);
t++; // skip over the total size entry
if ( t == symbol_stop ) {
// Just a number, no symbols
}
else {
t++; // this entry is SYMBOL
t++; // this entry just has the size of the symbol array, but we can use symbol_stop
for ( const WORD* s = t; s < symbol_stop; s += 2 ) {
exponents[var_map.at(*s)] = *(s+1);
}
}
// Now read the coefficient
flint::fmpz_set_form(coeff.d, (UWORD*)symbol_stop, coeff_size/2);
// Multiply by denominator LCM
fmpz_mul(coeff.d, coeff.d, den_coeff.d);
// Shift by neg_exponents
for ( size_t i = 0; i < var_map.size(); i++ ) {
exponents[i] += neg_exponents[i];
}
// Read the denominator if there is one, and divide it out of the coefficient
if ( *(symbol_stop+ABS(coeff_size/2)) != 1 ) {
flint::fmpz_set_form(tmp.d, (UWORD*)(symbol_stop+ABS(coeff_size/2)), ABS(coeff_size/2));
// By construction, this is an exact division
fmpz_divexact(coeff.d, coeff.d, tmp.d);
}
// Push the term to the mpoly, remember to sort when finished! This is much faster than using
// fmpz_mpoly_set_coeff_fmpz_ui when the terms arrive in the "wrong order".
fmpz_mpoly_push_term_fmpz_ui(poly, coeff.d, (ulong*)exponents.data(), ctx);
if ( !with_arghead && *term_stop == 0 ) {
break;
}
}
// And now sort the mpoly
fmpz_mpoly_sort_terms(poly, ctx);
return arg_size;
}
/*
#] flint::from_argument_mpoly :
#[ flint::from_argument_poly :
*/
// Convert a FORM argument (or 0-terminated list of terms: with_arghead == false) to a
// (uni-variate) fmpz_poly_t poly. The "denominator" is return in denpoly, and contains the
// overall negative-power numeric and symbolic factor.
uint64_t flint::from_argument_poly(fmpz_poly_t poly, fmpz_poly_t denpoly, const WORD *args,
const bool with_arghead) {
// Some callers re-use their poly, denpoly to avoid calling init/clear unnecessarily.
// Make sure they are 0 to begin.
fmpz_poly_set_si(poly, 0);
fmpz_poly_set_si(denpoly, 0);
// First check for "fast notation" arguments:
if ( *args == -SNUMBER ) {
fmpz_poly_set_si(poly, *(args+1));
fmpz_poly_set_si(denpoly, 1);
return 2;
}
if ( *args == -SYMBOL ) {
// A "fast notation" SYMBOL has a power and coefficient of 1:
fmpz_poly_set_coeff_si(poly, 1, 1);
fmpz_poly_set_si(denpoly, 1);
return 2;
}
// Now we can iterate through the terms of the argument. If we have
// an ARGHEAD, we already know where to terminate. Otherwise we'll have
// to loop until the terminating 0.
const WORD* arg_stop = with_arghead ? args+args[0] : (WORD*)UINT64_MAX;
uint64_t arg_size = 0;
if ( with_arghead ) {
arg_size = args[0];
args += ARGHEAD;
}
// Search for numerical or symbol denominators to create "denpoly".
flint::fmpz den_coeff, tmp;
fmpz_set_si(den_coeff.d, 1);
uint64_t neg_exponent = 0;
for ( const WORD* term = args; term < arg_stop; term += term[0] ) {
const WORD* term_stop = term+term[0];
const WORD coeff_size = (term_stop)[-1];
const WORD* symbol_stop = term_stop - ABS(coeff_size);
const WORD* t = term;
t++; // skip over the total size entry
if ( t == symbol_stop ) {
// Just a number, no symbols
}
else {
t++; // this entry is SYMBOL
t++; // this entry is the size of the symbol array
t++; // this is the first (and only) symbol code
if ( *t < 0 ) {
neg_exponent = MaX(neg_exponent, (uint64_t)(-(*t)) );
}
}
// Now check for a denominator in the coefficient:
if ( *(symbol_stop+ABS(coeff_size/2)) != 1 ) {
flint::fmpz_set_form(tmp.d, (UWORD*)(symbol_stop+ABS(coeff_size/2)), ABS(coeff_size/2));
// Record the LCM of the coefficient denominators:
fmpz_lcm(den_coeff.d, den_coeff.d, tmp.d);
}
if ( *term_stop == 0 ) {
// + 1 for the terminating 0
arg_size = term_stop - args + 1;
break;
}
}
// Assemble denpoly.
fmpz_poly_set_coeff_fmpz(denpoly, neg_exponent, den_coeff.d);
// For the term coefficients
flint::fmpz coeff;
for ( const WORD* term = args; term < arg_stop; term += term[0] ) {
const WORD* term_stop = term+term[0];
const WORD coeff_size = (term_stop)[-1];
const WORD* symbol_stop = term_stop - ABS(coeff_size);
const WORD* t = term;
uint64_t exponent = 0;
t++; // skip over the total size entry
if ( t == symbol_stop ) {
// Just a number, no symbols
}
else {
t++; // this entry is SYMBOL
t++; // this entry is the size of the symbol array
t++; // this is the first (and only) symbol code
exponent = *t++;
}
// Now read the coefficient
flint::fmpz_set_form(coeff.d, (UWORD*)symbol_stop, coeff_size/2);
// Multiply by denominator LCM
fmpz_mul(coeff.d, coeff.d, den_coeff.d);
// Shift by neg_exponent
exponent += neg_exponent;
// Read the denominator if there is one, and divide it out of the coefficient
if ( *(symbol_stop+ABS(coeff_size/2)) != 1 ) {
flint::fmpz_set_form(tmp.d, (UWORD*)(symbol_stop+ABS(coeff_size/2)), ABS(coeff_size/2));
// By construction, this is an exact division
fmpz_divexact(coeff.d, coeff.d, tmp.d);
}
// Add the term to the poly
fmpz_poly_set_coeff_fmpz(poly, exponent, coeff.d);
if ( *term_stop == 0 ) {
break;
}
}
return arg_size;
}
/*
#] flint::from_argument_poly :
#[ flint::fmpz_get_form :
*/
// Write FORM's long integer representation of an fmpz at a, and put the number of WORDs at na.
// na carries the sign of the integer.
WORD flint::fmpz_get_form(fmpz_t z, WORD *a) {
WORD na = 0;
const int32_t sgn = fmpz_sgn(z);
if ( sgn == -1 ) {
fmpz_neg(z, z);
}
const int64_t nlimbs = fmpz_size(z);
// This works but is UB?
//fmpz_get_ui_array(reinterpret_cast<uint64_t*>(a), nlimbs, z);
// Use fixed-size functions to get limb data where possible. These probably cover most real
// cases.
if ( nlimbs == 1 ) {
const uint64_t limb = fmpz_get_ui(z);
a[0] = (WORD)(limb & 0xFFFFFFFF);
na++;
a[1] = (WORD)(limb >> BITSINWORD);
if ( a[1] != 0 ) {
na++;
}
}
else if ( nlimbs == 2 ) {
uint64_t limb_hi = 0, limb_lo = 0;
fmpz_get_uiui((ulong*)&limb_hi, (ulong*)&limb_lo, z);
a[0] = (WORD)(limb_lo & 0xFFFFFFFF);
na++;
a[1] = (WORD)(limb_lo >> BITSINWORD);
na++;
a[2] = (WORD)(limb_hi & 0xFFFFFFFF);
na++;
a[3] = (WORD)(limb_hi >> BITSINWORD);
if ( a[3] != 0 ) {
na++;
}
}
else {
vector<uint64_t> limb_data(nlimbs, 0);
fmpz_get_ui_array((ulong*)limb_data.data(), (slong)nlimbs, z);
for ( long i = 0; i < nlimbs; i++ ) {
a[2*i] = (WORD)(limb_data[i] & 0xFFFFFFFF);
na++;
a[2*i+1] = (WORD)(limb_data[i] >> BITSINWORD);
if ( a[2*i+1] != 0 || i < (nlimbs-1) ) {
// The final limb might fit in a single 32bit WORD. Only
// increment na if the final WORD is non zero.
na++;
}
}
}
// And now put the sign in the number of limbs
if ( sgn == -1 ) {
na = -na;
}
return na;
}
/*
#] flint::fmpz_get_form :
#[ flint::fmpz_set_form :
*/
// Create an fmpz directly from FORM's long integer representation. fmpz uses 64bit unsigned limbs,
// but FORM uses 32bit UWORDs on 64bit architectures so we can't use fmpz_set_ui_array directly.
void flint::fmpz_set_form(fmpz_t z, UWORD *a, WORD na) {
if ( na == 0 ) {
fmpz_zero(z);
return;
}
// Negative na represenents a negative number
int32_t sgn = 1;
if ( na < 0 ) {
sgn = -1;
na = -na;
}
// Remove padding. FORM stores numerators and denominators with equal numbers of limbs but we
// don't need to do this within the fmpz. It is not necessary to do this really, the fmpz
// doesn't add zero limbs unnecessarily, but we might be able to avoid creating the limb_data
// array below.
while ( a[na-1] == 0 ) {
na--;
}
// If the number fits in fixed-size fmpz_set functions, we don't need to use additional memory
// to convert to uint64_t. These probably cover most real cases.
if ( na == 1 ) {
fmpz_set_ui(z, (uint64_t)a[0]);
}
else if ( na == 2 ) {
fmpz_set_ui(z, (((uint64_t)a[1])<<BITSINWORD) + (uint64_t)a[0]);
}
else if ( na == 3 ) {
fmpz_set_uiui(z, (uint64_t)a[2], (((uint64_t)a[1])<<BITSINWORD) + (uint64_t)a[0]);
}
else if ( na == 4 ) {
fmpz_set_uiui(z, (((uint64_t)a[3])<<BITSINWORD) + (uint64_t)a[2],
(((uint64_t)a[1])<<BITSINWORD) + (uint64_t)a[0]);
}
else {
const int32_t nlimbs = (na+1)/2;
vector<uint64_t> limb_data(nlimbs, 0);
for ( int32_t i = 0; i < nlimbs; i++ ) {
if ( 2*i+1 <= na-1 ) {
limb_data[i] = (uint64_t)a[2*i] + (((uint64_t)a[2*i+1])<<BITSINWORD);
}
else {
limb_data[i] = (uint64_t)a[2*i];
}
}
fmpz_set_ui_array(z, (ulong*)limb_data.data(), nlimbs);
}
// Finally set the sign.
if ( sgn == -1 ) {
fmpz_neg(z, z);
}
return;
}
/*
#] flint::fmpz_set_form :
#[ flint::gcd_mpoly :
*/
// Return a pointer to a buffer containing the GCD of the 0-terminated term lists at a and b.
// If must_fit_term, this should be a TermMalloc buffer. Otherwise Malloc1 the buffer.
// For multi-variate cases.
WORD* flint::gcd_mpoly(PHEAD const WORD *a, const WORD *b, const WORD must_fit_term,
const var_map_t &var_map) {
flint::mpoly_ctx ctx(var_map.size());
flint::mpoly pa(ctx.d), pb(ctx.d), denpa(ctx.d), denpb(ctx.d), gcd(ctx.d);
flint::from_argument_mpoly(pa.d, denpa.d, a, false, var_map, ctx.d);
flint::from_argument_mpoly(pb.d, denpb.d, b, false, var_map, ctx.d);
// denpa, denpb must be 1:
if ( fmpz_mpoly_is_one(denpa.d, ctx.d) != 1 ) {
MLOCK(ErrorMessageLock);
MesPrint("flint::gcd_mpoly: error: denpa != 1");
MUNLOCK(ErrorMessageLock);
Terminate(-1);
}
if ( fmpz_mpoly_is_one(denpb.d, ctx.d) != 1 ) {
MLOCK(ErrorMessageLock);
MesPrint("flint::gcd_mpoly: error: denpb != 1");
MUNLOCK(ErrorMessageLock);
Terminate(-1);
}
// poly returns pa if pa == pb, regardless of the lcoeff sign
if ( fmpz_mpoly_equal(pa.d, pb.d, ctx.d) ) {
fmpz_mpoly_set(gcd.d, pa.d, ctx.d);
}
else {
// We need some gymnastics to have the same sign conventions as the poly class. It takes the
// integer or univar content out of a,b, with the convention that the content sign matches
// the lcoeff sign. Since FORM has already taken out the content, we are left with +-1. In
// Flint, the content always has a positive sign so here we should find +1. Check this:
flint::mpoly tmp(ctx.d);
fmpz_mpoly_term_content(tmp.d, pa.d, ctx.d);
if ( fmpz_mpoly_is_one(tmp.d, ctx.d) != 1 ) {
MLOCK(ErrorMessageLock);
MesPrint("flint::gcd_mpoly: error: content of 1st arg != 1");
MUNLOCK(ErrorMessageLock);
Terminate(-1);
}
fmpz_mpoly_term_content(tmp.d, pb.d, ctx.d);
if ( fmpz_mpoly_is_one(tmp.d, ctx.d) != 1 ) {
MLOCK(ErrorMessageLock);
MesPrint("flint::gcd_mpoly: error: content of 2nd arg != 1");
MUNLOCK(ErrorMessageLock);
Terminate(-1);
}
// The poly class now divides the content out of a,b so that they have a positive lcoeff.
// Then it multiplies the final gcd (which is given a positive lcoeff also) by
// gcd(cont a, cont b). There it has gcd(1,1) = gcd(-1,1) = gcd(1,-1) = 1, and
// gcd(-1,-1) = -1 (because of the pa==pb early return). So: if both input polys have a
// negative lcoeff, we will flip the sign in the final result.
bool flip_sign = 0;
if ( ( fmpz_sgn(fmpz_mpoly_term_coeff_ref(pa.d, 0, ctx.d)) == -1 ) &&
( fmpz_sgn(fmpz_mpoly_term_coeff_ref(pb.d, 0, ctx.d)) == -1 ) ) {
flip_sign = 1;
}
fmpz_mpoly_gcd(gcd.d, pa.d, pb.d, ctx.d);
if ( flip_sign ) {
fmpz_mpoly_neg(gcd.d, gcd.d, ctx.d);
}
}
// This is freed by the caller
WORD *res;
if ( must_fit_term ) {
res = TermMalloc("flint::gcd_mpoly");
}
else {
// Determine the size of the GCD by passing write = false.
const bool with_arghead = false;
const bool write = false;
const uint64_t prev_size = 0;
const uint64_t gcd_size = (uint64_t)flint::to_argument_mpoly(BHEAD NULL,
with_arghead, must_fit_term, write, prev_size, gcd.d, var_map, ctx.d);
res = (WORD *)Malloc1(sizeof(WORD)*gcd_size, "flint::gcd_mpoly");
}
const bool with_arghead = false;
const bool write = true;
const uint64_t prev_size = 0;
flint::to_argument_mpoly(BHEAD res, with_arghead, must_fit_term, write, prev_size, gcd.d,
var_map, ctx.d);
return res;
}
/*
#] flint::gcd_mpoly :
#[ flint::gcd_poly :
*/
// Return a pointer to a buffer containing the GCD of the 0-terminated term lists at a and b.
// If must_fit_term, this should be a TermMalloc buffer. Otherwise Malloc1 the buffer.
// For uni-variate cases.
WORD* flint::gcd_poly(PHEAD const WORD *a, const WORD *b, const WORD must_fit_term,
const var_map_t &var_map) {
flint::poly pa, pb, denpa, denpb, gcd;
flint::from_argument_poly(pa.d, denpa.d, a, false);
flint::from_argument_poly(pb.d, denpb.d, b, false);
// denpa, denpb must be 1:
if ( fmpz_poly_is_one(denpa.d) != 1 ) {
MLOCK(ErrorMessageLock);
MesPrint("flint::gcd_poly: error: denpa != 1");
MUNLOCK(ErrorMessageLock);
Terminate(-1);
}
if ( fmpz_poly_is_one(denpb.d) != 1 ) {
MLOCK(ErrorMessageLock);
MesPrint("flint::gcd_poly: error: denpb != 1");
MUNLOCK(ErrorMessageLock);
Terminate(-1);
}
// poly returns pa if pa == pb, regardless of the lcoeff sign
if ( fmpz_poly_equal(pa.d, pb.d) ) {
fmpz_poly_set(gcd.d, pa.d);
}
else {
// Here, we don't have to make any sign flips like the mpoly case, because poly's
// integer_gcd(1,1) = integer_gcd(-1,1) = integer_gcd(1,-1) = integer_gcd(-1,-1) = +1.
// Still, verify that the content is 1:
flint::fmpz tmp;
fmpz_poly_content(tmp.d, pa.d);
if ( fmpz_is_one(tmp.d) != 1 ) {
MLOCK(ErrorMessageLock);
MesPrint("flint::gcd_poly: error: content of 1st arg != 1");
MUNLOCK(ErrorMessageLock);
Terminate(-1);
}
fmpz_poly_content(tmp.d, pb.d);
if ( fmpz_is_one(tmp.d) != 1 ) {
MLOCK(ErrorMessageLock);
MesPrint("flint::gcd_poly: error: content of 2nd arg != 1");
MUNLOCK(ErrorMessageLock);
Terminate(-1);
}
fmpz_poly_gcd(gcd.d, pa.d, pb.d);
}
// This is freed by the caller
WORD *res;
if ( must_fit_term ) {
res = TermMalloc("flint::gcd_poly");
}
else {
// Determine the size of the GCD by passing write = false.
const bool with_arghead = false;
const bool write = false;
const uint64_t prev_size = 0;
const uint64_t gcd_size = (uint64_t)flint::to_argument_poly(BHEAD NULL,
with_arghead, must_fit_term, write, prev_size, gcd.d, var_map);
res = (WORD *)Malloc1(sizeof(WORD)*gcd_size, "flint::gcd_poly");
}
const bool with_arghead = false;
const uint64_t prev_size = 0;
const bool write = true;
flint::to_argument_poly(BHEAD res, with_arghead, must_fit_term, write, prev_size, gcd.d,
var_map);
return res;
}
/*
#] flint::gcd_poly :
#[ flint::get_variables :
*/
// Get the list of symbols which appear in the vector of expressions. These are polyratfun
// numerators, denominators or expressions from calls to gcd_ etc. Return this list as a map
// between indices and symbol codes.
// TODO FACTORSYMBOL last?
flint::var_map_t flint::get_variables(const vector <WORD *> &es, const bool with_arghead,
const bool sort_vars) {
int32_t num_vars = 0;
// We count the total number of terms to determine "density".
uint32_t num_terms = 0;
// To be used if we sort by highest degree, as the poly code does.
vector<int32_t> degrees;
var_map_t var_map;
// extract all variables
for ( size_t ei = 0; ei < es.size(); ei++ ) {
WORD *e = es[ei];
// fast notation
if ( *e == -SNUMBER ) {
num_terms++;
}
else if ( *e == -SYMBOL ) {
num_terms++;
if ( !var_map.count(e[1]) ) {
var_map[e[1]] = num_vars++;
degrees.push_back(1);
}
}
// JD: Here we need to check for non-symbol/number terms in fast notation.
else if ( *e < 0 ) {
MLOCK(ErrorMessageLock);
MesPrint("ERROR: polynomials and polyratfuns must contain symbols only");
MUNLOCK(ErrorMessageLock);
Terminate(1);
}
else {
for ( WORD i = with_arghead ? ARGHEAD:0; with_arghead ? i < e[0]:e[i] != 0; i += e[i] ) {
num_terms++;
if ( i+1 < i+e[i]-ABS(e[i+e[i]-1]) && e[i+1] != SYMBOL ) {
MLOCK(ErrorMessageLock);
MesPrint("ERROR: polynomials and polyratfuns must contain symbols only");
MUNLOCK(ErrorMessageLock);
Terminate(1);
}
for ( WORD j = i+3; j<i+e[i]-ABS(e[i+e[i]-1]); j += 2 ) {
if ( !var_map.count(e[j]) ) {
var_map[e[j]] = num_vars++;
degrees.push_back(e[j+1]);
}
else {
degrees[var_map[e[j]]] = MaX(degrees[var_map[e[j]]], e[j+1]);
}
}
}
}
}
if ( sort_vars ) {
// bubble sort variables in decreasing order of degree
// (this seems better for factorization)
for ( size_t i = 0; i < var_map.size(); i++ ) {
for ( size_t j = 0; j+1 < var_map.size(); j++ ) {
if ( degrees[j] < degrees[j+1] ) {
swap(degrees[j], degrees[j+1]);
// Find the map keys associated with the values we want to swap
uint32_t j0 = 0;
uint32_t j1 = 0;
for ( auto x: var_map ) {
if ( x.second == j ) {
j0 = x.first;
}
else if ( x.second == j+1 ) {
j1 = x.first;
}
}
swap(var_map.at(j0), var_map.at(j1));
}
}
}
}
// Otherwise, sort lexicographically in FORM's ordering
else {
for ( size_t i = 0; i < var_map.size(); i++ ) {
for ( size_t j = 0; j+1 < var_map.size(); j++ ) {
uint32_t j0 = 0;
uint32_t j1 = 0;
for ( auto x: var_map ) {
if ( x.second == j ) {
j0 = x.first;
}
else if ( x.second == j+1 ) {
j1 = x.first;
}
}
if ( j0 > j1 ) {
swap(var_map.at(j0), var_map.at(j1));
}
}
}
}
if ( var_map.size() == 1 ) {
// In the univariate case, if the polynomials are sufficiently sparse force the use of the
// multivariate routines, which use a sparse representation, by adding a dummy map entry.
if ( (float)num_terms <= UNIVARIATE_DENSITY_THR * (float)degrees[0] ) {
// -1 will never be a symbol code. Built-in symbols from 0 to 19, and 20 is the first
// user symbol.
var_map[-1] = num_vars;
}
}
return var_map;
}
/*
#] flint::get_variables :
#[ flint::inverse_poly :
*/
WORD* flint::inverse_poly(PHEAD const WORD *a, const WORD *b, const var_map_t &var_map) {
flint::poly pa, pb, denpa, denpb;
flint::from_argument_poly(pa.d, denpa.d, a, false);
flint::from_argument_poly(pb.d, denpb.d, b, false);
// fmpz_poly_xgcd is undefined if the content of pa and pb are not 1. Take the content out.
// fmpz_poly_content gives the non-negative content and fmpz_poly_primitive normalizes to a
// non-negative lcoeff, so we need to add the sign to the content if the polys have a negative
// lcoeff. We don't need to keep the content of pb, it is a numerical multiple of the modulus.
flint::fmpz content_a, resultant;
flint::poly inverse, tmp;
fmpz_poly_content(content_a.d, pa.d);
if ( fmpz_sgn(fmpz_poly_lead(pa.d)) == -1 ) {
fmpz_neg(content_a.d, content_a.d);
}
fmpz_poly_primitive_part(pa.d, pa.d);
fmpz_poly_primitive_part(pb.d, pb.d);
// Special cases:
// Possibly strange that we give 1 for inverse_(x1,1) but here we take MMA's convention.
if ( fmpz_poly_is_one(pa.d) && fmpz_poly_is_one(pb.d) ) {
fmpz_poly_one(inverse.d);
fmpz_one(resultant.d);
}
else if ( fmpz_poly_is_one(pb.d) ) {
fmpz_poly_zero(inverse.d);
fmpz_one(resultant.d);
}
else {
// Now use the extended Euclidean algorithm to find inverse, resultant, tmp of the Bezout
// identity: inverse*pa + tmp*pb = resultant. Then inverse/resultant is the multiplicative
// inverse of pa mod pb. We'll divide by resultant in the denscale argument of to_argument_poly.
fmpz_poly_xgcd(resultant.d, inverse.d, tmp.d, pa.d, pb.d);
// If the resultant is zero, the inverse does not exist:
if ( fmpz_is_zero(resultant.d) ) {
MLOCK(ErrorMessageLock);
MesPrint("flint::inverse_poly error: inverse does not exist");
MUNLOCK(ErrorMessageLock);
Terminate(-1);
}
}
// Multiply inverse by denpa. denpb is a numerical multiple of the modulus, so doesn't matter.
// We also need to divide by content_a, which we do in the denscale argument of to_argument_poly
// by multiplying resultant by content_a here.
fmpz_poly_mul(inverse.d, inverse.d, denpa.d);
fmpz_mul(resultant.d, resultant.d, content_a.d);
WORD* res;
// First determine the result size, and malloc. The result should have no arghead. Here we use
// the "scale" argument of to_argument_poly since resultant might not be 1.
const bool with_arghead = false;
bool write = false;
const bool must_fit_term = false;
const uint64_t prev_size = 0;
const uint64_t res_size = (uint64_t)flint::to_argument_poly(BHEAD NULL,
with_arghead, must_fit_term, write, prev_size, inverse.d, var_map, resultant.d);
res = (WORD*)Malloc1(sizeof(WORD)*res_size, "flint::inverse_poly");
write = true;
flint::to_argument_poly(BHEAD res, with_arghead, must_fit_term, write, prev_size, inverse.d,
var_map, resultant.d);
return res;
}
/*
#] flint::inverse_poly :
#[ flint::mul_mpoly :
*/
// Return a pointer to a buffer containing the product of the 0-terminated term lists at a and b.
// For multi-variate cases.
WORD* flint::mul_mpoly(PHEAD const WORD *a, const WORD *b, const var_map_t &var_map) {
flint::mpoly_ctx ctx(var_map.size());
flint::mpoly pa(ctx.d), pb(ctx.d), denpa(ctx.d), denpb(ctx.d);
flint::from_argument_mpoly(pa.d, denpa.d, a, false, var_map, ctx.d);
flint::from_argument_mpoly(pb.d, denpb.d, b, false, var_map, ctx.d);
// denpa, denpb must be integers. Negative symbol powers have been converted to extra symbols.
if ( fmpz_mpoly_is_fmpz(denpa.d, ctx.d) != 1 ) {
MLOCK(ErrorMessageLock);
MesPrint("flint::mul_mpoly: error: denpa is non-constant");
MUNLOCK(ErrorMessageLock);
Terminate(-1);
}
if ( fmpz_mpoly_is_fmpz(denpb.d, ctx.d) != 1 ) {
MLOCK(ErrorMessageLock);
MesPrint("flint::mul_mpoly: error: denpb is non-constant");
MUNLOCK(ErrorMessageLock);
Terminate(-1);
}
// Multiply numerators, store result in pa
fmpz_mpoly_mul(pa.d, pa.d, pb.d, ctx.d);
// Multiply denominators, store result in denpa, and convert to an fmpz:
fmpz_mpoly_mul(denpa.d, denpa.d, denpb.d, ctx.d);
flint::fmpz den;
fmpz_mpoly_get_fmpz(den.d, denpa.d, ctx.d);
WORD* res;
// First determine the result size, and malloc. The result should have no arghead. Here we use
// the "scale" argument of to_argument_mpoly since den might not be 1.
const bool with_arghead = false;
bool write = false;
const bool must_fit_term = false;
const uint64_t prev_size = 0;
const uint64_t mul_size = (uint64_t)flint::to_argument_mpoly(BHEAD NULL,
with_arghead, must_fit_term, write, prev_size, pa.d, var_map, ctx.d, den.d);
res = (WORD*)Malloc1(sizeof(WORD)*mul_size, "flint::mul_mpoly");
write = true;
flint::to_argument_mpoly(BHEAD res, with_arghead, must_fit_term, write, prev_size, pa.d,
var_map, ctx.d, den.d);
return res;
}
/*
#] flint::mul_mpoly :
#[ flint::mul_poly :
*/
// Return a pointer to a buffer containing the product of the 0-terminated term lists at a and b.
// For uni-variate cases.
WORD* flint::mul_poly(PHEAD const WORD *a, const WORD *b, const var_map_t &var_map) {
flint::poly pa, pb, denpa, denpb;
flint::from_argument_poly(pa.d, denpa.d, a, false);
flint::from_argument_poly(pb.d, denpb.d, b, false);
// denpa, denpb must be integers. Negative symbol powers have been converted to extra symbols.
if ( fmpz_poly_degree(denpa.d) != 0 ) {
MLOCK(ErrorMessageLock);
MesPrint("flint::mul_poly: error: denpa is non-constant");
MUNLOCK(ErrorMessageLock);
Terminate(-1);
}
if ( fmpz_poly_degree(denpb.d) != 0 ) {
MLOCK(ErrorMessageLock);
MesPrint("flint::mul_poly: error: denpb is non-constant");
MUNLOCK(ErrorMessageLock);
Terminate(-1);
}
// Multiply numerators, store result in pa
fmpz_poly_mul(pa.d, pa.d, pb.d);
// Multiply denominators, store result in denpa, and convert to an fmpz:
fmpz_poly_mul(denpa.d, denpa.d, denpb.d);
flint::fmpz den;
fmpz_poly_get_coeff_fmpz(den.d, denpa.d, 0);
WORD* res;
// First determine the result size, and malloc. The result should have no arghead. Here we use
// the "scale" argument of to_argument_poly since den might not be 1.
const bool with_arghead = false;
bool write = false;
const bool must_fit_term = false;
const uint64_t prev_size = 0;
const uint64_t mul_size = (uint64_t)flint::to_argument_poly(BHEAD NULL,
with_arghead, must_fit_term, write, prev_size, pa.d, var_map, den.d);
res = (WORD*)Malloc1(sizeof(WORD)*mul_size, "flint::mul_poly");
write = true;
flint::to_argument_poly(BHEAD res, with_arghead, must_fit_term, write, prev_size, pa.d,
var_map, den.d);
return res;
}
/*
#] flint::mul_poly :
#[ flint::ratfun_add_mpoly :
*/
// Add the multi-variate FORM rational polynomials at t1 and t2. The result is written at out.
void flint::ratfun_add_mpoly(PHEAD const WORD *t1, const WORD *t2, WORD *out,
const var_map_t &var_map) {
flint::mpoly_ctx ctx(var_map.size());
flint::mpoly gcd(ctx.d), num1(ctx.d), den1(ctx.d), num2(ctx.d), den2(ctx.d);
flint::ratfun_read_mpoly(t1, num1.d, den1.d, var_map, ctx.d);
flint::ratfun_read_mpoly(t2, num2.d, den2.d, var_map, ctx.d);
if ( fmpz_mpoly_cmp(den1.d, den2.d, ctx.d) != 0 ) {
fmpz_mpoly_gcd_cofactors(gcd.d, den1.d, den2.d, den1.d, den2.d, ctx.d);
fmpz_mpoly_mul(num1.d, num1.d, den2.d, ctx.d);
fmpz_mpoly_mul(num2.d, num2.d, den1.d, ctx.d);
fmpz_mpoly_add(num1.d, num1.d, num2.d, ctx.d);
fmpz_mpoly_mul(den1.d, den1.d, den2.d, ctx.d);
fmpz_mpoly_mul(den1.d, den1.d, gcd.d, ctx.d);
}
else {
fmpz_mpoly_add(num1.d, num1.d, num2.d, ctx.d);
}
// Finally divide out any common factors between the resulting num1, den1:
fmpz_mpoly_gcd_cofactors(gcd.d, num1.d, den1.d, num1.d, den1.d, ctx.d);
flint::util::fix_sign_fmpz_mpoly_ratfun(num1.d, den1.d, ctx.d);
// Result in FORM notation:
*out++ = AR.PolyFun;
WORD* args_size = out++;
WORD* args_flag = out++;
*args_flag = 0; // clean prf
FILLFUN3(out); // Remainder of funhead, if it is larger than 3
const bool with_arghead = true;
const bool must_fit_term = true;
const bool write = true;
// prev_size + 4, to account for final term size and coeff of "1/1"
out += flint::to_argument_mpoly(BHEAD out, with_arghead, must_fit_term, write, out-args_size+4,
num1.d, var_map, ctx.d);
out += flint::to_argument_mpoly(BHEAD out, with_arghead, must_fit_term, write, out-args_size+4,
den1.d, var_map, ctx.d);
*args_size = out - args_size + 1; // The +1 is to include the function ID
AT.WorkPointer = out;
}
/*
#] flint::ratfun_add_mpoly :
#[ flint::ratfun_add_poly :
*/
// Add the uni-variate FORM rational polynomials at t1 and t2. The result is written at out.
void flint::ratfun_add_poly(PHEAD const WORD *t1, const WORD *t2, WORD *out,
const var_map_t &var_map) {
flint::poly gcd, num1, den1, num2, den2;
flint::ratfun_read_poly(t1, num1.d, den1.d);
flint::ratfun_read_poly(t2, num2.d, den2.d);
if ( fmpz_poly_equal(den1.d, den2.d) == 0 ) {
flint::util::simplify_fmpz_poly(den1.d, den2.d, gcd.d);
fmpz_poly_mul(num1.d, num1.d, den2.d);
fmpz_poly_mul(num2.d, num2.d, den1.d);
fmpz_poly_add(num1.d, num1.d, num2.d);
fmpz_poly_mul(den1.d, den1.d, den2.d);
fmpz_poly_mul(den1.d, den1.d, gcd.d);
}
else {
fmpz_poly_add(num1.d, num1.d, num2.d);
}
// Finally divide out any common factors between the resulting num1, den1:
flint::util::simplify_fmpz_poly(num1.d, den1.d, gcd.d);
flint::util::fix_sign_fmpz_poly_ratfun(num1.d, den1.d);
// Result in FORM notation:
*out++ = AR.PolyFun;
WORD* args_size = out++;
WORD* args_flag = out++;
*args_flag = 0; // clean prf
FILLFUN3(out); // Remainder of funhead, if it is larger than 3
const bool with_arghead = true;
const bool must_fit_term = true;
const bool write = true;
// prev_size + 4, to account for final term size and coeff of "1/1"
out += flint::to_argument_poly(BHEAD out, with_arghead, must_fit_term, write, out-args_size+4,
num1.d, var_map);
out += flint::to_argument_poly(BHEAD out, with_arghead, must_fit_term, write, out-args_size+4,
den1.d, var_map);
*args_size = out - args_size + 1; // The +1 is to include the function ID
AT.WorkPointer = out;
}
/*
#] flint::ratfun_add_poly :
#[ flint::ratfun_normalize_mpoly :
*/
// Multiply and simplify occurrences of the multi-variate FORM rational polynomials found in term.
// The final term is written in place, with the rational polynomial at the end.
void flint::ratfun_normalize_mpoly(PHEAD WORD *term, const var_map_t &var_map) {
// The length of the coefficient
const WORD ncoeff = (term + *term)[-1];
// The end of the term data, before the coefficient:
const WORD *tstop = term + *term - ABS(ncoeff);
flint::mpoly_ctx ctx(var_map.size());
flint::mpoly num1(ctx.d), den1(ctx.d), num2(ctx.d), den2(ctx.d), gcd(ctx.d);
// Start with "trivial" polynomials, and multiply in the num and den of the prf which appear.
flint::fmpz tmpNum, tmpDen;
flint::fmpz_set_form(tmpNum.d, (UWORD*)tstop, ncoeff/2);
flint::fmpz_set_form(tmpDen.d, (UWORD*)tstop+ABS(ncoeff/2), ABS(ncoeff/2));
fmpz_mpoly_set_fmpz(num1.d, tmpNum.d, ctx.d);
fmpz_mpoly_set_fmpz(den1.d, tmpDen.d, ctx.d);
// Loop over the occurrences of PolyFun in the term, and multiply in to num1, den1.
// s tracks where we are writing the non-PolyFun term data. The final PolyFun will
// go at the end.
WORD* term_size = term;
WORD* s = term + 1;
for ( WORD *t = term + 1; t < tstop; ) {
if ( *t == AR.PolyFun ) {
flint::ratfun_read_mpoly(t, num2.d, den2.d, var_map, ctx.d);
// get gcd of num1,den2 and num2,den1 and then assemble
fmpz_mpoly_gcd_cofactors(gcd.d, num1.d, den2.d, num1.d, den2.d, ctx.d);
fmpz_mpoly_gcd_cofactors(gcd.d, num2.d, den1.d, num2.d, den1.d, ctx.d);
fmpz_mpoly_mul(num1.d, num1.d, num2.d, ctx.d);
fmpz_mpoly_mul(den1.d, den1.d, den2.d, ctx.d);
t += t[1];
}
else {
// Not a PolyFun, just copy or skip over
WORD i = t[1];
if ( s != t ) { NCOPY(s,t,i); }
else { t += i; s += i; }
}
}
flint::util::fix_sign_fmpz_mpoly_ratfun(num1.d, den1.d, ctx.d);
// Result in FORM notation:
WORD* out = s;
*out++ = AR.PolyFun;
WORD* args_size = out++;
WORD* args_flag = out++;
*args_flag &= ~MUSTCLEANPRF;
const bool with_arghead = true;
const bool must_fit_term = true;
const bool write = true;
out += flint::to_argument_mpoly(BHEAD out, with_arghead, must_fit_term, write, out-term_size,
num1.d, var_map, ctx.d);
out += flint::to_argument_mpoly(BHEAD out, with_arghead, must_fit_term, write, out-term_size,
den1.d, var_map, ctx.d);
*args_size = out - args_size + 1; // The +1 is to include the function ID
// +3 for the coefficient of 1/1, which is added after the check
if ( sizeof(WORD)*(out-term_size+3) > (size_t)AM.MaxTer ) {
MLOCK(ErrorMessageLock);
MesPrint("flint::ratfun_normalize: output exceeds MaxTermSize");
MUNLOCK(ErrorMessageLock);
Terminate(-1);
}
*out++ = 1;
*out++ = 1;
*out++ = 3; // the term's coefficient is now 1/1
*term_size = out - term_size;
}
/*
#] flint::ratfun_normalize_mpoly :
#[ flint::ratfun_normalize_poly :
*/
// Multiply and simplify occurrences of the uni-variate FORM rational polynomials found in term.
// The final term is written in place, with the rational polynomial at the end.
void flint::ratfun_normalize_poly(PHEAD WORD *term, const var_map_t &var_map) {
// The length of the coefficient
const WORD ncoeff = (term + *term)[-1];
// The end of the term data, before the coefficient:
const WORD *tstop = term + *term - ABS(ncoeff);
flint::poly num1, den1, num2, den2, gcd;
// Start with "trivial" polynomials, and multiply in the num and den of the prf which appear.
flint::fmpz tmpNum, tmpDen;
flint::fmpz_set_form(tmpNum.d, (UWORD*)tstop, ncoeff/2);
flint::fmpz_set_form(tmpDen.d, (UWORD*)tstop+ABS(ncoeff/2), ABS(ncoeff/2));
fmpz_poly_set_fmpz(num1.d, tmpNum.d);
fmpz_poly_set_fmpz(den1.d, tmpDen.d);
// Loop over the occurrences of PolyFun in the term, and multiply in to num1, den1.
// s tracks where we are writing the non-PolyFun term data. The final PolyFun will
// go at the end.
WORD* term_size = term;
WORD* s = term + 1;
for ( WORD *t = term + 1; t < tstop; ) {
if ( *t == AR.PolyFun ) {
flint::ratfun_read_poly(t, num2.d, den2.d);
// get gcd of num1,den2 and num2,den1 and then assemble
flint::util::simplify_fmpz_poly(num1.d, den2.d, gcd.d);
flint::util::simplify_fmpz_poly(num2.d, den1.d, gcd.d);
fmpz_poly_mul(num1.d, num1.d, num2.d);
fmpz_poly_mul(den1.d, den1.d, den2.d);
t += t[1];
}
else {
// Not a PolyFun, just copy or skip over
WORD i = t[1];
if ( s != t ) { NCOPY(s,t,i); }
else { t += i; s += i; }
}
}
flint::util::fix_sign_fmpz_poly_ratfun(num1.d, den1.d);
// Result in FORM notation:
WORD* out = s;
*out++ = AR.PolyFun;
WORD* args_size = out++;
WORD* args_flag = out++;
*args_flag &= ~MUSTCLEANPRF;
const bool with_arghead = true;
const bool must_fit_term = true;
const bool write = true;
out += flint::to_argument_poly(BHEAD out, with_arghead, must_fit_term, write, out-term_size,
num1.d, var_map);
out += flint::to_argument_poly(BHEAD out, with_arghead, must_fit_term, write, out-term_size,
den1.d, var_map);
*args_size = out - args_size + 1; // The +1 is to include the function ID
// +3 for the coefficient of 1/1, which is added after the check
if ( sizeof(WORD)*(out-term_size+3) > (size_t)AM.MaxTer ) {
MLOCK(ErrorMessageLock);
MesPrint("flint::ratfun_normalize: output exceeds MaxTermSize");
MUNLOCK(ErrorMessageLock);
Terminate(-1);
}
*out++ = 1;
*out++ = 1;
*out++ = 3; // the term's coefficient is now 1/1
*term_size = out - term_size;
}
/*
#] flint::ratfun_normalize_poly :
#[ flint::ratfun_read_mpoly :
*/
// Read the multi-variate FORM rational polynomial at a and create fmpz_mpoly_t numerator and
// denominator.
void flint::ratfun_read_mpoly(const WORD *a, fmpz_mpoly_t num, fmpz_mpoly_t den,
const var_map_t &var_map, fmpz_mpoly_ctx_t ctx) {
// The end of the arguments:
const WORD* arg_stop = a+a[1];
const bool must_normalize = (a[2] & MUSTCLEANPRF) != 0;
a += FUNHEAD;
if ( a >= arg_stop ) {
MLOCK(ErrorMessageLock);
MesPrint("ERROR: PolyRatFun cannot have zero arguments");
MUNLOCK(ErrorMessageLock);
Terminate(-1);
}
// Polys to collect the "den of the num" and "den of the den".
// Input can arrive like this when enabling the PolyRatFun or moving things into it.
flint::mpoly den_num(ctx), den_den(ctx);
// Read the numerator
flint::from_argument_mpoly(num, den_num.d, a, true, var_map, ctx);
NEXTARG(a);
if ( a < arg_stop ) {
// Read the denominator
flint::from_argument_mpoly(den, den_den.d, a, true, var_map, ctx);
NEXTARG(a);
}
else {
// The denominator is 1
MLOCK(ErrorMessageLock);
MesPrint("implement this");
MUNLOCK(ErrorMessageLock);
Terminate(-1);
}
if ( a < arg_stop ) {
MLOCK(ErrorMessageLock);
MesPrint("ERROR: PolyRatFun cannot have more than two arguments");
MUNLOCK(ErrorMessageLock);
Terminate(-1);
}
// Multiply the num by den_den and den by den_num:
fmpz_mpoly_mul(num, num, den_den.d, ctx);
fmpz_mpoly_mul(den, den, den_num.d, ctx);
if ( must_normalize ) {
flint::mpoly gcd(ctx);
fmpz_mpoly_gcd_cofactors(gcd.d, num, den, num, den, ctx);
}
}
/*
#] flint::ratfun_read_mpoly :
#[ flint::ratfun_read_poly :
*/
// Read the uni-variate FORM rational polynomial at a and create fmpz_mpoly_t numerator and
// denominator.
void flint::ratfun_read_poly(const WORD *a, fmpz_poly_t num, fmpz_poly_t den) {
// The end of the arguments:
const WORD* arg_stop = a+a[1];
const bool must_normalize = (a[2] & MUSTCLEANPRF) != 0;
a += FUNHEAD;
if ( a >= arg_stop ) {
MLOCK(ErrorMessageLock);
MesPrint("ERROR: PolyRatFun cannot have zero arguments");
MUNLOCK(ErrorMessageLock);
Terminate(-1);
}
// Polys to collect the "den of the num" and "den of the den".
// Input can arrive like this when enabling the PolyRatFun or moving things into it.
flint::poly den_num, den_den;
// Read the numerator
flint::from_argument_poly(num, den_num.d, a, true);
NEXTARG(a);
if ( a < arg_stop ) {
// Read the denominator
flint::from_argument_poly(den, den_den.d, a, true);
NEXTARG(a);
}
else {
// The denominator is 1
MLOCK(ErrorMessageLock);
MesPrint("implement this");
MUNLOCK(ErrorMessageLock);
Terminate(-1);
}
if ( a < arg_stop ) {
MLOCK(ErrorMessageLock);
MesPrint("ERROR: PolyRatFun cannot have more than two arguments");
MUNLOCK(ErrorMessageLock);
Terminate(-1);
}
// Multiply the num by den_den and den by den_num:
fmpz_poly_mul(num, num, den_den.d);
fmpz_poly_mul(den, den, den_num.d);
if ( must_normalize ) {
flint::poly gcd;
flint::util::simplify_fmpz_poly(num, den, gcd.d);
}
}
/*
#] flint::ratfun_read_poly :
#[ flint::to_argument_mpoly :
*/
// Convert a fmpz_mpoly_t to a FORM argument (or 0-terminated list of terms: with_arghead==false).
// If the caller is building an output term, prev_size contains the size of the term so far, to
// check that the output fits in AM.MaxTer if must_fit_term.
// All coefficients will be divided by denscale (which might just be 1).
// If write is false, we never write to out but only track the total would-be size. This lets this
// function be repurposed as a "size of FORM notation" function without duplicating the code.
#define IFW(x) { if ( write ) {x;} }
uint64_t flint::to_argument_mpoly(PHEAD WORD *out, const bool with_arghead,
const bool must_fit_term, const bool write, const uint64_t prev_size, const fmpz_mpoly_t poly,
const var_map_t &var_map, const fmpz_mpoly_ctx_t ctx, const fmpz_t denscale) {
// out is modified later, keep the pointer at entry
const WORD* out_entry = out;
// Track the total size written. We could do this with pointer differences, but if
// write == false we don't write to or move out to be able to find the size that way.
uint64_t ws = 0;
// Check there is at least space for ARGHEAD WORDs (the arghead or fast-notation number/symbol)
if ( write && must_fit_term && (sizeof(WORD)*(prev_size + ARGHEAD) > (size_t)AM.MaxTer) ) {
MLOCK(ErrorMessageLock);
MesPrint("flint::to_argument_mpoly: output exceeds MaxTermSize");
MUNLOCK(ErrorMessageLock);
Terminate(-1);
}
// Create the inverse of var_map, so we don't have to search it for each symbol written
var_map_t var_map_inv;
for ( auto x: var_map ) {
var_map_inv[x.second] = x.first;
}
vector<int64_t> exponents(var_map.size());
const int64_t n_terms = fmpz_mpoly_length(poly, ctx);
if ( n_terms == 0 ) {
if ( with_arghead ) {
IFW(*out++ = -SNUMBER); ws++;
IFW(*out++ = 0); ws++;
return ws;
}
else {
IFW(*out++ = 0); ws++;
return ws;
}
}
// For dividing out denscale
flint::fmpz coeff, den, gcd;
// The mpoly might be constant or a single symbol with coeff 1. Use fast notation if possible.
if ( with_arghead && n_terms == 1 ) {
if ( fmpz_mpoly_is_fmpz(poly, ctx) ) {
// The mpoly is constant. Use fast notation if the number is an integer and small enough:
fmpz_mpoly_get_term_coeff_fmpz(coeff.d, poly, 0, ctx);
fmpz_set(den.d, denscale);
flint::util::simplify_fmpz(coeff.d, den.d, gcd.d);
if ( fmpz_is_one(den.d) && fmpz_fits_si(coeff.d) ) {
const int64_t fast_coeff = fmpz_get_si(coeff.d);
// While ">=", could work here, FORM does not use fast notation for INT_MIN
if ( fast_coeff > INT32_MIN && fast_coeff <= INT32_MAX ) {
IFW(*out++ = -SNUMBER); ws++;
IFW(*out++ = (WORD)fast_coeff); ws++;
return ws;
}
}
}
else {
fmpz_mpoly_get_term_coeff_fmpz(coeff.d, poly, 0, ctx);
fmpz_set(den.d, denscale);
flint::util::simplify_fmpz(coeff.d, den.d, gcd.d);
if ( fmpz_is_one(coeff.d) && fmpz_is_one(den.d) ) {
// The coefficient is one. Now check the symbol powers:
fmpz_mpoly_get_term_exp_si((slong*)exponents.data(), poly, 0, ctx);
int64_t use_fast = 0;
uint32_t fast_symbol = 0;
for ( size_t i = 0; i < var_map.size(); i++ ) {
if ( exponents[i] == 1 ) fast_symbol = var_map_inv[i];
use_fast += exponents[i];
}
// use_fast has collected the total degree. If it is 1, then fast_symbol holds the code
if ( use_fast == 1 ) {
IFW(*out++ = -SYMBOL); ws++;
IFW(*out++ = fast_symbol); ws++;
return ws;
}
}
}
}
WORD *tmp_coeff = (WORD *)NumberMalloc("flint::to_argument_mpoly");
WORD *tmp_den = (WORD *)NumberMalloc("flint::to_argument_mpoly");
WORD* arg_size = 0;
WORD* arg_flag = 0;
if ( with_arghead ) {
IFW(arg_size = out++); ws++; // total arg size
IFW(arg_flag = out++); ws++;
IFW(*arg_flag = 0); // clean argument
}
for ( int64_t i = 0; i < n_terms; i++ ) {
fmpz_mpoly_get_term_exp_si((slong*)exponents.data(), poly, i, ctx);
fmpz_mpoly_get_term_coeff_fmpz(coeff.d, poly, i, ctx);
fmpz_set(den.d, denscale);
flint::util::simplify_fmpz(coeff.d, den.d, gcd.d);
uint32_t num_symbols = 0;
for ( size_t j = 0; j < var_map.size(); j++ ) {
if ( exponents[j] != 0 ) { num_symbols += 1; }
}
// Convert the coefficient, write in temporary space
const WORD num_size = flint::fmpz_get_form(coeff.d, tmp_coeff);
const WORD den_size = flint::fmpz_get_form(den.d, tmp_den);
const WORD coeff_size = [num_size, den_size] () -> WORD {
WORD size = ABS(num_size) > ABS(den_size) ? ABS(num_size) : ABS(den_size);
return size * SGN(num_size) * SGN(den_size);
}();
// Now we have the number of symbols and the coeff size, we can determine the output size.
// Check it fits if necessary: term size, num,den of "coeff_size", +1 for total coeff size
uint64_t current_size = prev_size + ws + 1 + 2*ABS(coeff_size) + 1;
if ( num_symbols ) {
// symbols header, code,power of each symbol:
current_size += 2 + 2*num_symbols;
}
if ( write && must_fit_term && (sizeof(WORD)*current_size > (size_t)AM.MaxTer) ) {
MLOCK(ErrorMessageLock);
MesPrint("flint::to_argument_mpoly: output exceeds MaxTermSize");
MUNLOCK(ErrorMessageLock);
Terminate(-1);
}
WORD* term_size = 0;
IFW(term_size = out++); ws++;
if ( num_symbols ) {
IFW(*out++ = SYMBOL); ws++;
WORD* symbol_size = 0;
IFW(symbol_size = out++); ws++;
IFW(*symbol_size = 2);
for ( size_t j = 0; j < var_map.size(); j++ ) {
if ( exponents[j] != 0 ) {
IFW(*out++ = var_map_inv[j]); ws++;
IFW(*out++ = exponents[j]); ws++;
IFW(*symbol_size += 2);
}
}
}
// Copy numerator
for ( WORD j = 0; j < ABS(num_size); j++ ) {
IFW(*out++ = tmp_coeff[j]); ws++;
}
for ( WORD j = ABS(num_size); j < ABS(coeff_size); j++ ) {
IFW(*out++ = 0); ws++;
}
// Copy denominator
for ( WORD j = 0; j < ABS(den_size); j++ ) {
IFW(*out++ = tmp_den[j]); ws++;
}
for ( WORD j = ABS(den_size); j < ABS(coeff_size); j++ ) {
IFW(*out++ = 0); ws++;
}
IFW(*out = 2*ABS(coeff_size) + 1); // the size of the coefficient
IFW(if ( coeff_size < 0 ) { *out = -(*out); });
IFW(out++); ws++;
IFW(*term_size = out - term_size);
}
if ( with_arghead ) {
IFW(*arg_size = out - arg_size);
if ( write ) {
// Sort into form highfirst ordering
flint::form_sort(BHEAD (WORD*)(out_entry));
}
}
else {
// with no arghead, we write a terminating zero
IFW(*out++ = 0); ws++;
}
NumberFree(tmp_coeff, "flint::to_argument_mpoly");
NumberFree(tmp_den, "flint::to_argument_mpoly");
return ws;
}
// If no denscale argument is supplied, just set it to 1 and call the usual function
uint64_t flint::to_argument_mpoly(PHEAD WORD *out, const bool with_arghead,
const bool must_fit_term, const bool write, const uint64_t prev_size, const fmpz_mpoly_t poly,
const var_map_t &var_map, const fmpz_mpoly_ctx_t ctx) {
flint::fmpz tmp;
fmpz_set_ui(tmp.d, 1);
uint64_t ret = flint::to_argument_mpoly(BHEAD out, with_arghead, must_fit_term, write,
prev_size, poly, var_map, ctx, tmp.d);
return ret;
}
/*
#] flint::to_argument_mpoly :
#[ flint::to_argument_poly :
*/
// Convert a fmpz_poly_t to a FORM argument (or 0-terminated list of terms: with_arghead==false).
// If the caller is building an output term, prev_size contains the size of the term so far, to
// check that the output fits in AM.MaxTer if must_fit_term.
// All coefficients will be divided by denscale (which might just be 1).
// If write is false, we never write to out but only track the total would-be size. This lets this
// function be repurposed as a "size of FORM notation" function without duplicating the code.
uint64_t flint::to_argument_poly(PHEAD WORD *out, const bool with_arghead,
const bool must_fit_term, const bool write, const uint64_t prev_size, const fmpz_poly_t poly,
const var_map_t &var_map, const fmpz_t denscale) {
// Track the total size written. We could do this with pointer differences, but if
// write == false we don't write to or move out to be able to find the size that way.
uint64_t ws = 0;
// Check there is at least space for ARGHEAD WORDs (the arghead or fast-notation number/symbol)
if ( write && must_fit_term && (sizeof(WORD)*(prev_size + ARGHEAD) > (size_t)AM.MaxTer) ) {
MLOCK(ErrorMessageLock);
MesPrint("flint::to_argument_poly: output exceeds MaxTermSize");
MUNLOCK(ErrorMessageLock);
Terminate(-1);
}
// Create the inverse of var_map, so we don't have to search it for each symbol written
var_map_t var_map_inv;
for ( auto x: var_map ) {
var_map_inv[x.second] = x.first;
}
const int64_t n_terms = fmpz_poly_length(poly);
// The poly is zero
if ( n_terms == 0 ) {
if ( with_arghead ) {
IFW(*out++ = -SNUMBER); ws++;
IFW(*out++ = 0); ws++;
return ws;
}
else {
IFW(*out++ = 0); ws++;
return ws;
}
}
// For dividing out denscale
flint::fmpz coeff, den, gcd;
// The poly is constant, use fast notation if the coefficient is integer and small enough
if ( with_arghead && n_terms == 1 ) {
fmpz_poly_get_coeff_fmpz(coeff.d, poly, 0);
fmpz_set(den.d, denscale);
flint::util::simplify_fmpz(coeff.d, den.d, gcd.d);
if ( fmpz_is_one(den.d) && fmpz_fits_si(coeff.d) ) {
const long fast_coeff = fmpz_get_si(coeff.d);
// While ">=", could work here, FORM does not use fast notation for INT_MIN
if ( fast_coeff > INT_MIN && fast_coeff <= INT_MAX ) {
IFW(*out++ = -SNUMBER); ws++;
IFW(*out++ = (WORD)fast_coeff); ws++;
return ws;
}
}
}
// The poly might be a single symbol with coeff 1, use fast notation if so.
if ( with_arghead && n_terms == 2 ) {
if ( fmpz_is_zero(fmpz_poly_get_coeff_ptr(poly, 0)) ) {
// The constant term is zero
fmpz_poly_get_coeff_fmpz(coeff.d, poly, 1);
fmpz_set(den.d, denscale);
flint::util::simplify_fmpz(coeff.d, den.d, gcd.d);
if ( fmpz_is_one(coeff.d) && fmpz_is_one(den.d) ) {
// Single symbol with coeff 1. Use fast notation:
IFW(*out++ = -SYMBOL); ws++;
IFW(*out++ = var_map_inv[0]); ws++;
return ws;
}
}
}
WORD *tmp_coeff = (WORD *)NumberMalloc("flint::to_argument_poly");
WORD *tmp_den = (WORD *)NumberMalloc("flint::to_argument_mpoly");
WORD* arg_size = 0;
WORD* arg_flag = 0;
if ( with_arghead ) {
IFW(arg_size = out++); ws++; // total arg size
IFW(arg_flag = out++); ws++;
IFW(*arg_flag = 0); // clean argument
}
// In reverse, since we want a "highfirst" output
for ( int64_t i = n_terms-1; i >= 0; i-- ) {
// fmpz_poly is dense, there might be many zero coefficients:
if ( !fmpz_is_zero(fmpz_poly_get_coeff_ptr(poly, i)) ) {
fmpz_poly_get_coeff_fmpz(coeff.d, poly, i);
fmpz_set(den.d, denscale);
flint::util::simplify_fmpz(coeff.d, den.d, gcd.d);
// Convert the coefficient, write in temporary space
const WORD num_size = flint::fmpz_get_form(coeff.d, tmp_coeff);
const WORD den_size = flint::fmpz_get_form(den.d, tmp_den);
const WORD coeff_size = [num_size, den_size] () -> WORD {
WORD size = ABS(num_size) > ABS(den_size) ? ABS(num_size) : ABS(den_size);
return size * SGN(num_size) * SGN(den_size);
}();
// Now we have the coeff size, we can determine the output size
// Check it fits if necessary: symbol code,power, num,den of "coeff_size",
// +1 for total coeff size
uint64_t current_size = prev_size + ws + 1 + 2*ABS(coeff_size) + 1;
if ( i > 0 ) {
// and also symbols header, code,power of the symbol
current_size += 4;
}
if ( write && must_fit_term && (sizeof(WORD)*current_size > (size_t)AM.MaxTer) ) {
MLOCK(ErrorMessageLock);
MesPrint("flint::to_argument_poly: output exceeds MaxTermSize");
MUNLOCK(ErrorMessageLock);
Terminate(-1);
}
WORD* term_size = 0;
IFW(term_size = out++); ws++;
if ( i > 0 ) {
IFW(*out++ = SYMBOL); ws++;
IFW(*out++ = 4); ws++; // The symbol array size, it is univariate
IFW(*out++ = var_map_inv[0]); ws++;
IFW(*out++ = i); ws++;
}
// Copy numerator
for ( WORD j = 0; j < ABS(num_size); j++ ) {
IFW(*out++ = tmp_coeff[j]); ws++;
}
for ( WORD j = ABS(num_size); j < ABS(coeff_size); j++ ) {
IFW(*out++ = 0); ws++;
}
// Copy denominator
for ( WORD j = 0; j < ABS(den_size); j++ ) {
IFW(*out++ = tmp_den[j]); ws++;
}
for ( WORD j = ABS(den_size); j < ABS(coeff_size); j++ ) {
IFW(*out++ = 0); ws++;
}
IFW(*out = 2*ABS(coeff_size) + 1); // the size of the coefficient
IFW(if ( coeff_size < 0 ) { *out = -(*out); });
IFW(out++); ws++;
IFW(*term_size = out - term_size);
}
}
if ( with_arghead ) {
IFW(*arg_size = out - arg_size);
}
else {
// with no arghead, we write a terminating zero
IFW(*out++ = 0); ws++;
}
NumberFree(tmp_coeff, "flint::to_argument_poly");
NumberFree(tmp_den, "flint::to_argument_poly");
return ws;
}
// If no denscale argument is supplied, just set it to 1 and call the usual function
uint64_t flint::to_argument_poly(PHEAD WORD *out, const bool with_arghead,
const bool must_fit_term, const bool write, const uint64_t prev_size, const fmpz_poly_t poly,
const var_map_t &var_map) {
flint::fmpz tmp;
fmpz_set_ui(tmp.d, 1);
uint64_t ret = flint::to_argument_poly(BHEAD out, with_arghead, must_fit_term, write, prev_size,
poly, var_map, tmp.d);
return ret;
}
/*
#] flint::to_argument_poly :
*/
// Utility functions
/*
#[ flint::util::simplify_fmpz :
*/
// Divide the GCD out of num and den
inline void flint::util::simplify_fmpz(fmpz_t num, fmpz_t den, fmpz_t gcd) {
fmpz_gcd(gcd, num, den);
if ( !fmpz_is_one(gcd) ) {
fmpz_divexact(num, num, gcd);
fmpz_divexact(den, den, gcd);
}
}
/*
#] flint::util::simplify_fmpz :
#[ flint::util::simplify_fmpz_poly :
*/
// Divide the GCD out of num and den
inline void flint::util::simplify_fmpz_poly(fmpz_poly_t num, fmpz_poly_t den, fmpz_poly_t gcd) {
fmpz_poly_gcd(gcd, num, den);
if ( !fmpz_poly_is_one(gcd) ) {
#if __FLINT_RELEASE >= 30100
// This should be faster than fmpz_poly_div, see https://github.com/flintlib/flint/pull/1766
fmpz_poly_divexact(num, num, gcd);
fmpz_poly_divexact(den, den, gcd);
#else
fmpz_poly_div(num, num, gcd);
fmpz_poly_div(den, den, gcd);
#endif
}
}
/*
#] flint::util::simplify_fmpz_poly :
#[ flint::util::fix_sign_fmpz_mpoly_ratfun :
*/
inline void flint::util::fix_sign_fmpz_mpoly_ratfun(fmpz_mpoly_t num, fmpz_mpoly_t den,
const fmpz_mpoly_ctx_t ctx) {
// Fix sign to align with poly: the leading denominator term should have a positive coeff
if ( fmpz_sgn(fmpz_mpoly_term_coeff_ref(den, 0, ctx)) == -1 ) {
fmpz_mpoly_neg(num, num, ctx);
fmpz_mpoly_neg(den, den, ctx);
}
}
/*
#] flint::util::fix_sign_fmpz_mpoly_ratfun :
#[ flint::util::fix_sign_fmpz_poly_ratfun :
*/
inline void flint::util::fix_sign_fmpz_poly_ratfun(fmpz_poly_t num, fmpz_poly_t den) {
// Fix sign to align with poly: the leading denominator term should have a positive coeff
if ( fmpz_sgn(fmpz_poly_get_coeff_ptr(den, fmpz_poly_degree(den))) == -1 ) {
fmpz_poly_neg(num, num);
fmpz_poly_neg(den, den);
}
}
/*
#] flint::util::fix_sign_fmpz_poly_ratfun :
*/
|