1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
|
/** @file polygcd.cc
*
* Contains the routines for calculating greatest commons divisors of
* multivariate polynomials
*/
/* #[ License : */
/*
* Copyright (C) 1984-2026 J.A.M. Vermaseren
* When using this file you are requested to refer to the publication
* J.A.M.Vermaseren "New features of FORM" math-ph/0010025
* This is considered a matter of courtesy as the development was paid
* for by FOM the Dutch physics granting agency and we would like to
* be able to track its scientific use to convince FOM of its value
* for the community.
*
* This file is part of FORM.
*
* FORM is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* FORM is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along
* with FORM. If not, see <http://www.gnu.org/licenses/>.
*/
/* #] License : */
/*
#[ include :
*/
#include "poly.h"
#include "polygcd.h"
#include <iostream>
#include <vector>
#include <cmath>
#include <map>
#include <algorithm>
//#define DEBUG
//#define DEBUGALL
#ifdef DEBUG
#include "mytime.h"
#endif
using namespace std;
/*
#] include :
#[ ostream operator :
*/
#ifdef DEBUG
// ostream operator for outputting vector<T>s for debugging purposes
template<class T> ostream& operator<< (ostream &out, const vector<T> &x) {
out<<"{";
for (int i=0; i<(int)x.size(); i++) {
if (i>0) out<<",";
out<<x[i];
}
out<<"}";
return out;
}
#endif
/*
#] ostream operator :
#[ integer_gcd :
*/
/** Integer gcd calculation
*
* Description
* ===========
* Calculates the greatest common divisor of two integers a and b.
*
* Notes
* =====
* - The input and output integers are represented as polynomials.
* These polynomials must consist of one term with all powers
* equal to zero.
* - The result is always positive.
* - Over ZZ/p^n, the gcd is defined as 1.
*/
const poly polygcd::integer_gcd (const poly &a, const poly &b) {
#ifdef DEBUGALL
cout << "*** [" << thetime() << "] CALL: integer_gcd(" << a << "," << b << ")" << endl;
#endif
POLY_GETIDENTITY(a);
if (a.is_zero()) return b;
if (b.is_zero()) return a;
poly c(BHEAD 0, a.modp, a.modn);
WORD nc;
GcdLong(BHEAD
(UWORD *)&a[AN.poly_num_vars+2],a[a[0]-1],
(UWORD *)&b[AN.poly_num_vars+2],b[b[0]-1],
(UWORD *)&c[AN.poly_num_vars+2],&nc);
WORD x = 2 + AN.poly_num_vars + ABS(nc);
c[1] = x; // term length
c[0] = x+1; // total length
c[x] = nc; // coefficient length
for (int i=0; i<AN.poly_num_vars; i++)
c[2+i] = 0; // powers
#ifdef DEBUGALL
cout << "*** [" << thetime() << "] RES : integer_gcd(" << a << "," << b << ") = " << c << endl;
#endif
return c;
}
/*
#] integer_gcd :
#[ integer_content :
*/
/** Integer content of a polynomial
*
* Description
* ===========
* Calculates the integer content of a polynomial. This is the
* greatest common divisor of the coefficients.
*
* Notes
* =====
* - The result has the sign of lcoeff(a).
* - Over ZZ/p^n, the integer content is defined as the leading
* coefficient of the polynomial.
*/
const poly polygcd::integer_content (const poly &a) {
#ifdef DEBUGALL
cout << "*** [" << thetime() << "] CALL: integer_content(" << a << ")" << endl;
#endif
POLY_GETIDENTITY(a);
if (a.modp>0) return a.integer_lcoeff();
poly c(BHEAD 0, 0, 1);
WORD *d = (WORD *)NumberMalloc("polygcd::integer_content");
WORD nc=0;
for (int i=0; i<AN.poly_num_vars; i++)
c[2+i] = 0;
for (int i=1; i<a[0]; i+=a[i]) {
WCOPY(d,&c[2+AN.poly_num_vars],nc);
GcdLong(BHEAD (UWORD *)d, nc,
(UWORD *)&a[i+1+AN.poly_num_vars], a[i+a[i]-1],
(UWORD *)&c[2+AN.poly_num_vars], &nc);
WORD x = 2 + AN.poly_num_vars + ABS(nc);
c[1] = x; // term length
c[0] = x+1; // total length
c[x] = nc; // coefficient length
}
if (a.sign() != c.sign()) c *= poly(BHEAD -1);
NumberFree(d,"polygcd::integer_content");
#ifdef DEBUGALL
cout << "*** [" << thetime() << "] RES : integer_content(" << a << ") = " << c << endl;
#endif
return c;
}
/*
#] integer_content :
#[ content_univar :
*/
/** Content of a univariate polynomial
*
* Description
* ===========
* Calculates the content of a polynomial, regarded as a univariate
* polynomial in x. The content is the greatest common divisor of
* the polynomial coefficients in front of the powers of x. The
* result, therefore, is a polynomial in the variables except x.
*
* Notes
* =====
* - The result has the sign of lcoeff(a).
* - Over ZZ/p, the leading coefficient of the content is defined as
* the leading coefficient of the polynomial.
*/
const poly polygcd::content_univar (const poly &a, int x) {
#ifdef DEBUG
cout << "*** [" << thetime() << "] CALL: content_univar(" << a << "," << string(1,'a'+x) << ")" << endl;
#endif
POLY_GETIDENTITY(a);
poly res(BHEAD 0, a.modp, a.modn);
for (int i=1; i<a[0];) {
poly b(BHEAD 0, a.modp, a.modn);
int deg = a[i+1+x];
for (; i<a[0] && a[i+1+x]==deg; i+=a[i]) {
b.check_memory(b[0]+a[i]);
b.termscopy(&a[i],b[0],a[i]);
b[b[0]+1+x] = 0;
b[0] += a[i];
}
res = gcd(res, b);
if (res.is_integer()) {
res = integer_content(a);
break;
}
}
if (a.sign() != res.sign()) res *= poly(BHEAD -1);
#ifdef DEBUG
cout << "*** [" << thetime() << "] RES : content_univar(" << a << "," << string(1,'a'+x) << ") = " << res << endl;
#endif
return res;
}
/*
#] content_univar :
#[ content_multivar :
*/
/** Content of a multivariate polynomial
*
* Description
* ===========
* Calculates the content of a polynomial, regarded as a
* multivariate polynomial in all variables except x (so with
* coefficients in ZZ[x]). The content is the greatest common
* divisor of the ZZ[x] coefficients in front of the powers of the
* remaining variables. The result, therefore, is a polynomial in x.
*
* Notes
* =====
* - The result has the sign of lcoeff(a).
* - Over ZZ/p^n, the leading coefficient of the content is defined as +/-1
*/
const poly polygcd::content_multivar (const poly &a, int x) {
#ifdef DEBUGALL
cout << "*** [" << thetime() << "] CALL: content_multivar(" << a << "," << string(1,'a'+x) << ")" << endl;
#endif
POLY_GETIDENTITY(a);
poly res(BHEAD 0, a.modp, a.modn);
for (int i=1,j; i<a[0]; i=j) {
poly b(BHEAD 0, a.modp, a.modn);
for (j=i; j<a[0]; j+=a[j]) {
bool same_powers = true;
for (int k=0; k<AN.poly_num_vars; k++)
if (k!=x && a[i+1+k]!=a[j+1+k]) {
same_powers = false;
break;
}
if (!same_powers) break;
b.check_memory(b[0]+a[j]);
b.termscopy(&a[j],b[0],a[j]);
for (int k=0; k<AN.poly_num_vars; k++)
if (k!=x) b[b[0]+1+k]=0;
b[0] += a[j];
}
res = gcd_Euclidean(res, b);
if (res.is_integer()) {
res = poly(BHEAD a.sign(),a.modp,a.modn);
break;
}
}
#ifdef DEBUGALL
cout << "*** [" << thetime() << "] RES : content_multivar(" << a << "," << string(1,'a'+x) << ") = " << res << endl;
#endif
return res;
}
/*
#] content_multivar :
#[ coefficient_list_gcd :
*/
/** Euclidean algorithm for coefficient lists
*
* Description
* ===========
* Calculates the greatest common divisor modulo a prime of two
* univariate polynomials represented by coefficient lists. The
* Euclidean algorithm is used to calculate it.
*
* Notes
* =====
* - The result is normalized and has leading coefficient 1.
*/
const vector<WORD> polygcd::coefficient_list_gcd (const vector<WORD> &_a, const vector<WORD> &_b, WORD p) {
#ifdef DEBUGALL
cout << "*** [" << thetime() << "] CALL: coefficient_list_gcd("<<_a<<","<<_b<<","<<p<<")"<<endl;
#endif
vector<WORD> a(_a), b(_b);
while (b.size() != 0) {
a = poly::coefficient_list_divmod(a,b,p,1);
swap(a,b);
}
while (a.back()==0) a.pop_back();
WORD inv;
GetModInverses(a.back() + (a.back()<0?p:0), p, &inv, NULL);
for (int i=0; i<(int)a.size(); i++)
a[i] = (LONG)inv*a[i] % p;
#ifdef DEBUGALL
cout << "*** [" << thetime() << "] RES : coefficient_list_gcd("<<_a<<","<<_b<<","<<p<<") = "<<a<<endl;
#endif
return a;
}
/*
#] coefficient_list_gcd :
#[ gcd_Euclidean :
*/
/** Euclidean Algorithm
*
* Description
* ===========
* Returns the greatest common divisor of two univariate polynomials
* a(x) and b(x) with coefficients modulo a prime. If the
* polynomials are dense, they are converted to coefficient lists
* for efficiency.
*
* Notes
* =====
* - Doesn't work over the integers or prime powers.
* - The result is normalized and has leading coefficient 1.
*
* [for details, see "Algorithms for Computer Algebra", pp. 32-35]
*/
const poly polygcd::gcd_Euclidean (const poly &a, const poly &b) {
#ifdef DEBUG
cout << "*** [" << thetime() << "] CALL: gcd_Euclidean("<<a<<","<<b<<")"<<endl;
#endif
POLY_GETIDENTITY(a);
if (a.is_zero()) return b;
if (b.is_zero()) return a;
if (a.is_integer() || b.is_integer()) return integer_gcd(a,b);
poly res(BHEAD 0);
if (a.is_dense_univariate()>=-1 && b.is_dense_univariate()>=-1) {
vector<WORD> coeff = coefficient_list_gcd(poly::to_coefficient_list(a),
poly::to_coefficient_list(b), a.modp);
res = poly::from_coefficient_list(BHEAD coeff, a.first_variable(), a.modp);
}
else {
res = a;
poly rem(b);
while (!rem.is_zero())
swap(res%=rem, rem);
res /= res.integer_lcoeff();
}
#ifdef DEBUG
cout << "*** [" << thetime() << "] RES : gcd_Euclidean("<<a<<","<<b<<") = "<<res<<endl;
#endif
return res;
}
/*
#] gcd_Euclidean :
#[ chinese_remainder :
*/
/** Chinese Remainder Algorithm
*
* Description
* ===========
* Returns the unique number a mod (m1*m2) such that a = ai (mod mi)
* (i=1,2). The number is calculated with the Chinese Remainder Algorithm.
*
* Notes
* =====
* - m1 and m2 must be relatively prime.
*
* [for details, see "Algorithms for Computer Algebra", pp. 174-183]
*/
const poly polygcd::chinese_remainder (const poly &a1, const poly &m1, const poly &a2, const poly &m2) {
#ifdef DEBUGALL
cout << "*** [" << thetime() << "] CALL: chinese_remainder(" << a1 << "," << m1 << "," << a2 << "," << m2 << ")" << endl;
#endif
POLY_GETIDENTITY(a1);
WORD nx,ny,nz;
UWORD *x = (UWORD *)NumberMalloc("polygcd::chinese_remainder");
UWORD *y = (UWORD *)NumberMalloc("polygcd::chinese_remainder");
UWORD *z = (UWORD *)NumberMalloc("polygcd::chinese_remainder");
GetLongModInverses(BHEAD (UWORD *)&m1[2+AN.poly_num_vars], m1[m1[1]],
(UWORD *)&m2[2+AN.poly_num_vars], m2[m2[1]],
(UWORD *)x, &nx, NULL, NULL);
AddLong((UWORD *)&a2[2+AN.poly_num_vars], a2.is_zero() ? 0 : a2[a2[1]],
(UWORD *)&a1[2+AN.poly_num_vars], a1.is_zero() ? 0 : -a1[a1[1]],
y, &ny);
MulLong (x,nx,y,ny,z,&nz);
MulLong (z,nz,(UWORD *)&m1[2+AN.poly_num_vars],m1[m1[1]],x,&nx);
AddLong (x,nx,(UWORD *)&a1[2+AN.poly_num_vars], a1.is_zero() ? 0 : a1[a1[1]],y,&ny);
MulLong ((UWORD *)&m1[2+AN.poly_num_vars], m1[m1[1]],
(UWORD *)&m2[2+AN.poly_num_vars], m2[m2[1]],
(UWORD *)z,&nz);
TakeNormalModulus (y,&ny,(UWORD *)z,nz,NOUNPACK);
poly res(BHEAD y,ny);
NumberFree(x,"polygcd::chinese_remainder");
NumberFree(y,"polygcd::chinese_remainder");
NumberFree(z,"polygcd::chinese_remainder");
#ifdef DEBUGALL
cout << "*** [" << thetime() << "] RES : chinese_remainder(" << a1 << "," << m1 << "," << a2 << "," << m2 << ") = " << res << endl;
#endif
return res;
}
/*
#] chinese_remainder :
#[ substitute :
*/
/** Substitute a variable of a polynomial with a number.
*
* Description
* ===========
* Returns the polynomial that is obtained by substituting the
* variable x in the polynomial a by the constant c
*
* Notes
* =====
* - if x is not the last variable (in lexicographical order) of the
* polynomial, the polynomial has to be normalised after.
*/
const poly polygcd::substitute(const poly &a, int x, int c) {
POLY_GETIDENTITY(a);
poly b(BHEAD 0);
if (a.is_zero()) {
return b;
}
bool zero=true;
int bi=1;
// cache size is bounded by the degree in x, twice the number of terms of
// the polynomial and a constant
vector<WORD> cache(min(a.degree(x)+1,min(2*a.number_of_terms(),
POLYGCD_RAISPOWMOD_CACHE_SIZE)), 0);
for (int ai=1; ai<=a[0]; ai+=a[ai]) {
// last term or different power, then add term to b iff non-zero
if (!zero) {
bool add=false;
if (ai==a[0])
add=true;
else {
for (int i=0; i<AN.poly_num_vars; i++)
if (i!=x && a[ai+1+i]!=b[bi+1+i]) {
zero=true;
add=true;
break;
}
}
if (add) {
if (b[bi+AN.poly_num_vars+1] < 0)
b[bi+AN.poly_num_vars+1] += a.modp;
bi+=b[bi];
}
if (ai==a[0]) break;
}
b.check_memory(bi);
// create new term in b
if (zero) {
b[bi] = 3+AN.poly_num_vars;
for (int i=0; i<AN.poly_num_vars; i++)
b[bi+1+i] = a[ai+1+i];
b[bi+1+x] = 0;
b[bi+AN.poly_num_vars+1] = 0;
b[bi+AN.poly_num_vars+2] = 1;
}
// add term of a to the current term in b
LONG coeff = a[ai+1+AN.poly_num_vars] * a[ai+2+AN.poly_num_vars];
int pow = a[ai+1+x];
if (pow<(int)cache.size()) {
if (cache[pow]==0)
cache[pow] = RaisPowMod(c, pow, a.modp);
coeff = (coeff * cache[pow]) % a.modp;
}
else {
coeff = (coeff * RaisPowMod(c, pow, a.modp)) % a.modp;
}
b[bi+AN.poly_num_vars+1] = (coeff + b[bi+AN.poly_num_vars+1]) % a.modp;
if (b[bi+AN.poly_num_vars+1] != 0) zero=false;
}
b[0]=bi;
b.setmod(a.modp);
return b;
}
/*
#] substitute :
#[ sparse_interpolation helper functions :
*/
// Returns a list of size #terms(a) with entries PROD(ci^powi, i=2..n)
const vector<int> polygcd::sparse_interpolation_get_mul_list (const poly &a, const vector<int> &x, const vector<int> &c) {
// cache size for variable x is bounded by the degree in x, twice
// the number of terms of the polynomial and a constant
vector<vector<WORD> > cache(c.size());
int max_cache_size = min(2*a.number_of_terms(),POLYGCD_RAISPOWMOD_CACHE_SIZE);
for (int i=0; i<(int)c.size(); i++)
cache[i] = vector<WORD>(min(a.degree(x[i+1])+1,max_cache_size), 0);
vector<int> res;
for (int i=1; i<a[0]; i+=a[i]) {
LONG coeff=1;
for (int j=0; j<(int)c.size(); j++) {
int pow = a[i+1+x[j+1]];
if (pow<(int)cache[j].size()) {
if (cache[j][pow]==0)
cache[j][pow] = RaisPowMod(c[j], pow, a.modp);
coeff = (coeff * cache[j][pow]) % a.modp;
}
else {
coeff = (coeff * RaisPowMod(c[j], pow, a.modp)) % a.modp;
}
}
res.push_back(coeff);
}
return res;
}
// Multiplies the coefficients of a with the entries of mul
void polygcd::sparse_interpolation_mul_poly (poly &a, const vector<int> &mul) {
for (int i=1,j=0; i<a[0]; i+=a[i],j++)
a[i+a[i]-2] = ((LONG)a[i+a[i]-2]*mul[j]) % a.modp;
}
// Sets all coefficients to the range 0..modp-1 and the powers of x2...xn to 0
const poly polygcd::sparse_interpolation_reduce_poly (const poly &a, const vector<int> &x) {
poly res(a);
for (int i=1; i<a[0]; i+=a[i]) {
for (int j=1; j<(int)x.size(); j++)
res[i+1+x[j]]=0;
if (res[i+a[i]-1]==-1) {
res[i+a[i]-1]=1;
res[i+a[i]-2]=a.modp-res[i+a[i]-2];
}
}
return res;
}
// Collects entries with equal powers, so that the result is a proper polynomial
const poly polygcd::sparse_interpolation_fix_poly (const poly &a, int x) {
POLY_GETIDENTITY(a);
poly res(BHEAD 0,a.modp,1);
int j=1;
bool newterm=true;
for (int i=1; i<a[0]; i+=a[i]) {
if (newterm)
res.termscopy(&a[i], j, a[i]);
else
res[j+res[j]-2] = ((LONG)res[j+res[j]-2] + a[i+a[i]-2]) % a.modp;
newterm = i+a[i] == a[0] || res[j+1+x] != a[i+a[i]+1+x];
if (newterm && res[j+res[j]-2]!=0) j += res[j];
}
res[0]=j;
return res;
}
/*
#] sparse_interpolation helper functions :
#[ gcd_modular_sparse_interpolation :
*/
/** Sparse interpolation for the modular gcd algorithm
*
* Description
* ===========
* Assuming that it is known which terms of the gcd are non-zero
* (this is determined by dense interpolation), this method
* generates linear equations for the coefficients by substituting
* numbers. These equations are then solved by Gaussian elimination
* to give the correct coefficients of the gcd.
*
* The first set of substitutions is randomly generated. The next
* set is obtained by squaring these numbers and so on. This results
* in matrix of equations which is solved by Gaussian elimination.
*
* Notes
* =====
* - The method returns 0 upon failure. This is probably because the
* shape is wrong because of unlucky primes or substitutions.
* - The obtained matrix is a Vandermonde matrix, which can be
* inverted faster than with Gaussian elimination, see
* e.g. "Computing the Greatest Common Divisor of Multivariate
* Polynomials over Finite Fields" by Suling Yang. [TODO]
* - For calculation modulo small prime numbers, such a Vandermonde
* matrix does not exist, because there are not enough different
* numbers. In that case, we should resort to random equations of
* which enough exist. [TODO]
* - Non-monic cases are handled inefficiently. Implement LINZIP? [TODO]
*
* [for details, see "Algorithms for Computer Algebra", pp. 311-313; and
* R.E. Zippel, "Probabilistic Algorithms for Sparse Polynomials", PhD thesis]
*/
const poly polygcd::gcd_modular_sparse_interpolation (const poly &origa, const poly &origb, const vector<int> &x, const poly &s) {
#ifdef DEBUG
cout << "*** [" << thetime() << "] CALL: gcd_modular_sparse_interpolation("
<< origa << "," << origb << "," << x << "," << "," << s <<")" << endl;
#endif
POLY_GETIDENTITY(origa);
// strip multivariate content
poly conta(content_multivar(origa,x.back()));
poly contb(content_multivar(origb,x.back()));
poly gcdconts(gcd_Euclidean(conta,contb));
const poly& a = conta.is_one() ? origa : origa/conta;
const poly& b = contb.is_one() ? origb : origb/contb;
// for non-monic cases, we need to normalize with the gcd of the lcoeffs of a poly in x[0]
// or else the shape fitting does not work.
// FIXME: the current implementation still rejects some valid shapes.
poly lcgcd(BHEAD 1, a.modp);
if (!s.lcoeff_univar(x[0]).is_integer()) {
lcgcd = gcd_modular_dense_interpolation(a.lcoeff_univar(x[0]), b.lcoeff_univar(x[0]), x, poly(BHEAD 0));
}
// reduce polynomials
poly ared(sparse_interpolation_reduce_poly(a,x));
poly bred(sparse_interpolation_reduce_poly(b,x));
poly sred(sparse_interpolation_reduce_poly(s,x));
poly lred(sparse_interpolation_reduce_poly(lcgcd,x));
// set all coefficients to 1
for (int i=1; i<sred[0]; i+=sred[i]) {
sred[i+sred[i]-2] = sred[i+sred[i]-1] = 1;
}
// generate random numbers and check there this set doesn't result
// in a singular matrix
vector<int> c(x.size()-1);
vector<int> smul;
bool duplicates;
do {
for (int i=0; i<(int)c.size(); i++)
c[i] = 1 + wranf(BHEAD0) % (a.modp-1);
smul = sparse_interpolation_get_mul_list(s,x,c);
duplicates = false;
int fr=0,to=0;
for (int i=1; i<s[0];) {
int pow = s[i+1+x[0]];
while (i<s[0] && s[i+1+x[0]]==pow) i+=s[i], to++;
for (int j=fr; j<to; j++)
for (int k=fr; k<j; k++)
if (smul[j] == smul[k])
duplicates = true;
fr=to;
}
}
while (duplicates);
// get the lists to multiply the polynomials with every iteration
vector<int> amul(sparse_interpolation_get_mul_list(a,x,c));
vector<int> bmul(sparse_interpolation_get_mul_list(b,x,c));
vector<int> lmul(sparse_interpolation_get_mul_list(lcgcd,x,c));
vector<vector<vector<LONG> > > M;
vector<vector<LONG> > V;
int maxMsize=0;
// create (empty) matrices
for (int i=1; i<s[0]; i+=s[i]) {
if (i==1 || s[i+1+x[0]]!=s[i+1+x[0]-s[i]]) {
M.push_back(vector<vector<LONG> >());
V.push_back(vector<LONG>());
}
M.back().push_back(vector<LONG>());
V.back().push_back(0);
maxMsize = max(maxMsize, (int)M.back().size());
}
// generate linear equations
for (int numg=0; numg<maxMsize; numg++) {
poly amodI(sparse_interpolation_fix_poly(ared,x[0]));
poly bmodI(sparse_interpolation_fix_poly(bred,x[0]));
poly lmodI(sparse_interpolation_fix_poly(lred,x[0]));
// A fix for non-monic gcds. This could be slow if lmodI has many terms,
// since it overfits the gcd now. Another gcd has to be run to remove the
// extra terms.
poly gcd(lmodI * gcd_Euclidean(amodI,bmodI));
// if correct gcd
if (!gcd.is_zero() && gcd[2+x[0]]==sred[2+x[0]]) {
// for each power in the gcd, generate an equation if needed
int gi=1, midx=0;
for (int si=1; si<s[0];) {
// if the term exists, set Vi=coeff, otherwise Vi remains 0
if (gi<gcd[0] && gcd[gi+1+x[0]]==sred[si+1+x[0]]) {
if (numg < (int)V[midx].size())
V[midx][numg] = gcd[gi+gcd[gi]-1]*gcd[gi+gcd[gi]-2];
gi += gcd[gi];
}
// add the coefficients of s to the matrix M
for (int i=0; i<(int)M[midx].size(); i++) {
if (numg < (int)M[midx].size())
M[midx][numg].push_back(sred[si+1+AN.poly_num_vars]);
si += s[si];
}
midx++;
}
}
else {
// incorrect gcd
if (!gcd.is_zero() && gcd[2+x[0]]<sred[2+x[0]])
return poly(BHEAD 0);
numg--;
}
// multiply polynomials by the lists to obtain new ones
sparse_interpolation_mul_poly(ared,amul);
sparse_interpolation_mul_poly(bred,bmul);
sparse_interpolation_mul_poly(sred,smul);
sparse_interpolation_mul_poly(lred,lmul);
}
// solve the linear equations
for (int i=0; i<(int)M.size(); i++) {
int n = M[i].size();
// Gaussian elimination
for (int j=0; j<n; j++) {
for (int k=0; k<j; k++) {
LONG x = M[i][j][k];
for (int l=k; l<n; l++)
M[i][j][l] = (M[i][j][l] - M[i][k][l]*x) % a.modp;
V[i][j] = (V[i][j] - V[i][k]*x) % a.modp;
}
// normalize row
WORD x = M[i][j][j]; // WORD for GetModInverses
GetModInverses(x + (x<0?a.modp:0), a.modp, &x, NULL);
for (int k=0; k<n; k++)
M[i][j][k] = (M[i][j][k]*x) % a.modp;
V[i][j] = (V[i][j]*x) % a.modp;
}
// solve
for (int j=n-1; j>=0; j--)
for (int k=j+1; k<n; k++)
V[i][j] = (V[i][j] - M[i][j][k]*V[i][k]) % a.modp;
}
// create coefficient list
vector<LONG> coeff;
for (int i=0; i<(int)V.size(); i++)
for (int j=0; j<(int)V[i].size(); j++)
coeff.push_back(V[i][j]);
// create resulting polynomial
poly res(BHEAD 0);
int ri=1, i=0;
for (int si=1; si<s[0]; si+=s[si]) {
res.check_memory(ri);
res[ri] = 3 + AN.poly_num_vars; // term length
for (int j=0; j<AN.poly_num_vars; j++)
res[ri+1+j] = s[si+1+j]; // powers
res[ri+1+AN.poly_num_vars] = ABS(coeff[i]); // coefficient
res[ri+2+AN.poly_num_vars] = SGN(coeff[i]); // coefficient length
i++;
ri += res[ri];
}
res[0]=ri; // total length
res.setmod(a.modp,1);
if (!poly::divides(res, lcgcd * a) || !poly::divides(res, lcgcd * b)) {
return poly(BHEAD 0); // bad shape
} else {
// refine gcd
if (!poly::divides(res, a))
res = gcd_modular_dense_interpolation(res, a, x, poly(BHEAD 0));
if (!poly::divides(res, b))
res = gcd_modular_dense_interpolation(res, b, x, poly(BHEAD 0));
}
#ifdef DEBUG
cout << "*** [" << thetime() << "] RES : gcd_modular_sparse_interpolation("
<< a << "," << b << "," << x << "," << "," << s <<") = " << res << endl;
#endif
return gcdconts * res;
}
/*
#] gcd_modular_sparse_interpolation :
#[ gcd_modular_dense_interpolation :
*/
/** Dense interpolation for the modular gcd algorithm
*
* Description
* ===========
* This method determines the gcd by substituting multiple random
* values for the variables, calculating the univariate gcd with the
* Euclidean algorithm and interpolating a multivariate polynomial
* with Newton interpolation. Once a correct shape is known, sparse
* interpolation is used for efficiency.
*
* Notes
* =====
* - The method returns 0 upon failure. This is probably because the
* shape is wrong because of unlucky primes or substitutions.
*
* [for details, see "Algorithms for Computer Algebra", pp. 300-311]
*/
const poly polygcd::gcd_modular_dense_interpolation (const poly &a, const poly &b, const vector<int> &x, const poly &s) {
#ifdef DEBUG
cout << "*** [" << thetime() << "] CALL: gcd_modular_dense_interpolation(" << a << "," << b << "," << x << "," << s <<")" << endl;
#endif
POLY_GETIDENTITY(a);
// if univariate, then use Euclidean algorithm
if (x.size() == 1) {
return gcd_Euclidean(a,b);
}
// if shape is known, use sparse interpolation
if (!s.is_zero()) {
poly res = gcd_modular_sparse_interpolation (a,b,x,s);
if (!res.is_zero()) return res;
// apparently the shape was not correct. continue.
}
// divide out multivariate content in last variable
int X = x.back();
poly conta(content_multivar(a,X));
poly contb(content_multivar(b,X));
poly gcdconts(gcd_Euclidean(conta,contb));
const poly& ppa = conta.is_one() ? a : poly(a/conta);
const poly& ppb = contb.is_one() ? b : poly(b/contb);
// gcd of leading coefficients
poly lcoeffa(ppa.lcoeff_multivar(X));
poly lcoeffb(ppb.lcoeff_multivar(X));
poly gcdlcoeffs(gcd_Euclidean(lcoeffa,lcoeffb));
// calculate the degree bound for each variable
int m = MiN(ppa.degree(x[x.size() - 2]),ppb.degree(x[x.size() - 2]));
poly res(BHEAD 0);
poly oldres(BHEAD 0);
poly newshape(BHEAD 0);
poly modpoly(BHEAD 1,a.modp);
while (true) {
// generate random constants and substitute it
int c = 1 + wranf(BHEAD0) % (a.modp-1);
if (substitute(gcdlcoeffs,X,c).is_zero()) continue;
if (substitute(modpoly,X,c).is_zero()) continue;
poly amodc(substitute(ppa,X,c));
poly bmodc(substitute(ppb,X,c));
// calculate gcd recursively
poly gcdmodc(gcd_modular_dense_interpolation(amodc,bmodc,vector<int>(x.begin(),x.end()-1), newshape));
int n = gcdmodc.degree(x[x.size() - 2]);
// normalize
gcdmodc = (gcdmodc * substitute(gcdlcoeffs,X,c)) / gcdmodc.integer_lcoeff();
poly simple(poly::simple_poly(BHEAD X,c,1,a.modp)); // (X-c) mod p
// if power is smaller, the old one was wrong
if ((res.is_zero() && n == m) || n < m) {
m = n;
res = gcdmodc;
newshape = gcdmodc; // set a new shape (interpolation does not change it)
modpoly = simple;
}
else if (n == m) {
oldres = res;
// equal powers, so interpolate results
poly coeff_poly(substitute(modpoly,X,c));
WORD coeff_word = coeff_poly[2+AN.poly_num_vars] * coeff_poly[3+AN.poly_num_vars];
if (coeff_word < 0) coeff_word += a.modp;
GetModInverses(coeff_word, a.modp, &coeff_word, NULL);
res.setmod(a.modp); // make sure the mod is set before substituting
res += poly(BHEAD coeff_word, a.modp, 1) * modpoly * (gcdmodc - substitute(res,X,c));
modpoly *= simple;
}
// check whether this is the complete gcd
if (!res.is_zero() && res == oldres) {
poly nres = res / content_multivar(res, X);
if (poly::divides(nres,ppa) && poly::divides(nres,ppb)) {
#ifdef DEBUG
cout << "*** [" << thetime() << "] RES : gcd_modular_dense_interpolation(" << a << "," << b << ","
<< x << "," << "," << s <<") = " << gcdconts * nres << endl;
#endif
return gcdconts * nres;
}
// At this point, the gcd may be too large due to bad luck
// TODO: create an efficient fail state that tries to find a smaller
// polynomial without interpolating bad ones?
newshape = poly(BHEAD 0); // reset the shape, important!
}
}
}
/*
#] gcd_modular_dense_interpolation : :
#[ gcd_modular :
*/
/** Zippel's Modular GCD Algorithm
*
* Description
* ===========
* This method choose a prime number and calls the method
* "gcd_modular_dense_interpolation" to calculate the gcd modulo
* this prime. It continues choosing more primes and constructs a
* final result with the Chinese Remainder Algorithm.
*
* Notes
* =====
* - Necessary condition: icont(a) = icont(b) = 0
* - More efficient methods for the leading coefficient problem
* exist, such as Linzip (see: "Algorithms for the Non-monic case
* of the Sparse Modular GCD Algorithm" by De Kleine et al) [TODO]
*/
const poly polygcd::gcd_modular (const poly &origa, const poly &origb, const vector<int> &x) {
#ifdef DEBUG
cout << "*** [" << thetime() << "] CALL: gcd_modular(" << origa << "," << origb << "," << x << ")" << endl;
#endif
POLY_GETIDENTITY(origa);
if (origa.is_zero()) return origa.modp==0 ? origb : origb / origb.integer_lcoeff();
if (origb.is_zero()) return origa.modp==0 ? origa : origa / origa.integer_lcoeff();
if (origa==origb) return origa.modp==0 ? origa : origa / origa.integer_lcoeff();
poly ac = integer_content(origa);
poly bc = integer_content(origb);
const poly& a = ac.is_one() ? origa : poly(origa/ac);
const poly& b = bc.is_one() ? origb : poly(origb/bc);
poly ic = integer_gcd(ac, bc);
poly g = integer_gcd(a.integer_lcoeff(), b.integer_lcoeff());
int pnum=0;
poly d(BHEAD 0);
poly m1(BHEAD 1);
int mindeg=MAXPOSITIVE;
while (true) {
// choose a prime and solve modulo the prime
WORD p = NextPrime(BHEAD pnum++);
if (poly(a.integer_lcoeff(),p).is_zero()) continue;
if (poly(b.integer_lcoeff(),p).is_zero()) continue;
poly c(gcd_modular_dense_interpolation(poly(a,p),poly(b,p),x,poly(d,p)));
c = (c * poly(g,p)) / c.integer_lcoeff(); // normalize so that lcoeff(c) = g mod p
if (c.is_zero()) {
// unlucky choices somewhere, so start all over again
d = poly(BHEAD 0);
m1 = poly(BHEAD 1);
mindeg = MAXPOSITIVE;
continue;
}
if (!(poly(a,p)%c).is_zero()) continue;
if (!(poly(b,p)%c).is_zero()) continue;
int deg = c.degree(x[0]);
if (deg < mindeg) {
// small degree, so the old one is wrong
d=c;
d.modp=a.modp;
d.modn=a.modn;
m1 = poly(BHEAD p);
mindeg=deg;
}
else if (deg == mindeg) {
// same degree, so use Chinese Remainder Algorithm
poly newd(BHEAD 0);
for (int ci=1,di=1; ci<c[0]||di<d[0]; ) {
int comp = ci==c[0] ? -1 : di==d[0] ? +1 : poly::monomial_compare(BHEAD &c[ci],&d[di]);
poly a1(BHEAD 0),a2(BHEAD 0);
newd.check_memory(newd[0]);
if (comp <= 0) {
newd.termscopy(&d[di],newd[0],1+AN.poly_num_vars);
a1 = poly(BHEAD (UWORD *)&d[di+1+AN.poly_num_vars],d[di+d[di]-1]);
di+=d[di];
}
if (comp >= 0) {
newd.termscopy(&c[ci],newd[0],1+AN.poly_num_vars);
a2 = poly(BHEAD (UWORD *)&c[ci+1+AN.poly_num_vars],c[ci+c[ci]-1]);
ci+=c[ci];
}
poly e(chinese_remainder(a1,m1,a2,poly(BHEAD p)));
newd.termscopy(&e[2+AN.poly_num_vars], newd[0]+1+AN.poly_num_vars, ABS(e[e[1]])+1);
newd[newd[0]] = 2 + AN.poly_num_vars + ABS(e[e[1]]);
newd[0] += newd[newd[0]];
}
m1 *= poly(BHEAD p);
d=newd;
}
// divide out spurious integer content
poly ppd(d / integer_content(d));
// check whether this is the complete gcd
if (poly::divides(ppd,a) && poly::divides(ppd,b)) {
#ifdef DEBUG
cout << "*** [" << thetime() << "] RES : gcd_modular(" << origa << "," << origb << "," << x << ") = "
<< ic * ppd << endl;
#endif
return ic * ppd;
}
#ifdef DEBUG
cout << "*** [" << thetime() << "] Retrying modular_gcd with new prime" << endl;
#endif
}
}
/*
#] gcd_modular :
#[ gcd_heuristic_possible :
*/
/** Heuristic greatest common divisor of multivariate polynomials
*
* Description
* ===========
* Checks whether the heuristic seems possible by estimating
*
* MAX_{terms} (coeff ^ PROD_{i=1..#vars} (pow_i+1))
*
* and comparing this with GCD_HEURISTIC_MAX_DIGITS.
*
* Notes
* =====
* - For small polynomials, this consumes time and never triggers.
*/
bool gcd_heuristic_possible (const poly &a) {
POLY_GETIDENTITY(a);
double prod_deg = 1;
for (int j=0; j<AN.poly_num_vars; j++)
prod_deg *= a[2+j]+1;
double digits = ABS(a[1+a[1]-1]);
double lead = a[1+1+AN.poly_num_vars];
return prod_deg*(digits-1+log(2*ABS(lead))/log(2.0)/(BITSINWORD/2)) < POLYGCD_HEURISTIC_MAX_DIGITS;
}
/*
#] gcd_heuristic_possible :
#[ gcd_heuristic :
*/
/** Heuristic greatest common divisor of multivariate polynomials
*
* Description
* ===========
* The heuristic method for calculating the greatest common divisors
* of a and b consists of the following steps:
*
* - substite constants for the variables (each constant being
* larger than the coefficients of the polynomial so far)
* - calculate the integer gcd
* - reconstruct the polynomial gcd from this by expanding it in
* power of the constants
*
* For low degree polynomials with small coefficients, this method is
* very efficient. The method is aborted if the coefficients grow
* too large.
*
* Notes
* =====
* - a and b should be primitive
* - result = c * gcd(a,b), with c an integer. This constant should
* be divided out by the called method (it's the igcd).
*
* [for details, see "Algorithms for Computer Algebra", pp. 320-331]
*/
const poly polygcd::gcd_heuristic (const poly &a, const poly &b, const vector<int> &x, int max_tries) {
#ifdef DEBUG
cout << "*** [" << thetime() << "] CALL: gcd_heuristic("<<a<<","<<b<<","<<x<<")\n";
#endif
if (a.is_integer()) return integer_gcd(a,integer_content(b));
if (b.is_integer()) return integer_gcd(integer_content(a),b);
POLY_GETIDENTITY(a);
// Calculate xi = 2*min(max(coefficients a),max(coefficients b))+2
UWORD *pxi=NULL;
WORD nxi=0;
for (int i=1; i<a[0]; i+=a[i]) {
WORD na = ABS(a[i+a[i]-1]);
if (BigLong((UWORD *)&a[i+a[i]-1-na], na, pxi, nxi) > 0) {
pxi = (UWORD *)&a[i+a[i]-1-na];
nxi = na;
}
}
for (int i=1; i<b[0]; i+=b[i]) {
WORD nb = ABS(b[i+b[i]-1]);
if (BigLong((UWORD *)&b[i+b[i]-1-nb], nb, pxi, nxi) > 0) {
pxi = (UWORD *)&b[i+b[i]-1-nb];
nxi = nb;
}
}
poly xi(BHEAD pxi,nxi);
// Addition of another random factor gives better performance
xi = xi*poly(BHEAD 2) + poly(BHEAD 2 + wranf(BHEAD0)%POLYGCD_HEURISTIC_MAX_ADD_RANDOM);
// If degree*digits(xi) is too large, throw exception
if (max(a.degree(x[0]),b.degree(x[0])) * xi[xi[1]] >= MiN(AM.MaxTal, POLYGCD_HEURISTIC_MAX_DIGITS)) {
#ifdef DEBUG
cout << "*** [" << thetime() << "] RES : gcd_heuristic("<<a<<","<<b<<","<<x<<") = overflow\n";
#endif
throw(gcd_heuristic_failed());
}
for (int times=0; times<max_tries; times++) {
// Recursively calculate the gcd
poly gamma(gcd_heuristic(a % poly::simple_poly(BHEAD x[0],xi),
b % poly::simple_poly(BHEAD x[0],xi),
vector<int>(x.begin()+1,x.end()),1));
// If a gcd is found, reconstruct the powers of x
if (!gamma.is_zero()) {
// res is construct is reverse order. idx/len are for reversing
// it in the correct order
poly res(BHEAD 0), c(BHEAD 0);
vector<int> idx, len;
for (int power=0; !gamma.is_zero(); power++) {
// calculate c = gamma % xi (c and gamma are polynomials, xi is integer)
c = gamma;
c.coefficients_modulo((UWORD *)&xi[2+AN.poly_num_vars], xi[xi[0]-1], false);
// Add the terms c * x^power to res
res.check_memory(res[0]+c[0]);
res.termscopy(&c[1],res[0],c[0]-1);
for (int i=1; i<c[0]; i+=c[i])
res[res[0]-1+i+1+x[0]] = power;
// Store idx/len for reversing
if (!c.is_zero()) {
idx.push_back(res[0]);
len.push_back(c[0]-1);
}
res[0] += c[0]-1;
// Divide gamma by xi
gamma = (gamma - c) / xi;
}
// Reverse the resulting polynomial
poly rev(BHEAD 0);
rev.check_memory(res[0]);
rev[0] = 1;
for (int i=idx.size()-1; i>=0; i--) {
rev.termscopy(&res[idx[i]], rev[0], len[i]);
rev[0] += len[i];
}
res = rev;
poly ppres = res / integer_content(res);
if ((a%ppres).is_zero() && (b%ppres).is_zero()) {
#ifdef DEBUG
cout << "*** [" << thetime() << "] RES : gcd_heuristic("<<a<<","<<b<<","<<x<<") = "<<res<<"\n";
#endif
return res;
}
}
// Next xi by multiplying with the golden ratio to avoid correlated errors
xi = xi * poly(BHEAD 28657) / poly(BHEAD 17711) + poly(BHEAD wranf(BHEAD0) % POLYGCD_HEURISTIC_MAX_ADD_RANDOM);
}
#ifdef DEBUG
cout << "*** [" << thetime() << "] RES : gcd_heuristic("<<a<<","<<b<<","<<x<<") = failed\n";
#endif
return poly(BHEAD 0);
}
/*
#] gcd_heuristic :
#[ bracket :
*/
const map<vector<int>,poly> polygcd::full_bracket(const poly &a, const vector<int>& filter) {
POLY_GETIDENTITY(a);
map<vector<int>,poly> bracket;
for (int ai=1; ai<a[0]; ai+=a[ai]) {
vector<int> varpattern(AN.poly_num_vars);
for (int i=0; i<AN.poly_num_vars; i++)
if (filter[i] == 1 && a[ai + i + 1] > 0)
varpattern[i] = a[ai + i + 1];
// create monomial
poly mon(BHEAD 1);
mon.setmod(a.modp);
mon[0] = a[ai] + 1;
for (int i=0; i<a[ai]; i++)
if (i > 0 && i <= AN.poly_num_vars && varpattern[i - 1])
mon[1+i] = 0;
else
mon[1+i] = a[ai+i];
map<vector<int>,poly>::iterator i = bracket.find(varpattern);
if (i == bracket.end()) {
bracket.insert(std::make_pair(varpattern, mon));
} else {
i->second += mon;
}
}
return bracket;
}
const poly polygcd::bracket(const poly &a, const vector<int>& pattern, const vector<int>& filter) {
POLY_GETIDENTITY(a);
poly bracket(BHEAD 0);
for (int ai=1; ai<a[0]; ai+=a[ai]) {
bool ispat = true;
for (int i=0; i<AN.poly_num_vars; i++)
if (filter[i] == 1 && pattern[i] != a[ai + i + 1]) {
ispat = false;
break;
}
if (ispat) {
poly mon(BHEAD 1);
mon.setmod(a.modp);
mon[0] = a[ai] + 1;
for (int i=0; i<a[ai]; i++)
if (i > 0 && i <= AN.poly_num_vars && pattern[i - 1])
mon[1+i] = 0;
else
mon[1+i] = a[ai+i];
bracket += mon;
}
}
return bracket;
}
const map<vector<int>,int> polygcd::bracket_count(const poly &a, const vector<int>& filter) {
POLY_GETIDENTITY(a);
map<vector<int>,int> bracket;
for (int ai=1; ai<a[0]; ai+=a[ai]) {
vector<int> varpattern(AN.poly_num_vars);
for (int i=0; i<AN.poly_num_vars; i++)
if (filter[i] == 1 && a[ai + i + 1] > 0)
varpattern[i] = a[ai + i + 1];
map<vector<int>,int>::iterator i = bracket.find(varpattern);
if (i == bracket.end()) {
bracket.insert(std::make_pair(varpattern, 0));
} else {
i->second++;
}
}
return bracket;
}
struct BracketInfo {
std::vector<int> pattern;
int num_terms, dummy = 0;
const poly* p;
BracketInfo(const std::vector<int>& pattern, int num_terms, const poly* p) : pattern(pattern), num_terms(num_terms), p(p) {}
bool operator<(const BracketInfo& rhs) const { return num_terms > rhs.num_terms; } // biggest should be first!
};
/*
#] bracket :
#[ gcd_linear:
*/
const poly gcd_linear_helper (const poly &a, const poly &b) {
POLY_GETIDENTITY(a);
for (int i = 0; i < AN.poly_num_vars; i++)
if (a.degree(i) == 1) {
vector<int> filter(AN.poly_num_vars);
filter[i] = 1;
// bracket the linear variable
map<vector<int>,poly> ba = polygcd::full_bracket(a, filter);
poly subgcd(BHEAD 1);
if (ba.size() == 2)
subgcd = polygcd::gcd_linear(ba.begin()->second, (++ba.begin())->second);
else
subgcd = ba.begin()->second;
poly linfac = a / subgcd;
if (poly::divides(linfac,b))
return linfac * polygcd::gcd_linear(subgcd, b / linfac);
return polygcd::gcd_linear(subgcd, b);
}
return poly(BHEAD 0);
}
/**
Performs a faster, recursive gcd algorithm if one of the variables in one of the
polynomials is linear. If no terms are linear, fall back to Zippel's method.
*/
const poly polygcd::gcd_linear (const poly &a, const poly &b) {
#ifdef DEBUG
cout << "*** [" << thetime() << "] CALL: gcd_linear("<<a<<","<<b<<")\n";
#endif
POLY_GETIDENTITY(a);
if (a.is_zero()) return a.modp==0 ? b : b / b.integer_lcoeff();
if (b.is_zero()) return a.modp==0 ? a : a / a.integer_lcoeff();
if (a==b) return a.modp==0 ? a : a / a.integer_lcoeff();
if (a.is_integer() || b.is_integer()) {
if (a.modp > 0) return poly(BHEAD 1,a.modp,a.modn);
return poly(integer_gcd(integer_content(a),integer_content(b)),0,1);
}
poly h = gcd_linear_helper(a, b);
if (!h.is_zero()) return h;
h = gcd_linear_helper(b, a);
if (!h.is_zero()) return h;
vector<int> xa = a.all_variables();
vector<int> xb = b.all_variables();
vector<int> used(AN.poly_num_vars,0);
for (int i=0; i<(int)xa.size(); i++) used[xa[i]]++;
for (int i=0; i<(int)xb.size(); i++) used[xb[i]]++;
vector<int> x;
for (int i=0; i<AN.poly_num_vars; i++)
if (used[i]) x.push_back(i);
return gcd_modular(a,b,x);
}
/*
#] gcd_linear:
#[ gcd :
*/
/** Greatest common divisor (gcd) of multivariate polynomials
* with coefficients in ZZ or ZZ/p
*
* Description
* ===========
* Method calculates the gcd of multivariate polynomials with
* integer coefficients, eventually modulo a prime number.
*
* It consist of the following steps:
* - Calculate the contents of a and b; now the following holds:
* gcd(a,b) = gcd(cont(a),cont(b)) * gcd(pp(a),pp(b));
* - Recursively calculate gcd(cont(a),cont(b)), which has one
* variable less;
* - If the coefficients are integers, try the heuristic gcd
* method;
* - If this method fails call the Zippel's method to calculate
* the gcd of the two primitive polynomials pp(a) and pp(b).
*
* [for details, see "Algorithms for Computer Algebra", pp. 314-320]
*/
const poly polygcd::gcd (const poly &a, const poly &b) {
#ifdef DEBUG
cout << "*** [" << thetime() << "] CALL: gcd("<<a<<","<<b<<")\n";
#endif
POLY_GETIDENTITY(a);
if (a.is_zero()) return a.modp==0 ? b : b / b.integer_lcoeff();
if (b.is_zero()) return a.modp==0 ? a : a / a.integer_lcoeff();
if (a==b) return a.modp==0 ? a : a / a.integer_lcoeff();
if (a.is_integer() || b.is_integer()) {
if (a.modp > 0) return poly(BHEAD 1,a.modp,a.modn);
return poly(integer_gcd(integer_content(a),integer_content(b)),0,1);
}
// Generate a list of variables of a and b
vector<int> xa = a.all_variables();
vector<int> xb = b.all_variables();
vector<int> used(AN.poly_num_vars,0);
for (int i=0; i<(int)xa.size(); i++) used[xa[i]]++;
for (int i=0; i<(int)xb.size(); i++) used[xb[i]]++;
vector<int> x;
for (int i=0; i<AN.poly_num_vars; i++)
if (used[i]) x.push_back(i);
if (a.is_monomial() || b.is_monomial()) {
poly res(BHEAD 1,a.modp,a.modn);
if (a.modp == 0) res = integer_gcd(integer_content(a),integer_content(b));
for (int i=0; i<(int)x.size(); i++)
res[2+x[i]] = 1<<(BITSINWORD-2);
for (int i=1; i<a[0]; i+=a[i])
for (int j=0; j<(int)x.size(); j++)
res[2+x[j]] = MiN(res[2+x[j]], a[i+1+x[j]]);
for (int i=1; i<b[0]; i+=b[i])
for (int j=0; j<(int)x.size(); j++)
res[2+x[j]] = MiN(res[2+x[j]], b[i+1+x[j]]);
return res;
}
// Calculate the contents, their gcd and the primitive parts
poly conta(x.size()==1 ? integer_content(a) : content_univar(a,x[0]));
poly contb(x.size()==1 ? integer_content(b) : content_univar(b,x[0]));
poly gcdconts(x.size()==1 ? integer_gcd(conta,contb) : gcd(conta,contb));
const poly& ppa = conta.is_one() ? a : poly(a/conta);
const poly& ppb = contb.is_one() ? b : poly(b/contb);
if (ppa == ppb)
return ppa * gcdconts;
poly res(BHEAD 0);
#ifdef POLYGCD_USE_HEURISTIC
// Try the heuristic gcd algorithm
if (a.modp==0 && gcd_heuristic_possible(a) && gcd_heuristic_possible(b)) {
try {
res = gcd_heuristic(ppa,ppb,x);
if (!res.is_zero()) res /= integer_content(res);
}
catch (gcd_heuristic_failed) {}
}
#endif
// If gcd==0, the heuristic algorithm failed, so we do more extensive checks.
// First, we filter out variables that appear in only one of the expressions.
if (res.is_zero()) {
bool unusedVars = false;
for (unsigned int i = 0; i < used.size(); i++) {
if (used[i] == 1) {
unusedVars = true;
break;
}
}
// if there are no unused variables, go to the linear routine directly
if (!unusedVars) {
res = gcd_linear(ppa,ppb);
#ifdef DEBUG
cout << "New GCD attempt (unused vars): " << res << endl;
#endif
}
// if res is not the gcd, it is 0 or larger than the gcd.
// we bracket the expression in all the variables that appear only in one expr.
// and we refine the gcd.
bool diva = !res.is_zero() && poly::divides(res,ppa);
bool divb = !res.is_zero() && poly::divides(res,ppb);
if (!diva || !divb) {
vector<BracketInfo> bracketinfo;
if (!diva) {
map<vector<int>,int> ba = bracket_count(ppa, used);
for(map<vector<int>,int>::iterator it = ba.begin(); it != ba.end(); it++)
bracketinfo.push_back(BracketInfo(it->first, it->second, &ppa));
}
if (!divb) {
map<vector<int>,int> bb = bracket_count(ppb, used);
for(map<vector<int>,int>::iterator it = bb.begin(); it != bb.end(); it++)
bracketinfo.push_back(BracketInfo(it->first, it->second, &ppb));
}
// sort so that the smallest bracket will be last
sort(bracketinfo.begin(), bracketinfo.end());
if (res.is_zero()) {
res = bracket(*bracketinfo.back().p, bracketinfo.back().pattern, used);
bracketinfo.pop_back();
}
while (bracketinfo.size() > 0) {
poly subpoly(bracket(*bracketinfo.back().p, bracketinfo.back().pattern, used));
if (!poly::divides(res,subpoly)) {
// if we can filter out more variables, call gcd again
if (res.all_variables() != subpoly.all_variables())
res = gcd(subpoly,res);
else
res = gcd_linear(subpoly,res);
}
bracketinfo.pop_back();
}
}
if (res.is_zero() || !poly::divides(res,ppa) || !poly::divides(res,ppb)) {
MesPrint("Bad gcd found.");
std::cout << "Bad gcd:" << res << " for " << ppa << " " << ppb << std::endl;
Terminate(1);
}
}
res *= gcdconts * poly(BHEAD res.sign());
#ifdef DEBUG
cout << "*** [" << thetime() << "] RES : gcd("<<a<<","<<b<<") = "<<res<<endl;
#endif
return res;
}
/*
#] gcd :
*/
|