File: model.c

package info (click to toggle)
form 5.0.0-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 8,312 kB
  • sloc: ansic: 110,546; cpp: 20,395; sh: 5,874; makefile: 545
file content (469 lines) | stat: -rw-r--r-- 12,676 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
/** @file model.c
 *
 *   Implementation of "Model", required by the diagrams_ function.
 */
/* #[ License : */
/*
 *   Copyright (C) 1984-2026 J.A.M. Vermaseren
 *   When using this file you are requested to refer to the publication
 *   J.A.M.Vermaseren "New features of FORM" math-ph/0010025
 *   This is considered a matter of courtesy as the development was paid
 *   for by FOM the Dutch physics granting agency and we would like to
 *   be able to track its scientific use to convince FOM of its value
 *   for the community.
 *
 *   This file is part of FORM.
 *
 *   FORM is free software: you can redistribute it and/or modify it under the
 *   terms of the GNU General Public License as published by the Free Software
 *   Foundation, either version 3 of the License, or (at your option) any later
 *   version.
 *
 *   FORM is distributed in the hope that it will be useful, but WITHOUT ANY
 *   WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 *   FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
 *   details.
 *
 *   You should have received a copy of the GNU General Public License along
 *   with FORM.  If not, see <http://www.gnu.org/licenses/>.
 */
/* #] License : */
/*
  	#[ Explanations :

	This is a second generation much simplified version of model.c
	Syntax:
		Model QED;
			Particle electron,positron,-2;
			Particle photon,+3;
			Vertex electron,positron,photon: g;
		EndModel;
	or:
		Model QCD;
			Particle quark,antiquark,-2;
			Particle ghost,antighost,-1;
			Particle gluon,+3;
			Vertex quark,antiquark,gluon: g;
			Vertex qhost,antighost,gluon: g;
			Vertex gluon,gluon,gluon: g;
			Vertex gluon,gluon,gluon,gluon: g^2;
		EndModel;
	Remarks:
	1: if no second particle is given, a particle and its antiparticle are the same
	2: Spin statistics is by dimension of SU(2) representation with a sign.
	3: In a vertex we need to mention the coupling constants.
	4: Internally a particle gives a vertex with only two lines.
	5: All particles must have been declared before any vertex.

	The diagrams should be provided as a collection of nodes and edges 
	with momenta with a direction substituted. The other parameters (like
	Lorentz indices, color indices etc.) can then be provided in a procedure
	that should go with this mode definition.
	In principle the edges are not needed if there are no 'insertions', but
	because we would like to have the insertions as well we need the edges.

  	#] Explanations : 
  	#[ Includes : model.c
*/

#include "form3.h"
 
/*
  	#] Includes : 
  	#[ CreateVertex :
*/

VERTEX *CreateVertex(MODEL *m)
{
	VERTEX *v, **new;
	WORD newsize;
	int i;
	if ( m->invertices >= m->sizevertices ) {
		if ( m->sizevertices == 0 ) newsize = 20;
		else newsize = 2*m->sizevertices;
		new = (VERTEX **)Malloc1(newsize*sizeof(VERTEX *),"m->vertices");
		for ( i = 0; i < m->sizevertices; i++ ) new[i] = m->vertices[i];
		if ( m->sizevertices > 0 ) M_free(m->vertices,"m->vertices");
		m->vertices = new;
		m->sizevertices = newsize;
	}
	v = (VERTEX *)Malloc1(sizeof(VERTEX),"VERTEX");
	m->vertices[m->invertices++] = v;
	v->nparticles = 0;
	v->ncouplings = 0;
	v->type = 0;
	v->error = 0;
	v->externonly = 0;
	v->spare = 0;
	return(v);
}

/*
  	#] CreateVertex : 
  	#[ ReadParticle :
*/

UBYTE *ReadParticle(UBYTE *s, VERTEX *v, MODEL *m, int par)
{
	UBYTE *name, c;
	PARTICLE *p = v->particles + v->nparticles++;
	WORD type, funnum;
	int i, j;
	SKIPBLANKS(s)
	name = s; s = SkipName(s); c = *s; *s = 0;
	if ( GetVar(name,&type,&funnum,CFUNCTION,NOAUTO) == NAMENOTFOUND ) {
		p->number = AddFunction(name,0,VERTEXFUNCTION,0,0,0,-1,-1) + FUNCTION;
	}
	else if ( par == 1 && type == CFUNCTION && functions[funnum].spec == VERTEXFUNCTION ) {
		p->number = funnum+FUNCTION;
	}
	else if ( par == 0 && type == CFUNCTION && functions[funnum].spec == VERTEXFUNCTION ) {
/*
		We should check whether this particle exists already in this model.
		If so, this will be an error.
*/
		for ( i = 0; i < m->nparticles-1; i++ ) {
		  for ( j = 0; j < m->vertices[i]->nparticles; j++ ) {
			if ( m->vertices[i]->particles[j].number == funnum ) {
				MesPrint("&Illegal attempt to redefine a particle in the same model: %s",name);
				v->error = 1;
			}
		  }
		}
		p->number = funnum+FUNCTION;
	}
	else {
		MesPrint("&Name of particle previously declared as another variable: %s",name);
		v->error = 1;
	}
	*s = c;
	while ( *s == ',' || *s == ' ' || *s == '\t' ) s++;
	return(s);
}

/*
  	#] ReadParticle :
  	#[ CoModel :
*/

int CoModel(UBYTE *s)
{
	UBYTE *name, c;
	MODEL *m = (MODEL *)Malloc1(sizeof(MODEL),"Model");
	WORD numberofset, *e;
	SETS set;
	SKIPBLANKS(s)
	AC.ModelLevel++;
	int i;
/*
	We now have to add the model to the list of models.
*/
	if ( AC.modelspace == 0 || AC.nummodels >= AC.modelspace ) {
		int newspace = 2*AC.modelspace+2, i;
		MODEL **models = (MODEL **)Malloc1((sizeof(MODEL *))*newspace,"AC.models");
		for ( i = 0; i < AC.modelspace; i++ ) models[i] = AC.models[i];
		if ( AC.models ) M_free(AC.models,"AC.models");
		AC.modelspace = newspace;
		AC.models = models;
	}

	AC.models[AC.nummodels++] = m;

	m->vertices = 0;
	m->couplings = 0;
	m->nparticles = m->nvertices = m->sizevertices = m->invertices = 0;
	m->sizecouplings = 0;
	m->error = 0;
	m->grccmodel = NULL;

	name = s;
	if ( FG.cTable[*s] == 0 ) {
		while ( FG.cTable[*s] <= 1 ) s++;
		c = *s; *s = 0;
		m->name = strDup1(name,"Model name");
		*s = c;
		SKIPBLANKS(s)
		if ( *s != 0 ) {
			MesPrint("&Illegal option in model statement: %s",s);
			return(1);
		}
	}
	else {
		m->name = strDup1((UBYTE *)"---","Model name");
		m->error = 1;
		MesPrint("&Illegal name for model: %s",name);
		return(1);
	}
/*
	Now make it a set with one element. The type of the set is rather special
*/
	if ( GetName(AC.varnames,m->name,&numberofset,NOAUTO) != NAMENOTFOUND ) {
		MesPrint("&Name conflict with name %s of model",m->name);
		return(1);
	}
	numberofset = AddSet(name,0);
	set = Sets + numberofset;
	set->type = CMODEL;
	e = (WORD *)FromVarList(&AC.SetElementList);
	*e = AC.nummodels-1;
	set->last++;
	AC.SetList.numtemp = AC.SetList.num;
	AC.SetElementList.numtemp = AC.SetElementList.num;

	for ( i = 0; i <= MAXLEGS; i++ ) m->legcouple[i] = 0;
	m->legcouple[2] = 1;

	return(0);
}

/*
  	#] CoModel : 
  	#[ CoParticle :
*/

int CoParticle(UBYTE *s)
{
	MODEL *m;
	VERTEX *v;
	int i;
	if ( AC.nummodels <= 0 ) {
		MesPrint("&No open model for particle statement");
		return(1);
	}
	m = AC.models[AC.nummodels-1];
	if ( m->nvertices > 0 ) {
		MesPrint("&In a model description Particle statements should be before Vertex statements.");
		m->error = 1;
		return(1);
	}
	v = CreateVertex(m);
	m->nparticles++;
	s = ReadParticle(s,v,m,0);
	v->particles[0].type = 1;
	while ( *s == ',' || *s == ' ' || *s == '\t' ) s++;
	if ( v->error == 0 ) {
		if ( FG.cTable[*s] == 0 ) {
			s = ReadParticle(s,v,m,0);
			v->particles[1].type = -1;
			if ( v->particles[0].number == v->particles[1].number ) {
				v->particles[0].type = 0;
				v->particles[1].type = 0;
			}
		}
		else {	/* Particle = antiparticle */
			v->particles[1] = v->particles[0];
			v->nparticles++;
			v->particles[0].type = 0;
			v->particles[1].type = 0;
		}
	}
	if ( v->error == 0 && ( *s == '+' || *s == '-' ) ) {
		int x = 0, sign = ( *s ==  '-' ) ? -1: 1;
		s++;
		while ( FG.cTable[*s] == 1 ) { x = 10*x + *s++ - '0'; }
		if ( x == 0 ) {
			v->error = 1;
			MesPrint("&Spin goes by dimension of SU(2) representation. Zero is not allowed.");
		}
		else { v->particles[0].spin = v->particles[1].spin = sign*x; }
		SKIPBLANKS(s)
	}
	else if ( v->error == 0 ) {
		v->particles[0].spin = v->particles[1].spin = 1;
		v->particles[0].type = 0;
		v->particles[1].type = 0;
	}
/*
	Here will come future options
*/
	while ( *s == ',' || *s == ' ' || *s == '\t' ) s++;
	while ( v->error == 0 && *s != 0 && FG.cTable[*s] == 0 ) {
		UBYTE *opt = s, c;
		while ( FG.cTable[*s] == 0 ) s++;
		c = *s; *s = 0;
		if ( StrICont(opt,(UBYTE *)"external") == 0 ) { v->externonly = 1; }
		else {
			MesPrint("&Unrecognized option %s in particle statement.",opt);
			v->error = 1;
		}
		*s = c;
		while ( *s == ',' || *s == ' ' || *s == '\t' ) s++;
	}
/*
	The couplings array will be used for registering in what kind of vertices the
	particle is involved. (example: in QCD the quarks only in 2 and 3-point vertices)
*/
	for ( i = 0; i < MAXPARTICLES; i++ ) v->couplings[i] = 0;
	v->couplings[2] = 1;
	return(v->error);
}

/*
  	#] CoParticle :
  	#[ CoVertex :
*/

int CoVertex(UBYTE *s)
{
	UBYTE *ss, *name, c;
	WORD type;
	MODEL *m;
	VERTEX *v;
	if ( AC.ModelLevel <= 0 ) {
		MesPrint("&No open model for vertex statement");
		return(1);
	}
	m = AC.models[AC.nummodels-1];
/*
	Get an object of type VERTEX
*/
	v = CreateVertex(m);
	m->nvertices++;
	SKIPBLANKS(s);
	while ( *s && *s != ':' ) {
		if ( v->error == 0 ) {
			s = ReadParticle(s,v,m,1);
			if ( v->error ) m->error = 1;
		}
		else {
			while ( *s && *s != ':' ) {
				if ( *s == '[' ) { SKIPBRA1(s) }
				else if ( *s == '(' ) { SKIPBRA3(s) }
				else if ( *s == 0 ) {
					v->error = 1;
					MesPrint("&No coupling constant in vertex statement.");
					break;
				}
			}
			break;
		}
	}
	if ( v->error == 0 ) {
	  if ( *s == ':' ) { /* read symbols and powers */
		s++; SKIPBLANKS(s);
		while ( *s ) {
			if ( v->ncouplings >= 2*MAXCOUPLINGS ) {
				MesPrint("&More than %d coupling constants in vertex.",(WORD)MAXCOUPLINGS);
				MesPrint("    Recompile with a larger value for MAXCOUPLINGS.");
				return(1);
			}
			ss = s; s = SkipName(s); c = *s; *s = 0; name = ConstructName(ss,0);
			// Forbid couplings which have no symbol or an overal numerical factor.
			if ( *name == 0 ) {
				v->error = 1;
				MesPrint("&Invalid coupling constant in vertex statement.");
			}
			if ( GetVar(name,&type,&v->couplings[v->ncouplings],CSYMBOL,WITHAUTO)
				 == NAMENOTFOUND ) {
				WORD minpow = -MAXPOWER;
				WORD maxpow =  MAXPOWER;
				WORD cplx = 0, dim = 0;
				v->couplings[v->ncouplings] = AddSymbol(name,minpow,maxpow,cplx,dim);
			}
			*s = c;
			v->ncouplings++;
/*
			Now possibly a power
*/
			if ( *s == '^' ) { /* we need an integer */
				WORD x = 0; WORD sign = 1;
				s++;
				while ( *s == '-' || *s == '+' ) {
					if ( *s == '-' ) sign = -sign;
					s++;
				}
				if ( sign == -1 ) {
					v->error = 1;
					MesPrint("&Invalid negative power of coupling constant.");
				}
				while ( FG.cTable[*s] == 1 ) x = 10*x + *s++ - '0';
				v->couplings[v->ncouplings++] = x;
			}
			else {
				v->couplings[v->ncouplings++] = 1;
			}
			SKIPBLANKS(s);
			if ( *s == '*' ) { s++; continue; }
			if ( *s != ',' ) break;
			s++;
			SKIPBLANKS(s);
		}
	  }
	  else {
		v->error = 1;
		MesPrint("&A vertex statement needs at least one coupling constant.");
	  }
	}
	if ( v->error == 0 ) {
/*
		Register which types of vertices are possible for each particle.
*/
		int i, j;
		for ( i = 0; i < v->nparticles; i++ ) {
			for ( j = 0; j < m->nparticles; j++ ) {
				if ( m->vertices[j]->particles[0].number == v->particles[i].number ) break;
				if ( m->vertices[j]->particles[1].number == v->particles[i].number ) break;
			}
			m->vertices[j]->couplings[v->nparticles] = 1;
		}
	}
	return(v->error);
}

/*
  	#] CoVertex : 
  	#[ CoEndModel :
*/

int CoEndModel(UBYTE *s)
{
	int i, j, k, kk;
	WORD csize = 0, *newcouplings, newsize;
	MODEL *m;
	VERTEX *v;
	if ( AC.ModelLevel <= 0 ) {
		MesPrint("&EndModel statement without matching Model statement");
		return(1);
	}
	m = AC.models[AC.nummodels-1];
/*
	Now create a list of all coupling constants.
	Note that we do not expect an astronomical number of them and hence
	we use a simple insertion algorithm.
*/
	m->ncouplings = 0;
	for ( i = 0; i < m->nvertices; i++ ) {
		v = m->vertices[i+m->nparticles];
		m->legcouple[v->nparticles] = 1;
		if ( m->ncouplings + v->ncouplings > csize ) {
			if ( csize == 0 ) newsize = v->ncouplings + 10;
			else newsize = 2*csize;
			newcouplings = (WORD *)Malloc1(newsize*sizeof(WORD),"m->couplings");
			for ( k = 0; k < m->ncouplings; k++ ) newcouplings[k] = m->couplings[k];
			if ( csize > 0 ) M_free(m->couplings,"m->couplings");
			m->couplings = newcouplings;
			csize = newsize;
		}
		for ( j = 0; j < v->ncouplings; j += 2 ) {
			WORD sym = v->couplings[j];
			for ( k = 0; k < m->ncouplings; k++ ) {
				if ( sym == m->couplings[k] ) break;
				if ( sym < m->couplings[k] ) {
					for ( kk = m->ncouplings; kk > k; k-- )
						m->couplings[kk] = m->couplings[kk-1];
					m->couplings[k] = sym;
					m->ncouplings++;
					break;
				}
			}
			if ( k >= m->ncouplings ) m->couplings[m->ncouplings++] = sym;
		}
	}
	AC.ModelLevel--;
	DUMMYUSE(s)
	return(LoadModel(m));
}

/*
  	#] CoEndModel : 
*/