1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171
|
/** @file threads.c
*
* Routines for the interface of FORM with the pthreads library
*
* This is the main part of the parallelization of TFORM.
* It is important to also look in the files structs.h and variable.h
* because the treatment of the A and B structs is essential (these
* structs are used by means of the macros AM, AP, AC, AS, AR, AT, AN,
* AO and AX). Also the definitions and use of the macros BHEAD and PHEAD
* should be looked up.
*
* The sources are set up in such a way that if WITHPTHREADS isn't defined
* there is no trace of pthread parallelization.
* The reason is that TFORM is far more memory hungry than sequential FORM.
*
* Special attention should also go to the locks. The proper use of the
* locks is essential and determines whether TFORM can work at all.
* We use the LOCK/UNLOCK macros which are empty in the case of sequential FORM
* These locks are at many places in the source files when workers can
* interfere with each others data or with the data of the master.
*/
/* #[ License : */
/*
* Copyright (C) 1984-2026 J.A.M. Vermaseren
* When using this file you are requested to refer to the publication
* J.A.M.Vermaseren "New features of FORM" math-ph/0010025
* This is considered a matter of courtesy as the development was paid
* for by FOM the Dutch physics granting agency and we would like to
* be able to track its scientific use to convince FOM of its value
* for the community.
*
* This file is part of FORM.
*
* FORM is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* FORM is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along
* with FORM. If not, see <http://www.gnu.org/licenses/>.
*/
/* #] License : */
#ifdef WITHPTHREADS
#define WHOLEBRACKETS
/*
#[ Variables :
The sortbot additions are from 17-may-2007 and after. They constitute
an attempt to make the final merge sorting faster for the master.
This way the master has only one compare per term.
It does add some complexity, but the final merge routine (MasterMerge)
is much simpler for the sortbots. On the other hand the original merging is
for a large part a copy of the MergePatches routine in sort.c and hence
even though complex the bad part has been thoroughly debugged.
*/
#include "form3.h"
#ifdef WITH_ALARM
// This is only required if we are blocking SIG_ALRM in the worker threads.
#include <signal.h>
#endif
#ifdef WITHFLOAT
#include <gmp.h>
int PackFloat(WORD *,mpf_t);
int UnpackFloat(mpf_t, WORD *);
void RatToFloat(mpf_t result, UWORD *formrat, int ratsize);
#endif
static int numberofthreads;
static int numberofworkers;
static int identityofthreads = 0;
static int *listofavailables;
static int topofavailables = 0;
static pthread_key_t identitykey;
static INILOCK(numberofthreadslock)
static INILOCK(availabilitylock)
static pthread_t *threadpointers = 0;
static pthread_mutex_t *wakeuplocks;
static pthread_mutex_t *wakeupmasterthreadlocks;
static pthread_cond_t *wakeupconditions;
static pthread_condattr_t *wakeupconditionattributes;
static int *wakeup;
static int *wakeupmasterthread;
static INILOCK(wakeupmasterlock)
static pthread_cond_t wakeupmasterconditions = PTHREAD_COND_INITIALIZER;
static pthread_cond_t *wakeupmasterthreadconditions;
static int wakeupmaster = 0;
static int identityretval;
/* static INILOCK(clearclocklock) */
static LONG *timerinfo;
static LONG *sumtimerinfo;
static int numberclaimed;
static THREADBUCKET **threadbuckets, **freebuckets;
static int numthreadbuckets;
static int numberoffullbuckets;
/* static int numberbusy = 0; */
INILOCK(dummylock)
INIRWLOCK(dummyrwlock)
static pthread_cond_t dummywakeupcondition = PTHREAD_COND_INITIALIZER;
#ifdef WITHSORTBOTS
static POSITION SortBotPosition;
static int numberofsortbots;
static INILOCK(wakeupsortbotlock)
static pthread_cond_t wakeupsortbotconditions = PTHREAD_COND_INITIALIZER;
static int topsortbotavailables = 0;
static LONG numberofterms;
#endif
/*
#] Variables :
#[ Identity :
#[ StartIdentity :
*/
/**
* To be called once when we start up the threads.
* Starts our identity administration.
*/
void StartIdentity(void)
{
pthread_key_create(&identitykey,FinishIdentity);
}
/*
#] StartIdentity :
#[ FinishIdentity :
*/
/**
* The library needs a finishing routine
*/
void FinishIdentity(void *keyp)
{
DUMMYUSE(keyp);
/* free(keyp); */
}
/*
#] FinishIdentity :
#[ SetIdentity :
*/
/**
* Assigns an integer value to a thread, starting at zero.
*/
int SetIdentity(int *identityretval)
{
/*
#ifdef _MSC_VER
printf("addr %d\n",&numberofthreadslock);
printf("size %d\n",sizeof(numberofthreadslock));
#endif
*/
LOCK(numberofthreadslock);
*identityretval = identityofthreads++;
UNLOCK(numberofthreadslock);
pthread_setspecific(identitykey,(void *)identityretval);
return(*identityretval);
}
/*
#] SetIdentity :
#[ WhoAmI :
*/
/**
* Returns the number of the current thread in our administration
*
* This routine is to be called in routines that need access to the thread
* specific data and that don't get their B-struct passed as an argument.
* Routines that get called frequently need their B-struct passed.
* This is done with BHEAD and the argumentfield gets declared with
* one of the BARG macros rather than the ARG macros.
*/
int WhoAmI(void)
{
int *identity;
/*
First a fast exit for when there is at most one thread
*/
if ( identityofthreads <= 1 ) return(0);
/*
Now the reading of the key.
According to the book the statement should read:
pthread_getspecific(identitykey,(void **)(&identity));
but according to the information in pthread.h it is:
*/
identity = (int *)pthread_getspecific(identitykey);
return(*identity);
}
/*
#] WhoAmI :
#[ BeginIdentities :
*/
/**
* Starts up the identity registration. This is the routine to be called
* at the startup of TFORM.
*/
void BeginIdentities(void)
{
StartIdentity();
SetIdentity(&identityretval);
}
/*
#] BeginIdentities :
#] Identity :
#[ StartHandleLock :
*/
/**
* Routine to be called at the startup of TFORM.
* We have this routine because we would like to keep all access to TFORM
* specific data in this file.
*/
void StartHandleLock(void)
{
AM.handlelock = dummyrwlock;
}
/*
#] StartHandleLock :
#[ StartAllThreads :
*/
/**
* In this routine we start 'number' threads.
* The routine that runs the show for each worker is called RunThread.
* It will call the allocations and all the worker specific action.
* Then the master has to wait till all workers are asleep before continuing.
* If we use SortBots (special threads to help the master during the
* final stages of a big sort) they are started and their routine is
* called RunSortBot.
* The master then waits till all sortbots are asleep before continuing.
* Finally the sort buffers of the master are parcelled up for the final
* merge in big sorts in which the workers have to feed the master.
*
* @param number The number of main threads (including the master)
* The number of workers is number-1.
* @return Standard return conventions (OK -> 0)
*/
int StartAllThreads(int number)
{
int identity, j, dummy, mul;
ALLPRIVATES *B;
pthread_t thethread;
identity = WhoAmI();
#ifdef WITHSORTBOTS
timerinfo = (LONG *)Malloc1(sizeof(LONG)*number*2,"timerinfo");
sumtimerinfo = (LONG *)Malloc1(sizeof(LONG)*number*2,"sumtimerinfo");
for ( j = 0; j < number*2; j++ ) { timerinfo[j] = 0; sumtimerinfo[j] = 0; }
mul = 2;
#else
timerinfo = (LONG *)Malloc1(sizeof(LONG)*number,"timerinfo");
sumtimerinfo = (LONG *)Malloc1(sizeof(LONG)*number,"sumtimerinfo");
for ( j = 0; j < number; j++ ) { timerinfo[j] = 0; sumtimerinfo[j] = 0; }
mul = 1;
#endif
listofavailables = (int *)Malloc1(sizeof(int)*(number+1),"listofavailables");
threadpointers = (pthread_t *)Malloc1(sizeof(pthread_t)*number*mul,"threadpointers");
AB = (ALLPRIVATES **)Malloc1(sizeof(ALLPRIVATES *)*number*mul,"Private structs");
wakeup = (int *)Malloc1(sizeof(int)*number*mul,"wakeup");
wakeuplocks = (pthread_mutex_t *)Malloc1(sizeof(pthread_mutex_t)*number*mul,"wakeuplocks");
wakeupconditions = (pthread_cond_t *)Malloc1(sizeof(pthread_cond_t)*number*mul,"wakeupconditions");
wakeupconditionattributes = (pthread_condattr_t *)
Malloc1(sizeof(pthread_condattr_t)*number*mul,"wakeupconditionattributes");
wakeupmasterthread = (int *)Malloc1(sizeof(int)*number*mul,"wakeupmasterthread");
wakeupmasterthreadlocks = (pthread_mutex_t *)Malloc1(sizeof(pthread_mutex_t)*number*mul,"wakeupmasterthreadlocks");
wakeupmasterthreadconditions = (pthread_cond_t *)Malloc1(sizeof(pthread_cond_t)*number*mul,"wakeupmasterthread");
numberofthreads = number;
numberofworkers = number - 1;
threadpointers[identity] = pthread_self();
topofavailables = 0;
#ifdef WITH_ALARM
/* During thread creation, we block SIGALRM on the main thread. The created
threads will inherit this. This is required for #timeout to work properly
in TFORM: only the main thread should recieve SIGALRM. */
sigset_t sig_set;
sigemptyset(&sig_set);
sigaddset(&sig_set, SIGALRM);
pthread_sigmask(SIG_BLOCK, &sig_set, NULL);
#endif
for ( j = 1; j < number; j++ ) {
if ( pthread_create(&thethread,NULL,RunThread,(void *)(&dummy)) )
goto failure;
}
/*
Now we initialize the master at the same time that the workers are doing so.
*/
B = InitializeOneThread(identity);
AR.infile = &(AR.Fscr[0]);
AR.outfile = &(AR.Fscr[1]);
AR.hidefile = &(AR.Fscr[2]);
AM.sbuflock = dummylock;
AS.inputslock = dummylock;
AS.outputslock = dummylock;
AS.MaxExprSizeLock = dummylock;
AP.PreVarLock = dummylock;
AC.halfmodlock = dummylock;
MakeThreadBuckets(number,0);
/*
Now we wait for the workers to finish their startup.
We don't want to initialize the sortbots yet and run the risk that
some of them may end up with a lower number than one of the workers.
*/
MasterWaitAll();
#ifdef WITHSORTBOTS
if ( numberofworkers > 2 ) {
numberofsortbots = numberofworkers-2;
for ( j = numberofworkers+1; j < 2*numberofworkers-1; j++ ) {
if ( pthread_create(&thethread,NULL,RunSortBot,(void *)(&dummy)) )
goto failure;
}
}
else {
numberofsortbots = 0;
}
MasterWaitAllSortBots();
DefineSortBotTree();
#endif
IniSortBlocks(number-1);
AS.MasterSort = 0;
AM.storefilelock = dummylock;
#ifdef WITH_ALARM
/* Now we allow the main thread to recieve SIGALRM again. */
pthread_sigmask(SIG_UNBLOCK, &sig_set, NULL);
#endif
/*
MesPrint("AB = %x %x %x %d",AB[0],AB[1],AB[2], identityofthreads);
*/
return(0);
failure:
MesPrint("Cannot start %d threads",number);
Terminate(-1);
return(-1);
}
/*
#] StartAllThreads :
#[ InitializeOneThread :
*/
/**
* Array for putting a label on memory allocations and error messages.
*/
UBYTE *scratchname[] = { (UBYTE *)"scratchsize",
(UBYTE *)"scratchsize",
(UBYTE *)"hidesize" };
/**
* Initializes one thread. This includes the allocation of its private
* space and all its buffers. Also the initialization of variables.
*
* @param identity The (TFORM defined) integer identifier of the thread.
* @return A pointer to the struct with all private data of the thread.
* We call this struct B and we have a system of macros
* (defined in variable.h) that allows us to access its substructs in
* the same way as the corresponding substructs in sequential FORM are
* accessed. Example:
* In TFORM AR is defined as B->R
* In FORM AR is defined as A.R (here it is part of the A struct)
*
* One complication:
* AM.ScratSize can be rather big. We don't want all the workers
* to have an allocation of that size. Some computers may run out
* of allocations.
* We need on the workers:
* AR.Fscr[0] : input for keep brackets and expressions in rhs
* AR.Fscr[1] : output of the sorting to be fed to the master
* AR.Fscr[2] : input for keep brackets and expressions in rhs
* Hence the 0 and 2 channels can use a rather small buffer like
* 10*AM.MaxTer.
* The 1 channel needs a buffer roughly AM.ScratSize/#ofworkers.
*/
ALLPRIVATES *InitializeOneThread(int identity)
{
WORD *t, *ScratchBuf;
int i, j, bsize, *bp;
LONG ScratchSize[3], IOsize;
ALLPRIVATES *B;
UBYTE *s;
wakeup[identity] = 0;
wakeuplocks[identity] = dummylock;
pthread_condattr_init(&(wakeupconditionattributes[identity]));
pthread_condattr_setpshared(&(wakeupconditionattributes[identity]),PTHREAD_PROCESS_PRIVATE);
wakeupconditions[identity] = dummywakeupcondition;
pthread_cond_init(&(wakeupconditions[identity]),&(wakeupconditionattributes[identity]));
wakeupmasterthread[identity] = 0;
wakeupmasterthreadlocks[identity] = dummylock;
wakeupmasterthreadconditions[identity] = dummywakeupcondition;
bsize = sizeof(ALLPRIVATES);
bsize = (bsize+sizeof(int)-1)/sizeof(int);
B = (ALLPRIVATES *)Malloc1(sizeof(int)*bsize,"B struct");
for ( bp = (int *)B, j = 0; j < bsize; j++ ) *bp++ = 0;
AB[identity] = B;
/*
12-jun-2007 JV:
For the timing one has to know a few things:
The POSIX standard is that there is only a single process ID and that
getrusage returns the time of all the threads together.
Under Linux there are two methods though: The older LinuxThreads and NPTL.
LinuxThreads gives each thread its own process id. This makes that we
can time the threads with getrusage, and hence this was done. Under NPTL
this has been 'corrected' and suddenly getruage doesn't work anymore the
way it used to. Now we need
clock_gettime(CLOCK_THREAD_CPUTIME_ID,&timing)
which is declared in <time.h> and we need -lrt extra in the link statement.
(this is at least the case on blade02 at DESY-Zeuthen).
See also the code in tools.c at the routine Timer.
We may still have to include more stuff there.
*/
if ( identity > 0 ) TimeCPU(0);
#ifdef WITHSORTBOTS
if ( identity > numberofworkers ) {
/*
Some workspace is needed when we have a PolyFun and we have to add
two terms and the new result is going to be longer than the old result.
*/
LONG length = AM.WorkSize*sizeof(WORD)/8+AM.MaxTer*2;
AT.WorkSpace = (WORD *)Malloc1(length,"WorkSpace");
AT.WorkTop = AT.WorkSpace + length/sizeof(WORD);
AT.WorkPointer = AT.WorkSpace;
AT.identity = identity;
/*
The SB struct gets treated in IniSortBlocks.
The SortBotIn variables will be defined DefineSortBotTree.
*/
if ( AN.SoScratC == 0 ) {
AN.SoScratC = (UWORD *)Malloc1(2*(AM.MaxTal+2)*sizeof(UWORD),"Scratch in SortBot");
}
AT.SS = (SORTING *)Malloc1(sizeof(SORTING),"dummy sort buffer");
AT.SS->PolyFlag = 0;
AT.comsym[0] = 8;
AT.comsym[1] = SYMBOL;
AT.comsym[2] = 4;
AT.comsym[3] = 0;
AT.comsym[4] = 1;
AT.comsym[5] = 1;
AT.comsym[6] = 1;
AT.comsym[7] = 3;
AT.comnum[0] = 4;
AT.comnum[1] = 1;
AT.comnum[2] = 1;
AT.comnum[3] = 3;
AT.comfun[0] = FUNHEAD+4;
AT.comfun[1] = FUNCTION;
AT.comfun[2] = FUNHEAD;
AT.comfun[3] = 0;
#if FUNHEAD > 3
for ( i = 4; i <= FUNHEAD; i++ )
AT.comfun[i] = 0;
#endif
AT.comfun[FUNHEAD+1] = 1;
AT.comfun[FUNHEAD+2] = 1;
AT.comfun[FUNHEAD+3] = 3;
AT.comind[0] = 7;
AT.comind[1] = INDEX;
AT.comind[2] = 3;
AT.comind[3] = 0;
AT.comind[4] = 1;
AT.comind[5] = 1;
AT.comind[6] = 3;
AT.inprimelist = -1;
AT.sizeprimelist = 0;
AT.primelist = 0;
AT.bracketinfo = 0;
AR.CompareRoutine = (COMPAREDUMMY)(&Compare1);
AR.sLevel = 0;
AR.wranfia = 0;
AR.wranfcall = 0;
AR.wranfnpair1 = NPAIR1;
AR.wranfnpair2 = NPAIR2;
AN.NumFunSorts = 5;
AN.MaxFunSorts = 5;
AN.SplitScratch = 0;
AN.SplitScratchSize = AN.InScratch = 0;
AN.SplitScratch1 = 0;
AN.SplitScratchSize1 = AN.InScratch1 = 0;
AN.FunSorts = (SORTING **)Malloc1((AN.NumFunSorts+1)*sizeof(SORTING *),"FunSort pointers");
for ( i = 0; i <= AN.NumFunSorts; i++ ) AN.FunSorts[i] = 0;
AN.FunSorts[0] = AT.S0 = AT.SS;
AN.idfunctionflag = 0;
AN.tryterm = 0;
return(B);
}
if ( identity == 0 && AN.SoScratC == 0 ) {
AN.SoScratC = (UWORD *)Malloc1(2*(AM.MaxTal+2)*sizeof(UWORD),"Scratch in SortBot");
}
#endif
AR.CurDum = AM.IndDum;
for ( j = 0; j < 3; j++ ) {
if ( identity == 0 ) {
if ( j == 2 ) {
ScratchSize[j] = AM.HideSize;
}
else {
ScratchSize[j] = AM.ScratSize;
}
if ( ScratchSize[j] < 10*AM.MaxTer ) ScratchSize[j] = 10 * AM.MaxTer;
}
else {
/*
ScratchSize[j] = AM.ScratSize / (numberofthreads-1);
ScratchSize[j] = ScratchSize[j] / 20;
if ( ScratchSize[j] < 10*AM.MaxTer ) ScratchSize[j] = 10 * AM.MaxTer;
*/
if ( j == 1 ) ScratchSize[j] = AM.ThreadScratOutSize;
else ScratchSize[j] = AM.ThreadScratSize;
if ( ScratchSize[j] < 4*AM.MaxTer ) ScratchSize[j] = 4 * AM.MaxTer;
AR.Fscr[j].name = 0;
}
ScratchSize[j] = ( ScratchSize[j] + 255 ) / 256;
ScratchSize[j] = ScratchSize[j] * 256;
ScratchBuf = (WORD *)Malloc1(ScratchSize[j]*sizeof(WORD),(char *)(scratchname[j]));
AR.Fscr[j].POsize = ScratchSize[j] * sizeof(WORD);
AR.Fscr[j].POfull = AR.Fscr[j].POfill = AR.Fscr[j].PObuffer = ScratchBuf;
AR.Fscr[j].POstop = AR.Fscr[j].PObuffer + ScratchSize[j];
PUTZERO(AR.Fscr[j].POposition);
AR.Fscr[j].pthreadslock = dummylock;
AR.Fscr[j].wPOsize = AR.Fscr[j].POsize;
AR.Fscr[j].wPObuffer = AR.Fscr[j].PObuffer;
AR.Fscr[j].wPOfill = AR.Fscr[j].POfill;
AR.Fscr[j].wPOfull = AR.Fscr[j].POfull;
AR.Fscr[j].wPOstop = AR.Fscr[j].POstop;
}
AR.InInBuf = 0;
AR.InHiBuf = 0;
AR.Fscr[0].handle = -1;
AR.Fscr[1].handle = -1;
AR.Fscr[2].handle = -1;
AR.FoStage4[0].handle = -1;
AR.FoStage4[1].handle = -1;
IOsize = AM.S0->file.POsize;
#ifdef WITHZLIB
AR.FoStage4[0].ziosize = IOsize;
AR.FoStage4[1].ziosize = IOsize;
AR.FoStage4[0].ziobuffer = 0;
AR.FoStage4[1].ziobuffer = 0;
#endif
AR.FoStage4[0].POsize = ((IOsize+sizeof(WORD)-1)/sizeof(WORD))*sizeof(WORD);
AR.FoStage4[1].POsize = ((IOsize+sizeof(WORD)-1)/sizeof(WORD))*sizeof(WORD);
AR.hidefile = &(AR.Fscr[2]);
AR.StoreData.Handle = -1;
AR.SortType = AC.SortType;
AN.IndDum = AM.IndDum;
if ( identity > 0 ) {
s = (UBYTE *)(FG.fname); i = 0;
while ( *s ) { s++; i++; }
s = (UBYTE *)Malloc1(sizeof(char)*(i+12),"name for Fscr[0] file");
snprintf((char *)s,i+12,"%s.%d",FG.fname,identity);
s[i-3] = 's'; s[i-2] = 'c'; s[i-1] = '0';
AR.Fscr[0].name = (char *)s;
s = (UBYTE *)(FG.fname); i = 0;
while ( *s ) { s++; i++; }
s = (UBYTE *)Malloc1(sizeof(char)*(i+12),"name for Fscr[1] file");
snprintf((char *)s,i+12,"%s.%d",FG.fname,identity);
s[i-3] = 's'; s[i-2] = 'c'; s[i-1] = '1';
AR.Fscr[1].name = (char *)s;
}
AR.CompressBuffer = (WORD *)Malloc1((AM.CompressSize+10)*sizeof(WORD),"compresssize");
AR.ComprTop = AR.CompressBuffer + AM.CompressSize;
AR.CompareRoutine = (COMPAREDUMMY)(&Compare1);
/*
Here we make all allocations for the struct AT
(which is AB[identity].T or B->T with B = AB+identity).
*/
AT.WorkSpace = (WORD *)Malloc1(AM.WorkSize*sizeof(WORD),"WorkSpace");
AT.WorkTop = AT.WorkSpace + AM.WorkSize;
AT.WorkPointer = AT.WorkSpace;
AT.Nest = (NESTING)Malloc1((LONG)sizeof(struct NeStInG)*AM.maxFlevels,"functionlevels");
AT.NestStop = AT.Nest + AM.maxFlevels;
AT.NestPoin = AT.Nest;
AT.WildMask = (WORD *)Malloc1((LONG)AM.MaxWildcards*sizeof(WORD),"maxwildcards");
LOCK(availabilitylock);
AT.ebufnum = inicbufs(); /* Buffer for extras during execution */
AT.fbufnum = inicbufs(); /* Buffer for caching in factorization */
AT.allbufnum = inicbufs(); /* Buffer for id,all */
AT.aebufnum = inicbufs(); /* Buffer for id,all */
UNLOCK(availabilitylock);
AT.RepCount = (int *)Malloc1((LONG)((AM.RepMax+3)*sizeof(int)),"repeat buffers");
AN.RepPoint = AT.RepCount;
AN.polysortflag = 0;
AN.subsubveto = 0;
AN.tryterm = 0;
AT.RepTop = AT.RepCount + AM.RepMax;
AT.WildArgTaken = (WORD *)Malloc1((LONG)AC.WildcardBufferSize*sizeof(WORD)/2
,"argument list names");
AT.WildcardBufferSize = AC.WildcardBufferSize;
AT.previousEfactor = 0;
AT.identity = identity;
AT.LoadBalancing = 0;
/*
Still to do: the SS stuff.
the Fscr[3]
the FoStage4[2]
*/
if ( AT.WorkSpace == 0 ||
AT.Nest == 0 ||
AT.WildMask == 0 ||
AT.RepCount == 0 ||
AT.WildArgTaken == 0 ) goto OnError;
/*
And initializations
*/
AT.comsym[0] = 8;
AT.comsym[1] = SYMBOL;
AT.comsym[2] = 4;
AT.comsym[3] = 0;
AT.comsym[4] = 1;
AT.comsym[5] = 1;
AT.comsym[6] = 1;
AT.comsym[7] = 3;
AT.comnum[0] = 4;
AT.comnum[1] = 1;
AT.comnum[2] = 1;
AT.comnum[3] = 3;
AT.comfun[0] = FUNHEAD+4;
AT.comfun[1] = FUNCTION;
AT.comfun[2] = FUNHEAD;
AT.comfun[3] = 0;
#if FUNHEAD > 3
for ( i = 4; i <= FUNHEAD; i++ )
AT.comfun[i] = 0;
#endif
AT.comfun[FUNHEAD+1] = 1;
AT.comfun[FUNHEAD+2] = 1;
AT.comfun[FUNHEAD+3] = 3;
AT.comind[0] = 7;
AT.comind[1] = INDEX;
AT.comind[2] = 3;
AT.comind[3] = 0;
AT.comind[4] = 1;
AT.comind[5] = 1;
AT.comind[6] = 3;
AT.locwildvalue[0] = SUBEXPRESSION;
AT.locwildvalue[1] = SUBEXPSIZE;
for ( i = 2; i < SUBEXPSIZE; i++ ) AT.locwildvalue[i] = 0;
AT.mulpat[0] = TYPEMULT;
AT.mulpat[1] = SUBEXPSIZE+3;
AT.mulpat[2] = 0;
AT.mulpat[3] = SUBEXPRESSION;
AT.mulpat[4] = SUBEXPSIZE;
AT.mulpat[5] = 0;
AT.mulpat[6] = 1;
for ( i = 7; i < SUBEXPSIZE+5; i++ ) AT.mulpat[i] = 0;
AT.proexp[0] = SUBEXPSIZE+4;
AT.proexp[1] = EXPRESSION;
AT.proexp[2] = SUBEXPSIZE;
AT.proexp[3] = -1;
AT.proexp[4] = 1;
for ( i = 5; i < SUBEXPSIZE+1; i++ ) AT.proexp[i] = 0;
AT.proexp[SUBEXPSIZE+1] = 1;
AT.proexp[SUBEXPSIZE+2] = 1;
AT.proexp[SUBEXPSIZE+3] = 3;
AT.proexp[SUBEXPSIZE+4] = 0;
AT.dummysubexp[0] = SUBEXPRESSION;
AT.dummysubexp[1] = SUBEXPSIZE+4;
for ( i = 2; i < SUBEXPSIZE; i++ ) AT.dummysubexp[i] = 0;
AT.dummysubexp[SUBEXPSIZE] = WILDDUMMY;
AT.dummysubexp[SUBEXPSIZE+1] = 4;
AT.dummysubexp[SUBEXPSIZE+2] = 0;
AT.dummysubexp[SUBEXPSIZE+3] = 0;
AT.MinVecArg[0] = 7+ARGHEAD;
AT.MinVecArg[ARGHEAD] = 7;
AT.MinVecArg[1+ARGHEAD] = INDEX;
AT.MinVecArg[2+ARGHEAD] = 3;
AT.MinVecArg[3+ARGHEAD] = 0;
AT.MinVecArg[4+ARGHEAD] = 1;
AT.MinVecArg[5+ARGHEAD] = 1;
AT.MinVecArg[6+ARGHEAD] = -3;
t = AT.FunArg;
*t++ = 4+ARGHEAD+FUNHEAD;
for ( i = 1; i < ARGHEAD; i++ ) *t++ = 0;
*t++ = 4+FUNHEAD;
*t++ = 0;
*t++ = FUNHEAD;
for ( i = 2; i < FUNHEAD; i++ ) *t++ = 0;
*t++ = 1; *t++ = 1; *t++ = 3;
AT.inprimelist = -1;
AT.sizeprimelist = 0;
AT.primelist = 0;
AT.nfac = AT.nBer = 0;
AT.factorials = 0;
AT.bernoullis = 0;
AR.wranfia = 0;
AR.wranfcall = 0;
AR.wranfnpair1 = NPAIR1;
AR.wranfnpair2 = NPAIR2;
AR.wranfseed = 0;
AN.SplitScratch = 0;
AN.SplitScratchSize = AN.InScratch = 0;
AN.SplitScratch1 = 0;
AN.SplitScratchSize1 = AN.InScratch1 = 0;
/*
Now the sort buffers. They depend on which thread. The master
inherits the sortbuffer from AM.S0
*/
if ( identity == 0 ) {
AT.S0 = AM.S0;
}
else {
/*
For the moment we don't have special settings.
They may become costly in virtual memory.
*/
AT.S0 = AllocSort(AM.S0->LargeSize*sizeof(WORD)/numberofworkers
,AM.S0->SmallSize*sizeof(WORD)/numberofworkers
,AM.S0->SmallEsize*sizeof(WORD)/numberofworkers
,AM.S0->TermsInSmall
,AM.S0->MaxPatches
/* ,AM.S0->MaxPatches/numberofworkers */
,AM.S0->MaxFpatches/numberofworkers
,AM.S0->file.POsize
,0);
}
AR.CompressPointer = AR.CompressBuffer;
/*
Install the store caches (15-aug-2006 JV)
*/
AT.StoreCache = AT.StoreCacheAlloc = 0;
if ( AM.NumStoreCaches > 0 ) {
STORECACHE sa, sb;
LONG size;
size = sizeof(struct StOrEcAcHe)+AM.SizeStoreCache;
size = ((size-1)/sizeof(size_t)+1)*sizeof(size_t);
AT.StoreCacheAlloc = (STORECACHE)Malloc1(size*AM.NumStoreCaches,"StoreCaches");
sa = AT.StoreCache = AT.StoreCacheAlloc;
for ( i = 0; i < AM.NumStoreCaches; i++ ) {
sb = (STORECACHE)(void *)((UBYTE *)sa+size);
if ( i == AM.NumStoreCaches-1 ) {
sa->next = 0;
}
else {
sa->next = sb;
}
SETBASEPOSITION(sa->position,-1);
SETBASEPOSITION(sa->toppos,-1);
sa = sb;
}
}
ReserveTempFiles(2);
return(B);
OnError:;
MLOCK(ErrorMessageLock);
MesPrint("Error initializing thread %d",identity);
MUNLOCK(ErrorMessageLock);
Terminate(-1);
return(B);
}
/*
#] InitializeOneThread :
#[ FinalizeOneThread :
*/
/**
* To be called at the end of the run to give the final time statistics for
* this thread.
*
* @param identity The TFORM defined integer identity of the thread.
* In principle we could find it out from here with a call
* to WhoAmI but because this is to be called at a very
* late stage during clean up, we don't want to run any risks.
*/
void FinalizeOneThread(int identity)
{
timerinfo[identity] = TimeCPU(1);
}
/*
#] FinalizeOneThread :
#[ ClearAllThreads :
*/
/**
* To be called at the end of running TFORM.
* Theoretically the system can clean up after up, but it may be better
* to do it ourselves.
*/
void ClearAllThreads(void)
{
int i;
MasterWaitAll();
for ( i = 1; i <= numberofworkers; i++ ) {
WakeupThread(i,CLEARCLOCK);
}
#ifdef WITHSORTBOTS
for ( i = numberofworkers+1; i <= numberofworkers+numberofsortbots; i++ ) {
WakeupThread(i,CLEARCLOCK);
}
#endif
}
/*
#] ClearAllThreads :
#[ TerminateAllThreads :
*/
/**
* To be called at the end of running TFORM.
* Theoretically the system can clean up after up, but it may be better
* to do it ourselves.
*/
void TerminateAllThreads(void)
{
int i;
for ( i = 1; i <= numberofworkers; i++ ) {
GetThread(i);
WakeupThread(i,TERMINATETHREAD);
}
#ifdef WITHSORTBOTS
for ( i = numberofworkers+1; i <= numberofworkers+numberofsortbots; i++ ) {
WakeupThread(i,TERMINATETHREAD);
}
#endif
for ( i = 1; i <= numberofworkers; i++ ) {
pthread_join(threadpointers[i],NULL);
}
#ifdef WITHSORTBOTS
for ( i = numberofworkers+1; i <= numberofworkers+numberofsortbots; i++ ) {
pthread_join(threadpointers[i],NULL);
}
#endif
}
/*
#] TerminateAllThreads :
#[ MakeThreadBuckets :
*/
/**
* Creates 2*number thread buckets. We want double the number because
* we want to prepare number of them while another number are occupied.
*
* Each bucket should have about AC.ThreadBucketSize*AM.MaxTerm words.
*
* When loading a thread we only have to pass the address of a full bucket.
* This gives more overlap between the master and the workers and hence
* less waiting.
*
* The buckets are used because sending terms one by one to the workers
* costs too much overhead. Hence we put a number of terms in each bucket
* and then pass the whole bucket. In the ideal case the master loads the
* buckets while the workers are processing the contents of the buckets
* they have been assigned. In practise often the processing can go faster
* than that the master can fill the buckets for all workers.
* It should be possible to improve this bucket system, but the trivial
* idea
*
* @param number The number of workers
* @param par par = 0: First allocation
* par = 1: Reallocation when we change the bucket size with the
* threadbucketsize statement.
*/
int MakeThreadBuckets(int number, int par)
{
int i;
LONG sizethreadbuckets;
THREADBUCKET *thr;
/*
First we need a decent estimate. Not all terms should be maximal.
Note that AM.MaxTer is in bytes!!!
Maybe we should try to limit the size here a bit more effectively.
This is a great consumer of memory.
*/
sizethreadbuckets = ( AC.ThreadBucketSize + 1 ) * AM.MaxTer + 2*sizeof(WORD);
if ( AC.ThreadBucketSize >= 250 ) sizethreadbuckets /= 4;
else if ( AC.ThreadBucketSize >= 90 ) sizethreadbuckets /= 3;
else if ( AC.ThreadBucketSize >= 40 ) sizethreadbuckets /= 2;
sizethreadbuckets /= sizeof(WORD);
if ( par == 0 ) {
numthreadbuckets = 2*(number-1);
threadbuckets = (THREADBUCKET **)Malloc1(numthreadbuckets*sizeof(THREADBUCKET *),"threadbuckets");
freebuckets = (THREADBUCKET **)Malloc1(numthreadbuckets*sizeof(THREADBUCKET *),"threadbuckets");
}
if ( par > 0 ) {
if ( sizethreadbuckets <= threadbuckets[0]->threadbuffersize ) return(0);
for ( i = 0; i < numthreadbuckets; i++ ) {
thr = threadbuckets[i];
M_free(thr->deferbuffer,"deferbuffer");
}
}
else {
for ( i = 0; i < numthreadbuckets; i++ ) {
threadbuckets[i] = (THREADBUCKET *)Malloc1(sizeof(THREADBUCKET),"threadbuckets");
threadbuckets[i]->lock = dummylock;
}
}
for ( i = 0; i < numthreadbuckets; i++ ) {
thr = threadbuckets[i];
thr->threadbuffersize = sizethreadbuckets;
thr->free = BUCKETFREE;
thr->deferbuffer = (POSITION *)Malloc1(2*sizethreadbuckets*sizeof(WORD)
+(AC.ThreadBucketSize+1)*sizeof(POSITION),"deferbuffer");
thr->threadbuffer = (WORD *)(thr->deferbuffer+AC.ThreadBucketSize+1);
thr->compressbuffer = (WORD *)(thr->threadbuffer+sizethreadbuckets);
thr->busy = BUCKETPREPARINGTERM;
thr->usenum = thr->totnum = 0;
thr->type = BUCKETDOINGTERMS;
}
return(0);
}
/*
#] MakeThreadBuckets :
#[ GetTimerInfo :
*/
/**
* Returns a pointer to the static timerinfo together with information about
* its size. This is used by the checkpoint code to save this information in
* the recovery file.
*/
int GetTimerInfo(LONG** ti,LONG** sti)
{
*ti = timerinfo;
*sti = sumtimerinfo;
#ifdef WITHSORTBOTS
return AM.totalnumberofthreads*2;
#else
return AM.totalnumberofthreads;
#endif
}
/*
#] GetTimerInfo :
#[ WriteTimerInfo :
*/
/**
* Writes data into the static timerinfo variable. This is used by the
* checkpoint code to restore the correct timings for the individual threads.
*/
void WriteTimerInfo(LONG* ti,LONG* sti)
{
int i;
#ifdef WITHSORTBOTS
int max = AM.totalnumberofthreads*2;
#else
int max = AM.totalnumberofthreads;
#endif
for ( i=0; i<max; ++i ) {
timerinfo[i] = ti[i];
sumtimerinfo[i] = sti[i];
}
}
/*
#] WriteTimerInfo :
#[ GetWorkerTimes :
*/
/**
* Gets the total CPU time of all workers together.
* To be called at the end of the TFORM run.
*/
LONG GetWorkerTimes(void)
{
LONG retval = 0;
int i;
for ( i = 1; i <= numberofworkers; i++ ) retval += timerinfo[i] + sumtimerinfo[i];
#ifdef WITHSORTBOTS
for ( i = numberofworkers+1; i <= numberofworkers+numberofsortbots; i++ )
retval += timerinfo[i] + sumtimerinfo[i];
#endif
return(retval);
}
/*
#] GetWorkerTimes :
#[ UpdateOneThread :
*/
/**
* Fix up some of the things that happened at compiler time.
*
* @param identity The TFORM defined integer thread identifier.
*/
int UpdateOneThread(int identity)
{
ALLPRIVATES *B = AB[identity], *B0 = AB[0];
AR.GetFile = AR0.GetFile;
AR.KeptInHold = AR0.KeptInHold;
AR.CurExpr = AR0.CurExpr;
AR.SortType = AC.SortType;
if ( AT.WildcardBufferSize < AC.WildcardBufferSize ) {
M_free(AT.WildArgTaken,"argument list names");
AT.WildcardBufferSize = AC.WildcardBufferSize;
AT.WildArgTaken = (WORD *)Malloc1((LONG)AC.WildcardBufferSize*sizeof(WORD)/2
,"argument list names");
if ( AT.WildArgTaken == 0 ) return(-1);
}
return(0);
}
/*
#] UpdateOneThread :
#[ LoadOneThread :
*/
/**
* Loads all relevant variables from thread 'from' into thread 'identity'
* This is to be done just prior to waking up the thread.
* It is important to keep the number of variables to be copied to a minimum
* because this is part of the 'overhead'.
*
* @param from the source thread which has all the variables already
* @param identity the TFORM defined integer thread identifier of the thread that needs the copy
* @param thr the bucket that contains the terms to be processed by 'identity'
* @param par if 1 copies the already active pieces in the (de)compress buffer
* @return Standard return convention (OK -> 0)
*/
int LoadOneThread(int from, int identity, THREADBUCKET *thr, int par)
{
WORD *t1, *t2;
ALLPRIVATES *B = AB[identity], *B0 = AB[from];
AR.DefPosition = AR0.DefPosition;
AR.NoCompress = AR0.NoCompress;
AR.gzipCompress = AR0.gzipCompress;
AR.BracketOn = AR0.BracketOn;
AR.CurDum = AR0.CurDum;
AR.DeferFlag = AR0.DeferFlag;
AR.TePos = 0;
AR.sLevel = AR0.sLevel;
AR.Stage4Name = AR0.Stage4Name;
AR.GetOneFile = AR0.GetOneFile;
AR.PolyFun = AR0.PolyFun;
AR.PolyFunInv = AR0.PolyFunInv;
AR.PolyFunType = AR0.PolyFunType;
AR.PolyFunExp = AR0.PolyFunExp;
AR.PolyFunVar = AR0.PolyFunVar;
AR.PolyFunPow = AR0.PolyFunPow;
AR.Eside = AR0.Eside;
AR.Cnumlhs = AR0.Cnumlhs;
/*
AR.MaxBracket = AR0.MaxBracket;
The compressbuffer contents are mainly relevant for keep brackets
We should do this only if there is a keep brackets statement
We may however still need the compressbuffer for expressions in the rhs.
*/
if ( par >= 1 ) {
/*
We may not need this %%%%% 7-apr-2006
*/
t1 = AR.CompressBuffer; t2 = AR0.CompressBuffer;
while ( t2 < AR0.CompressPointer ) *t1++ = *t2++;
AR.CompressPointer = t1;
}
else {
AR.CompressPointer = AR.CompressBuffer;
}
if ( AR.DeferFlag ) {
if ( AR.infile->handle < 0 ) {
AR.infile->POfill = AR0.infile->POfill;
}
else {
/*
We have to set the value of POposition to something that will
force a read in the first try.
*/
AR.infile->POfull = AR.infile->POfill = AR.infile->PObuffer;
}
}
if ( par == 0 ) {
AN.threadbuck = thr;
AN.ninterms = thr->firstterm;
}
else if ( par == 1 ) {
WORD *tstop;
t1 = thr->threadbuffer; tstop = t1 + *t1;
t2 = AT.WorkPointer;
while ( t1 < tstop ) *t2++ = *t1++;
AN.ninterms = thr->firstterm;
}
AN.TeInFun = 0;
AN.ncmod = AC.ncmod;
AT.BrackBuf = AT0.BrackBuf;
AT.bracketindexflag = AT0.bracketindexflag;
AN.PolyFunTodo = 0;
/*
The relevant variables and the term are in their place.
There is nothing more to do.
*/
return(0);
}
/*
#] LoadOneThread :
#[ BalanceRunThread :
*/
/**
* To start a thread from the Generator routine we need to pass a number
* of variables.
* This is part of the second stage load balancing. The second stage is
* when we interfere with the expansion tree in Generator and let branches
* of the tree be treated by other workers.
* Early experiments show disappointing results and hence the system is
* currently disabled.
*
* @param identity The identity of the thread that will receive the term.
* @param term The term to be passed to thread 'identity'
* @param level The level at which we are in the tree. Defines the statement.
* @return Standard return convention (OK -> 0)
*/
int BalanceRunThread(PHEAD int identity, WORD *term, WORD level)
{
GETBIDENTITY
ALLPRIVATES *BB;
WORD *t, *tt;
int i, *ti, *tti;
LoadOneThread(AT.identity,identity,0,2);
/*
Extra loading if needed. Quantities changed in Generator.
Like the level that has to be passed.
*/
BB = AB[identity];
BB->R.level = level;
BB->T.TMbuff = AT.TMbuff;
ti = AT.RepCount; tti = BB->T.RepCount;
i = AN.RepPoint - AT.RepCount;
BB->N.RepPoint = BB->T.RepCount + i;
for ( ; i >= 0; i-- ) tti[i] = ti[i];
t = term; i = *term;
tt = BB->T.WorkSpace;
NCOPY(tt,t,i);
BB->T.WorkPointer = tt;
WakeupThread(identity,HIGHERLEVELGENERATION);
return(0);
}
/*
#] BalanceRunThread :
#[ SetWorkerFiles :
*/
/**
* Initializes the scratch files at the start of the execution of a module.
*/
void SetWorkerFiles(void)
{
int id;
ALLPRIVATES *B, *B0 = AB[0];
for ( id = 1; id < AM.totalnumberofthreads; id++ ) {
B = AB[id];
AR.infile = &(AR.Fscr[0]);
AR.outfile = &(AR.Fscr[1]);
AR.hidefile = &(AR.Fscr[2]);
AR.infile->handle = AR0.infile->handle;
AR.hidefile->handle = AR0.hidefile->handle;
if ( AR.infile->handle < 0 ) {
AR.infile->PObuffer = AR0.infile->PObuffer;
AR.infile->POstop = AR0.infile->POstop;
AR.infile->POfill = AR0.infile->POfill;
AR.infile->POfull = AR0.infile->POfull;
AR.infile->POsize = AR0.infile->POsize;
AR.InInBuf = AR0.InInBuf;
AR.infile->POposition = AR0.infile->POposition;
AR.infile->filesize = AR0.infile->filesize;
}
else {
AR.infile->PObuffer = AR.infile->wPObuffer;
AR.infile->POstop = AR.infile->wPOstop;
AR.infile->POfill = AR.infile->wPOfill;
AR.infile->POfull = AR.infile->wPOfull;
AR.infile->POsize = AR.infile->wPOsize;
AR.InInBuf = 0;
PUTZERO(AR.infile->POposition);
}
/*
If there is some writing, it betters happens to ones own outfile.
Currently this is to be done only for InParallel.
Merging of the outputs is then done by the CopyExpression routine.
*/
{
AR.outfile->PObuffer = AR.outfile->wPObuffer;
AR.outfile->POstop = AR.outfile->wPOstop;
AR.outfile->POfill = AR.outfile->wPOfill;
AR.outfile->POfull = AR.outfile->wPOfull;
AR.outfile->POsize = AR.outfile->wPOsize;
PUTZERO(AR.outfile->POposition);
}
if ( AR.hidefile->handle < 0 ) {
AR.hidefile->PObuffer = AR0.hidefile->PObuffer;
AR.hidefile->POstop = AR0.hidefile->POstop;
AR.hidefile->POfill = AR0.hidefile->POfill;
AR.hidefile->POfull = AR0.hidefile->POfull;
AR.hidefile->POsize = AR0.hidefile->POsize;
AR.InHiBuf = AR0.InHiBuf;
AR.hidefile->POposition = AR0.hidefile->POposition;
AR.hidefile->filesize = AR0.hidefile->filesize;
}
else {
AR.hidefile->PObuffer = AR.hidefile->wPObuffer;
AR.hidefile->POstop = AR.hidefile->wPOstop;
AR.hidefile->POfill = AR.hidefile->wPOfill;
AR.hidefile->POfull = AR.hidefile->wPOfull;
AR.hidefile->POsize = AR.hidefile->wPOsize;
AR.InHiBuf = 0;
PUTZERO(AR.hidefile->POposition);
}
}
if ( AR0.StoreData.dirtyflag ) {
for ( id = 1; id < AM.totalnumberofthreads; id++ ) {
B = AB[id];
AR.StoreData = AR0.StoreData;
}
}
}
/*
#] SetWorkerFiles :
#[ RunThread :
*/
/**
* This is the routine that represents each worker.
* The model is that the worker waits for a 'signal'.
* If there is a signal it wakes up, looks at what signal and then takes
* the corresponding action. After this it goes back to sleep.
*/
void *RunThread(void *dummy)
{
WORD *term, *ttin, *tt, *ttco, *oldwork;
int identity, wakeupsignal, identityretv, i, tobereleased, errorcode;
ALLPRIVATES *B;
THREADBUCKET *thr;
POSITION *ppdef;
EXPRESSIONS e;
DUMMYUSE(dummy);
identity = SetIdentity(&identityretv);
threadpointers[identity] = pthread_self();
B = InitializeOneThread(identity);
while ( ( wakeupsignal = ThreadWait(identity) ) > 0 ) {
switch ( wakeupsignal ) {
/*
#[ STARTNEWEXPRESSION :
*/
case STARTNEWEXPRESSION:
/*
Set up the sort routines etc.
Start with getting some buffers synchronized with the compiler
*/
if ( UpdateOneThread(identity) ) {
MLOCK(ErrorMessageLock);
MesPrint("Update error in starting expression in thread %d in module %d",identity,AC.CModule);
MUNLOCK(ErrorMessageLock);
Terminate(-1);
}
AR.DeferFlag = AC.ComDefer;
AR.sLevel = AS.sLevel;
AR.MaxDum = AM.IndDum;
AR.expchanged = AB[0]->R.expchanged;
AR.expflags = AB[0]->R.expflags;
AR.PolyFun = AB[0]->R.PolyFun;
AR.PolyFunInv = AB[0]->R.PolyFunInv;
AR.PolyFunType = AB[0]->R.PolyFunType;
AR.PolyFunExp = AB[0]->R.PolyFunExp;
AR.PolyFunVar = AB[0]->R.PolyFunVar;
AR.PolyFunPow = AB[0]->R.PolyFunPow;
/*
Now fire up the sort buffer.
*/
NewSort(BHEAD0);
break;
/*
#] STARTNEWEXPRESSION :
#[ LOWESTLEVELGENERATION :
*/
case LOWESTLEVELGENERATION:
#ifdef INNERTEST
if ( AC.InnerTest ) {
if ( StrCmp(AC.TestValue,(UBYTE *)INNERTEST) == 0 ) {
MesPrint("Testing(Worker%d): value = %s",AT.identity,AC.TestValue);
}
}
#endif
e = Expressions + AR.CurExpr;
thr = AN.threadbuck;
ppdef = thr->deferbuffer;
ttin = thr->threadbuffer;
ttco = thr->compressbuffer;
term = AT.WorkPointer;
thr->usenum = 0;
tobereleased = 0;
AN.inputnumber = thr->firstterm;
AN.ninterms = thr->firstterm;
do {
thr->usenum++; /* For if the master wants to steal the bucket */
tt = term; i = *ttin;
NCOPY(tt,ttin,i);
AT.WorkPointer = tt;
if ( AR.DeferFlag ) {
tt = AR.CompressBuffer; i = *ttco;
NCOPY(tt,ttco,i);
AR.CompressPointer = tt;
AR.DefPosition = ppdef[0]; ppdef++;
}
if ( thr->free == BUCKETTERMINATED ) {
/*
The next statement allows the master to steal the bucket
for load balancing purposes. We do still execute the current
term, but afterwards we drop out.
Once we have written the release code, we cannot use this
bucket anymore. Hence the exit to the label bucketstolen.
*/
if ( thr->usenum == thr->totnum ) {
thr->free = BUCKETCOMINGFREE;
}
else {
thr->free = BUCKETRELEASED;
tobereleased = 1;
}
}
/*
What if we want to steal and we set thr->free while
the thread is inside the next code for a long time?
if ( AT.LoadBalancing ) {
*/
LOCK(thr->lock);
thr->busy = BUCKETDOINGTERM;
UNLOCK(thr->lock);
/*
}
else {
thr->busy = BUCKETDOINGTERM;
}
*/
AN.RepPoint = AT.RepCount + 1;
if ( ( e->vflags & ISFACTORIZED ) != 0 && term[1] == HAAKJE ) {
StoreTerm(BHEAD term);
}
else {
if ( AR.DeferFlag ) {
AR.CurDum = AN.IndDum = Expressions[AR.CurExpr].numdummies + AM.IndDum;
}
else {
AN.IndDum = AM.IndDum;
AR.CurDum = ReNumber(BHEAD term);
}
if ( AC.SymChangeFlag ) MarkDirty(term,DIRTYSYMFLAG);
if ( AN.ncmod ) {
if ( ( AC.modmode & ALSOFUNARGS ) != 0 ) MarkDirty(term,DIRTYFLAG);
else if ( AR.PolyFun ) PolyFunDirty(BHEAD term);
}
else if ( AC.PolyRatFunChanged ) PolyFunDirty(BHEAD term);
if ( ( AP.PreDebug & THREADSDEBUG ) != 0 ) {
MLOCK(ErrorMessageLock);
MesPrint("Thread %w executing term:");
PrintTerm(term,"LLG");
MUNLOCK(ErrorMessageLock);
}
if ( ( AR.PolyFunType == 2 ) && ( AC.PolyRatFunChanged == 0 )
&& ( e->status == LOCALEXPRESSION || e->status == GLOBALEXPRESSION ) ) {
PolyFunClean(BHEAD term);
}
if ( Generator(BHEAD term,0) ) {
LowerSortLevel();
MLOCK(ErrorMessageLock);
MesPrint("Error in processing one term in thread %d in module %d",identity,AC.CModule);
MUNLOCK(ErrorMessageLock);
Terminate(-1);
}
AN.ninterms++;
}
/* if ( AT.LoadBalancing ) { */
LOCK(thr->lock);
thr->busy = BUCKETPREPARINGTERM;
UNLOCK(thr->lock);
/*
}
else {
thr->busy = BUCKETPREPARINGTERM;
}
*/
if ( thr->free == BUCKETTERMINATED ) {
if ( thr->usenum == thr->totnum ) {
thr->free = BUCKETCOMINGFREE;
}
else {
thr->free = BUCKETRELEASED;
tobereleased = 1;
}
}
if ( tobereleased ) goto bucketstolen;
} while ( *ttin );
thr->free = BUCKETCOMINGFREE;
bucketstolen:;
/* if ( AT.LoadBalancing ) { */
LOCK(thr->lock);
thr->busy = BUCKETTOBERELEASED;
UNLOCK(thr->lock);
/* }
else {
thr->busy = BUCKETTOBERELEASED;
}
*/
AT.WorkPointer = term;
break;
/*
#] LOWESTLEVELGENERATION :
#[ FINISHEXPRESSION :
*/
#ifdef WITHSORTBOTS
case CLAIMOUTPUT:
LOCK(AT.SB.MasterBlockLock[1]);
break;
#endif
case FINISHEXPRESSION:
/*
Finish the sort
Start with claiming the first block
Once we have claimed it we can let the master know that
everything is all right.
*/
LOCK(AT.SB.MasterBlockLock[1]);
ThreadClaimedBlock(identity);
/*
Entry for when we work with sortbots
*/
#ifdef WITHSORTBOTS
/* fall through */
case FINISHEXPRESSION2:
#endif
/*
Now we may need here an fsync on the sort file
*/
if ( AC.ThreadSortFileSynch ) {
if ( AT.S0->file.handle >= 0 ) {
SynchFile(AT.S0->file.handle);
}
}
AT.SB.FillBlock = 1;
AT.SB.MasterFill[1] = AT.SB.MasterStart[1];
errorcode = EndSort(BHEAD AT.S0->sBuffer,0);
UNLOCK(AT.SB.MasterBlockLock[AT.SB.FillBlock]);
UpdateMaxSize();
if ( errorcode ) {
MLOCK(ErrorMessageLock);
MesPrint("Error terminating sort in thread %d in module %d",identity,AC.CModule);
MUNLOCK(ErrorMessageLock);
Terminate(-1);
}
break;
/*
#] FINISHEXPRESSION :
#[ CLEANUPEXPRESSION :
*/
case CLEANUPEXPRESSION:
/*
Cleanup everything and wait for the next expression
*/
if ( AR.outfile->handle >= 0 ) {
CloseFile(AR.outfile->handle);
AR.outfile->handle = -1;
remove(AR.outfile->name);
AR.outfile->POfill = AR.outfile->POfull = AR.outfile->PObuffer;
PUTZERO(AR.outfile->POposition);
PUTZERO(AR.outfile->filesize);
}
else {
AR.outfile->POfill = AR.outfile->POfull = AR.outfile->PObuffer;
PUTZERO(AR.outfile->POposition);
PUTZERO(AR.outfile->filesize);
}
{
CBUF *C = cbuf+AT.ebufnum;
WORD **w, ii;
if ( C->numrhs > 0 || C->numlhs > 0 ) {
if ( C->rhs ) {
w = C->rhs; ii = C->numrhs;
do { *w++ = 0; } while ( --ii > 0 );
}
if ( C->lhs ) {
w = C->lhs; ii = C->numlhs;
do { *w++ = 0; } while ( --ii > 0 );
}
C->numlhs = C->numrhs = 0;
ClearTree(AT.ebufnum);
C->Pointer = C->Buffer;
}
}
break;
/*
#] CLEANUPEXPRESSION :
#[ HIGHERLEVELGENERATION :
*/
case HIGHERLEVELGENERATION:
/*
When foliating halfway the tree.
This should only be needed in a second level load balancing
*/
term = AT.WorkSpace; AT.WorkPointer = term + *term;
if ( Generator(BHEAD term,AR.level) ) {
LowerSortLevel();
MLOCK(ErrorMessageLock);
MesPrint("Error in load balancing one term at level %d in thread %d in module %d",AR.level,AT.identity,AC.CModule);
MUNLOCK(ErrorMessageLock);
Terminate(-1);
}
AT.WorkPointer = term;
break;
/*
#] HIGHERLEVELGENERATION :
#[ STARTNEWMODULE :
*/
case STARTNEWMODULE:
/*
For resetting variables.
*/
SpecialCleanup(B);
break;
/*
#] STARTNEWMODULE :
#[ TERMINATETHREAD :
*/
case TERMINATETHREAD:
goto EndOfThread;
/*
#] TERMINATETHREAD :
#[ DOONEEXPRESSION :
When a thread has to do a complete (not too big) expression.
The number of the expression to be done is in AR.exprtodo.
The code is mostly taken from Processor. The only difference
is with what to do with the output.
The output should go to the scratch buffer of the worker
(which is free at the right moment). If this buffer is too
small we have a problem. We could write to file or give the
master what we have and from now on the master has to collect
pieces until things are complete.
Note: this assumes that the expressions don't keep their order.
If they have to keep their order, don't use this feature.
*/
case DOONEEXPRESSION: {
POSITION position, outposition;
FILEHANDLE *fi, *fout, *oldoutfile;
LONG dd = 0;
WORD oldBracketOn = AR.BracketOn;
WORD *oldBrackBuf = AT.BrackBuf;
WORD oldbracketindexflag = AT.bracketindexflag;
WORD fromspectator = 0;
e = Expressions + AR.exprtodo;
i = AR.exprtodo;
AR.CurExpr = i;
AR.SortType = AC.SortType;
AR.expchanged = 0;
if ( ( e->vflags & ISFACTORIZED ) != 0 ) {
AR.BracketOn = 1;
AT.BrackBuf = AM.BracketFactors;
AT.bracketindexflag = 1;
}
position = AS.OldOnFile[i];
if ( e->status == HIDDENLEXPRESSION || e->status == HIDDENGEXPRESSION
|| e->status == UNHIDELEXPRESSION || e->status == UNHIDEGEXPRESSION ) {
AR.GetFile = 2; fi = AR.hidefile;
}
else {
AR.GetFile = 0; fi = AR.infile;
}
/*
PUTZERO(fi->POposition);
if ( fi->handle >= 0 ) {
fi->POfill = fi->POfull = fi->PObuffer;
}
*/
SetScratch(fi,&position);
term = oldwork = AT.WorkPointer;
AR.CompressPointer = AR.CompressBuffer;
AR.CompressPointer[0] = 0;
AR.KeptInHold = 0;
if ( GetTerm(BHEAD term) <= 0 ) {
MLOCK(ErrorMessageLock);
MesPrint("Expression %d has problems in scratchfile (t)",i);
MUNLOCK(ErrorMessageLock);
Terminate(-1);
}
if ( AT.bracketindexflag > 0 ) OpenBracketIndex(i);
term[3] = i;
if ( term[5] < 0 ) {
fromspectator = -term[5];
PUTZERO(AM.SpectatorFiles[fromspectator-1].readpos);
term[5] = AC.cbufnum;
}
PUTZERO(outposition);
fout = AR.outfile;
fout->POfill = fout->POfull = fout->PObuffer;
fout->POposition = outposition;
if ( fout->handle >= 0 ) {
fout->POposition = outposition;
}
/*
The next statement is needed because we need the system
to believe that the expression is at position zero for
the moment. In this worker, with no memory of other expressions,
it is. This is needed for when a bracket index is made
because there e->onfile is an offset. Afterwards, when the
expression is written to its final location in the masters
output e->onfile will get its real value.
*/
PUTZERO(e->onfile);
if ( PutOut(BHEAD term,&outposition,fout,0) < 0 ) goto ProcErr;
AR.DeferFlag = AC.ComDefer;
AR.sLevel = AB[0]->R.sLevel;
term = AT.WorkPointer;
NewSort(BHEAD0);
AR.MaxDum = AM.IndDum;
AN.ninterms = 0;
if ( fromspectator ) {
while ( GetFromSpectator(term,fromspectator-1) ) {
AT.WorkPointer = term + *term;
AN.RepPoint = AT.RepCount + 1;
AN.IndDum = AM.IndDum;
AR.CurDum = ReNumber(BHEAD term);
if ( AC.SymChangeFlag ) MarkDirty(term,DIRTYSYMFLAG);
if ( AN.ncmod ) {
if ( ( AC.modmode & ALSOFUNARGS ) != 0 ) MarkDirty(term,DIRTYFLAG);
else if ( AR.PolyFun ) PolyFunDirty(BHEAD term);
}
else if ( AC.PolyRatFunChanged ) PolyFunDirty(BHEAD term);
if ( ( AR.PolyFunType == 2 ) && ( AC.PolyRatFunChanged == 0 )
&& ( e->status == LOCALEXPRESSION || e->status == GLOBALEXPRESSION ) ) {
PolyFunClean(BHEAD term);
}
if ( Generator(BHEAD term,0) ) {
LowerSortLevel(); goto ProcErr;
}
}
}
else {
while ( GetTerm(BHEAD term) ) {
SeekScratch(fi,&position);
AN.ninterms++; dd = AN.deferskipped;
if ( ( e->vflags & ISFACTORIZED ) != 0 && term[1] == HAAKJE ) {
StoreTerm(BHEAD term);
}
else {
if ( AC.CollectFun && *term <= (AM.MaxTer/(2*(LONG)sizeof(WORD))) ) {
if ( GetMoreTerms(term) < 0 ) {
LowerSortLevel(); goto ProcErr;
}
SeekScratch(fi,&position);
}
AT.WorkPointer = term + *term;
AN.RepPoint = AT.RepCount + 1;
if ( AR.DeferFlag ) {
AR.CurDum = AN.IndDum = Expressions[AR.exprtodo].numdummies;
}
else {
AN.IndDum = AM.IndDum;
AR.CurDum = ReNumber(BHEAD term);
}
if ( AC.SymChangeFlag ) MarkDirty(term,DIRTYSYMFLAG);
if ( AN.ncmod ) {
if ( ( AC.modmode & ALSOFUNARGS ) != 0 ) MarkDirty(term,DIRTYFLAG);
else if ( AR.PolyFun ) PolyFunDirty(BHEAD term);
}
else if ( AC.PolyRatFunChanged ) PolyFunDirty(BHEAD term);
if ( ( AR.PolyFunType == 2 ) && ( AC.PolyRatFunChanged == 0 )
&& ( e->status == LOCALEXPRESSION || e->status == GLOBALEXPRESSION ) ) {
PolyFunClean(BHEAD term);
}
if ( Generator(BHEAD term,0) ) {
LowerSortLevel(); goto ProcErr;
}
AN.ninterms += dd;
}
SetScratch(fi,&position);
if ( fi == AR.hidefile ) {
AR.InHiBuf = (fi->POfull-fi->PObuffer)
-DIFBASE(position,fi->POposition)/sizeof(WORD);
}
else {
AR.InInBuf = (fi->POfull-fi->PObuffer)
-DIFBASE(position,fi->POposition)/sizeof(WORD);
}
}
}
AN.ninterms += dd;
if ( EndSort(BHEAD AT.S0->sBuffer,0) < 0 ) goto ProcErr;
e->numdummies = AR.MaxDum - AM.IndDum;
AR.BracketOn = oldBracketOn;
AT.BrackBuf = oldBrackBuf;
if ( ( e->vflags & TOBEFACTORED ) != 0 )
poly_factorize_expression(e);
else if ( ( ( e->vflags & TOBEUNFACTORED ) != 0 )
&& ( ( e->vflags & ISFACTORIZED ) != 0 ) )
poly_unfactorize_expression(e);
if ( AT.S0->TermsLeft ) e->vflags &= ~ISZERO;
else e->vflags |= ISZERO;
if ( AR.expchanged == 0 ) e->vflags |= ISUNMODIFIED;
if ( AT.S0->TermsLeft ) AR.expflags |= ISZERO;
if ( AR.expchanged ) AR.expflags |= ISUNMODIFIED;
AR.GetFile = 0;
AT.bracketindexflag = oldbracketindexflag;
/*
Now copy the whole thing from fout to AR0.outfile
Do this in one go to keep the lock occupied as short as possible
*/
SeekScratch(fout,&outposition);
LOCK(AS.outputslock);
oldoutfile = AB[0]->R.outfile;
if ( e->status == INTOHIDELEXPRESSION || e->status == INTOHIDEGEXPRESSION ) {
AB[0]->R.outfile = AB[0]->R.hidefile;
}
SeekScratch(AB[0]->R.outfile,&position);
e->onfile = position;
if ( CopyExpression(fout,AB[0]->R.outfile) < 0 ) {
AB[0]->R.outfile = oldoutfile;
UNLOCK(AS.outputslock);
MLOCK(ErrorMessageLock);
MesPrint("Error copying output of 'InParallel' expression to master. Thread: %d",identity);
MUNLOCK(ErrorMessageLock);
goto ProcErr;
}
AB[0]->R.outfile = oldoutfile;
AB[0]->R.hidefile->POfull = AB[0]->R.hidefile->POfill;
AB[0]->R.expflags = AR.expflags;
UNLOCK(AS.outputslock);
if ( fout->handle >= 0 ) { /* Now get rid of the file */
CloseFile(fout->handle);
fout->handle = -1;
remove(fout->name);
PUTZERO(fout->POposition);
PUTZERO(fout->filesize);
fout->POfill = fout->POfull = fout->PObuffer;
}
UpdateMaxSize();
AT.WorkPointer = oldwork;
} break;
/*
#] DOONEEXPRESSION :
#[ DOBRACKETS :
In case we have a bracket index we can have the worker treat
one or more of the entries in the bracket index.
The advantage is that identical terms will meet each other
sooner in the sorting and hence fewer compares will be needed.
Also this way the master doesn't need to fill the buckets.
The main problem is the load balancing which can become very
bad when there is a long tail without things outside the bracket.
We get sent:
1: The number of the first bracket to be done
2: The number of the last bracket to be done
*/
case DOBRACKETS: {
BRACKETINFO *binfo;
BRACKETINDEX *bi;
FILEHANDLE *fi;
POSITION stoppos,where;
e = Expressions + AR.CurExpr;
binfo = e->bracketinfo;
thr = AN.threadbuck;
bi = &(binfo->indexbuffer[thr->firstbracket]);
if ( AR.GetFile == 2 ) fi = AR.hidefile;
else fi = AR.infile;
where = bi->start;
ADD2POS(where,AS.OldOnFile[AR.CurExpr]);
SetScratch(fi,&(where));
stoppos = binfo->indexbuffer[thr->lastbracket].next;
ADD2POS(stoppos,AS.OldOnFile[AR.CurExpr]);
AN.ninterms = thr->firstterm;
/*
Now we have to put the 'value' of the bracket in the
Compress buffer.
*/
ttco = AR.CompressBuffer;
tt = binfo->bracketbuffer + bi->bracket;
i = *tt;
NCOPY(ttco,tt,i)
AR.CompressPointer = ttco;
term = AT.WorkPointer;
while ( GetTerm(BHEAD term) ) {
SeekScratch(fi,&where);
AT.WorkPointer = term + *term;
AN.IndDum = AM.IndDum;
AR.CurDum = ReNumber(BHEAD term);
if ( AC.SymChangeFlag ) MarkDirty(term,DIRTYSYMFLAG);
if ( AN.ncmod ) {
if ( ( AC.modmode & ALSOFUNARGS ) != 0 ) MarkDirty(term,DIRTYFLAG);
else if ( AR.PolyFun ) PolyFunDirty(BHEAD term);
}
else if ( AC.PolyRatFunChanged ) PolyFunDirty(BHEAD term);
if ( ( AR.PolyFunType == 2 ) && ( AC.PolyRatFunChanged == 0 )
&& ( e->status == LOCALEXPRESSION || e->status == GLOBALEXPRESSION ) ) {
PolyFunClean(BHEAD term);
}
if ( ( AP.PreDebug & THREADSDEBUG ) != 0 ) {
MLOCK(ErrorMessageLock);
MesPrint("Thread %w executing term:");
PrintTerm(term,"DoBrackets");
MUNLOCK(ErrorMessageLock);
}
AT.WorkPointer = term + *term;
if ( Generator(BHEAD term,0) ) {
LowerSortLevel();
MLOCK(ErrorMessageLock);
MesPrint("Error in processing one term in thread %d in module %d",identity,AC.CModule);
MUNLOCK(ErrorMessageLock);
Terminate(-1);
}
AN.ninterms++;
SetScratch(fi,&(where));
if ( ISGEPOS(where,stoppos) ) break;
}
AT.WorkPointer = term;
thr->free = BUCKETCOMINGFREE;
break;
}
/*
#] DOBRACKETS :
#[ CLEARCLOCK :
The program only comes here after a .clear
*/
case CLEARCLOCK:
/* LOCK(clearclocklock); */
sumtimerinfo[identity] += TimeCPU(1);
timerinfo[identity] = TimeCPU(0);
/* UNLOCK(clearclocklock); */
break;
/*
#] CLEARCLOCK :
#[ MCTSEXPANDTREE :
*/
case MCTSEXPANDTREE:
AT.optimtimes = AB[0]->T.optimtimes;
find_Horner_MCTS_expand_tree();
break;
/*
#] MCTSEXPANDTREE :
#[ OPTIMIZEEXPRESSION :
*/
case OPTIMIZEEXPRESSION:
optimize_expression_given_Horner();
break;
/*
#] OPTIMIZEEXPRESSION :
*/
default:
MLOCK(ErrorMessageLock);
MesPrint("Illegal wakeup signal %d for thread %d",wakeupsignal,identity);
MUNLOCK(ErrorMessageLock);
Terminate(-1);
break;
}
/* we need the following update in case we are using checkpoints. then we
need to readjust the clocks when recovering using this information */
timerinfo[identity] = TimeCPU(1);
}
EndOfThread:;
/*
This is the end of the thread. We cleanup and exit.
If we are using flint, call the per-thread cleanup function. This keep valgrind happy.
*/
#ifdef WITHFLINT
flint_final_cleanup_thread();
#endif
FinalizeOneThread(identity);
return(0);
ProcErr:
Terminate(-1);
return(0);
}
/*
#] RunThread :
#[ RunSortBot :
*/
/**
* This is the routine that represents each sortbot.
* The model is that the sortbot waits for a 'signal'.
* If there is a signal it wakes up, looks at what signal and then takes
* the corresponding action. After this it goes back to sleep.
*/
#ifdef WITHSORTBOTS
void *RunSortBot(void *dummy)
{
int identity, wakeupsignal, identityretv;
ALLPRIVATES *B, *BB;
DUMMYUSE(dummy);
identity = SetIdentity(&identityretv);
threadpointers[identity] = pthread_self();
B = InitializeOneThread(identity);
while ( ( wakeupsignal = SortBotWait(identity) ) > 0 ) {
switch ( wakeupsignal ) {
/*
#[ INISORTBOT :
*/
case INISORTBOT:
AR.CompressBuffer = AB[0]->R.CompressBuffer;
AR.ComprTop = AB[0]->R.ComprTop;
AR.CompressPointer = AB[0]->R.CompressPointer;
AR.CurExpr = AB[0]->R.CurExpr;
AR.PolyFun = AB[0]->R.PolyFun;
AR.PolyFunInv = AB[0]->R.PolyFunInv;
AR.PolyFunType = AB[0]->R.PolyFunType;
AR.PolyFunExp = AB[0]->R.PolyFunExp;
AR.PolyFunVar = AB[0]->R.PolyFunVar;
AR.PolyFunPow = AB[0]->R.PolyFunPow;
AR.SortType = AC.SortType;
if ( AR.PolyFun == 0 ) { AT.SS->PolyFlag = 0; }
else if ( AR.PolyFunType == 1 ) { AT.SS->PolyFlag = 1; }
else if ( AR.PolyFunType == 2 ) {
if ( AR.PolyFunExp == 2
|| AR.PolyFunExp == 3 ) AT.SS->PolyFlag = 1;
else AT.SS->PolyFlag = 2;
}
AT.SS->PolyWise = 0;
AN.ncmod = AC.ncmod;
LOCK(AT.SB.MasterBlockLock[1]);
BB = AB[AT.SortBotIn1];
LOCK(BB->T.SB.MasterBlockLock[BB->T.SB.MasterNumBlocks]);
BB = AB[AT.SortBotIn2];
LOCK(BB->T.SB.MasterBlockLock[BB->T.SB.MasterNumBlocks]);
AT.SB.FillBlock = 1;
AT.SB.MasterFill[1] = AT.SB.MasterStart[1];
SETBASEPOSITION(AN.theposition,0);
break;
/*
#] INISORTBOT :
#[ RUNSORTBOT :
*/
case RUNSORTBOT:
SortBotMerge(B);
break;
/*
#] RUNSORTBOT :
#[ TERMINATETHREAD :
*/
case TERMINATETHREAD:
goto EndOfThread;
/*
#] TERMINATETHREAD :
#[ CLEARCLOCK :
The program only comes here after a .clear
*/
case CLEARCLOCK:
/* LOCK(clearclocklock); */
sumtimerinfo[identity] += TimeCPU(1);
timerinfo[identity] = TimeCPU(0);
/* UNLOCK(clearclocklock); */
break;
/*
#] CLEARCLOCK :
*/
default:
MLOCK(ErrorMessageLock);
MesPrint("Illegal wakeup signal %d for thread %d",wakeupsignal,identity);
MUNLOCK(ErrorMessageLock);
Terminate(-1);
break;
}
}
EndOfThread:;
/*
This is the end of the thread. We cleanup and exit.
If we are using flint, call the per-thread cleanup function. This keep valgrind happy.
*/
#ifdef WITHFLINT
flint_final_cleanup_thread();
#endif
FinalizeOneThread(identity);
return(0);
}
#endif
/*
#] RunSortBot :
#[ IAmAvailable :
*/
/**
* To be called by a thread when it becomes available.
* Puts it on a stack.
* We use a stack model. It is also possible to define a circular queue.
* This will be tried out at a later stage.
* One advantage of a stack could be that if we cannot feed all threads
* more sorting is done at the threads and the master has to do less.
*
* @param identity The identity thread that signals its availability.
*/
void IAmAvailable(int identity)
{
int top;
LOCK(availabilitylock);
top = topofavailables;
listofavailables[topofavailables++] = identity;
if ( top == 0 ) {
UNLOCK(availabilitylock);
LOCK(wakeupmasterlock);
wakeupmaster = identity;
pthread_cond_signal(&wakeupmasterconditions);
UNLOCK(wakeupmasterlock);
}
else {
UNLOCK(availabilitylock);
}
}
/*
#] IAmAvailable :
#[ GetAvailableThread :
*/
/**
* Gets an available thread from the top of the stack.
* Maybe a circular buffer model would work better. This would mean that
* we take the lowest available worker, rather than the highest.
* We then have to work with high water marks and low water marks.
* (writing point and reading point). Still to be investigated.
*/
int GetAvailableThread(void)
{
int retval = -1;
LOCK(availabilitylock);
if ( topofavailables > 0 ) retval = listofavailables[--topofavailables];
UNLOCK(availabilitylock);
if ( retval >= 0 ) {
/*
Make sure the thread is indeed waiting and not between
saying that it is available and starting to wait.
*/
LOCK(wakeuplocks[retval]);
UNLOCK(wakeuplocks[retval]);
}
return(retval);
}
/*
#] GetAvailableThread :
#[ ConditionalGetAvailableThread :
*/
/**
* Looks whether a thread is available.
* If a thread is available it is taken from the stack of available threads.
*
* @return the identity of an available thread or -1 if none is available.
*/
int ConditionalGetAvailableThread(void)
{
int retval = -1;
if ( topofavailables > 0 ) {
LOCK(availabilitylock);
if ( topofavailables > 0 ) {
retval = listofavailables[--topofavailables];
}
UNLOCK(availabilitylock);
if ( retval >= 0 ) {
/*
Make sure the thread is indeed waiting and not between
saying that it is available and starting to wait.
*/
LOCK(wakeuplocks[retval]);
UNLOCK(wakeuplocks[retval]);
}
}
return(retval);
}
/*
#] ConditionalGetAvailableThread :
#[ GetThread :
*/
/**
* Gets a given thread from the list of available threads, even if
* it isn't on the top of the stack.
*
* @param identity The number of the thread that we want to remove from the
* list of available threads.
* @return The number of the thread if it was available. -1 otherwise.
*/
int GetThread(int identity)
{
int retval = -1, j;
LOCK(availabilitylock);
for ( j = 0; j < topofavailables; j++ ) {
if ( identity == listofavailables[j] ) break;
}
if ( j < topofavailables ) {
--topofavailables;
for ( ; j < topofavailables; j++ ) {
listofavailables[j] = listofavailables[j+1];
}
retval = identity;
}
UNLOCK(availabilitylock);
return(retval);
}
/*
#] GetThread :
#[ ThreadWait :
*/
/**
* To be called by a thread when it has nothing to do.
* It goes to sleep and waits for a wakeup call.
* The return value is the number of the wakeup signal.
*
* @param identity The number of the thread.
* @return The number of the wake-up signal.
*/
int ThreadWait(int identity)
{
int retval, top, j;
LOCK(wakeuplocks[identity]);
LOCK(availabilitylock);
top = topofavailables;
for ( j = topofavailables; j > 0; j-- )
listofavailables[j] = listofavailables[j-1];
listofavailables[0] = identity;
topofavailables++;
if ( top == 0 || topofavailables == numberofworkers ) {
UNLOCK(availabilitylock);
LOCK(wakeupmasterlock);
wakeupmaster = identity;
pthread_cond_signal(&wakeupmasterconditions);
UNLOCK(wakeupmasterlock);
}
else {
UNLOCK(availabilitylock);
}
while ( wakeup[identity] == 0 ) {
pthread_cond_wait(&(wakeupconditions[identity]),&(wakeuplocks[identity]));
}
retval = wakeup[identity];
wakeup[identity] = 0;
UNLOCK(wakeuplocks[identity]);
return(retval);
}
/*
#] ThreadWait :
#[ SortBotWait :
*/
#ifdef WITHSORTBOTS
/**
* To be called by a sortbot thread when it has nothing to do.
* It goes to sleep and waits for a wakeup call.
* The return value is the number of the wakeup signal.
*
* @param identity The number of the sortbot thread.
* @return The number of the wake-up signal.
*/
int SortBotWait(int identity)
{
int retval;
LOCK(wakeuplocks[identity]);
LOCK(availabilitylock);
topsortbotavailables++;
if ( topsortbotavailables >= numberofsortbots ) {
UNLOCK(availabilitylock);
LOCK(wakeupsortbotlock);
wakeupmaster = identity;
pthread_cond_signal(&wakeupsortbotconditions);
UNLOCK(wakeupsortbotlock);
}
else {
UNLOCK(availabilitylock);
}
while ( wakeup[identity] == 0 ) {
pthread_cond_wait(&(wakeupconditions[identity]),&(wakeuplocks[identity]));
}
retval = wakeup[identity];
wakeup[identity] = 0;
UNLOCK(wakeuplocks[identity]);
return(retval);
}
#endif
/*
#] SortBotWait :
#[ ThreadClaimedBlock :
*/
/**
* When the final sort of an expression starts the workers have to claim
* the first block in the buffers of the master for their output.
* The master may only continue after all workers have claimed their block
* because otherwise it is possible that the master may claim this block for
* reading before it has been written in.
* Hence the master must wait till all blocks have been claimed. Then the
* master will get signalled that it can continue.
*/
int ThreadClaimedBlock(int identity)
{
LOCK(availabilitylock);
numberclaimed++;
if ( numberclaimed >= numberofworkers ) {
UNLOCK(availabilitylock);
LOCK(wakeupmasterlock);
wakeupmaster = identity;
pthread_cond_signal(&wakeupmasterconditions);
UNLOCK(wakeupmasterlock);
}
else {
UNLOCK(availabilitylock);
}
return(0);
}
/*
#] ThreadClaimedBlock :
#[ MasterWait :
*/
/**
* To be called by the master when it has to wait for one of the
* workers to become available.
* It goes to sleep and waits for a wakeupmaster call.
* The return value is the identity of the process that wakes up the master.
*/
int MasterWait(void)
{
int retval;
LOCK(wakeupmasterlock);
while ( wakeupmaster == 0 ) {
pthread_cond_wait(&wakeupmasterconditions,&wakeupmasterlock);
}
retval = wakeupmaster;
wakeupmaster = 0;
UNLOCK(wakeupmasterlock);
return(retval);
}
/*
#] MasterWait :
#[ MasterWaitThread :
*/
/**
* To be called by the master when it has to wait for a specific one of the
* workers to become available.
* The return value is the value of the signal.
*/
int MasterWaitThread(int identity)
{
int retval;
LOCK(wakeupmasterthreadlocks[identity]);
while ( wakeupmasterthread[identity] == 0 ) {
pthread_cond_wait(&(wakeupmasterthreadconditions[identity])
,&(wakeupmasterthreadlocks[identity]));
}
retval = wakeupmasterthread[identity];
wakeupmasterthread[identity] = 0;
UNLOCK(wakeupmasterthreadlocks[identity]);
return(retval);
}
/*
#] MasterWaitThread :
#[ MasterWaitAll :
*/
/**
* To be called by the master when it has to wait for all of the
* workers to finish a given task.
* It goes to sleep and waits for a wakeup call in ThreadWait
*/
void MasterWaitAll(void)
{
LOCK(wakeupmasterlock);
while ( topofavailables < numberofworkers ) {
pthread_cond_wait(&wakeupmasterconditions,&wakeupmasterlock);
}
UNLOCK(wakeupmasterlock);
return;
}
/*
#] MasterWaitAll :
#[ MasterWaitAllSortBots :
*/
#ifdef WITHSORTBOTS
/**
* To be called by the master when it has to wait for all of the
* sortbots to start their task.
*/
void MasterWaitAllSortBots(void)
{
LOCK(wakeupsortbotlock);
while ( topsortbotavailables < numberofsortbots ) {
pthread_cond_wait(&wakeupsortbotconditions,&wakeupsortbotlock);
}
UNLOCK(wakeupsortbotlock);
return;
}
#endif
/*
#] MasterWaitAllSortBots :
#[ MasterWaitAllBlocks :
*/
/**
* To be called by the master when it has to wait for all of the
* workers to claim their first block in the sort buffers of the master.
* It goes to sleep and waits for a wakeup call.
*/
void MasterWaitAllBlocks(void)
{
LOCK(wakeupmasterlock);
while ( numberclaimed < numberofworkers ) {
pthread_cond_wait(&wakeupmasterconditions,&wakeupmasterlock);
}
UNLOCK(wakeupmasterlock);
return;
}
/*
#] MasterWaitAllBlocks :
#[ WakeupThread :
*/
/**
* To be called when the indicated thread needs waking up.
* The signal number should be nonzero!
*
* @param identity The number of the worker to be woken up
* @param signalnumber The signal with which it should be woken up.
*/
void WakeupThread(int identity, int signalnumber)
{
if ( signalnumber == 0 ) {
MLOCK(ErrorMessageLock);
MesPrint("Illegal wakeup signal for thread %d",identity);
MUNLOCK(ErrorMessageLock);
Terminate(-1);
}
LOCK(wakeuplocks[identity]);
wakeup[identity] = signalnumber;
pthread_cond_signal(&(wakeupconditions[identity]));
UNLOCK(wakeuplocks[identity]);
}
/*
#] WakeupThread :
#[ WakeupMasterFromThread :
*/
/**
* To be called when the indicated thread needs to wake up the master.
* The signal number should be nonzero!
*
* @param identity The number of the worker who wakes up the master.
* @param signalnumber The signal with which the master should be woken up.
*/
void WakeupMasterFromThread(int identity, int signalnumber)
{
if ( signalnumber == 0 ) {
MLOCK(ErrorMessageLock);
MesPrint("Illegal wakeup signal for master %d",identity);
MUNLOCK(ErrorMessageLock);
Terminate(-1);
}
LOCK(wakeupmasterthreadlocks[identity]);
wakeupmasterthread[identity] = signalnumber;
pthread_cond_signal(&(wakeupmasterthreadconditions[identity]));
UNLOCK(wakeupmasterthreadlocks[identity]);
}
/*
#] WakeupMasterFromThread :
#[ SendOneBucket :
*/
/**
* To be called when there is a full bucket and an available thread
* It prepares the thread and then wakes it up.
*/
int SendOneBucket(int type)
{
ALLPRIVATES *B0 = AB[0];
THREADBUCKET *thr = 0;
int j, k, id;
for ( j = 0; j < numthreadbuckets; j++ ) {
if ( threadbuckets[j]->free == BUCKETFILLED ) {
thr = threadbuckets[j];
for ( k = j+1; k < numthreadbuckets; k++ )
threadbuckets[k-1] = threadbuckets[k];
threadbuckets[numthreadbuckets-1] = thr;
break;
}
}
AN0.ninterms++;
while ( ( id = GetAvailableThread() ) < 0 ) { MasterWait(); }
/*
Prepare the thread. Give it the term and variables.
*/
LoadOneThread(0,id,thr,0);
thr->busy = BUCKETASSIGNED;
thr->free = BUCKETINUSE;
numberoffullbuckets--;
/*
And signal the thread to run.
Form now on we may only interfere with this bucket
1: after it has been marked BUCKETCOMINGFREE
2: when thr->busy == BUCKETDOINGTERM and then only when protected by
thr->lock. This would be for load balancing.
*/
WakeupThread(id,type);
/* AN0.ninterms += thr->ddterms; */
return(0);
}
/*
#] SendOneBucket :
#[ InParallelProcessor :
*/
/**
* We divide the expressions marked by partodo over the workers.
* The workers are responsible for writing their results into the buffers
* of the master (output). This is to be controlled by locks.
* The order of the expressions may get changed this way.
*
* The InParallel statement allows the execution of complete expressions
* in a single worker simultaneously. This is useful for when there are
* many short expressions. This way we don't need the bottleneck of the
* merging by the master. The complete sort for each expression is done
* inside its own single worker. The bottleneck here is the writing of the
* result into the scratch system. This is now done by the workers themselves.
* Because each expression must be contiguous, the writing should be done
* as quickly as possible and be protected by locks.
*
* The implementation of this statement gave a significant increase in
* efficiency in the running of the Multiple Zeta Values program.
*/
int InParallelProcessor(void)
{
GETIDENTITY
int i, id, retval = 0, num = 0;
EXPRESSIONS e;
if ( numberofworkers >= 2 ) {
SetWorkerFiles();
for ( i = 0; i < NumExpressions; i++ ) {
e = Expressions+i;
if ( e->partodo <= 0 ) continue;
if ( e->status == LOCALEXPRESSION || e->status == GLOBALEXPRESSION
|| e->status == UNHIDELEXPRESSION || e->status == UNHIDEGEXPRESSION
|| e->status == INTOHIDELEXPRESSION || e->status == INTOHIDEGEXPRESSION ) {
}
else {
e->partodo = 0;
continue;
}
if ( e->counter == 0 ) { /* Expression with zero terms */
e->partodo = 0;
continue;
}
/*
This expression should go to an idle worker
*/
while ( ( id = GetAvailableThread() ) < 0 ) { MasterWait(); }
LoadOneThread(0,id,0,-1);
AB[id]->R.exprtodo = i;
WakeupThread(id,DOONEEXPRESSION);
num++;
}
/*
Now we have to wait for all workers to finish
*/
if ( num > 0 ) MasterWaitAll();
if ( AC.CollectFun ) AR.DeferFlag = 0;
}
else {
for ( i = 0; i < NumExpressions; i++ ) {
Expressions[i].partodo = 0;
}
}
return(retval);
}
/*
#] InParallelProcessor :
#[ ThreadsProcessor :
*/
/**
* This routine takes the role of the central part of the Processor routine
* in the file proces.c when multiple threads are available.
* It deals with the expressions that are not marked in the InParallel
* statement. These are usually the large expressions. It will divide
* the terms of these expressions over the workers, using a bucket system
* to reduce overhead (buckets are collections of a number of terms that
* are transferred together).
* At the end of the expression when all terms have been assigned and
* workers become available again, there is a load balancing system to
* take terms from the buckets of workers that still have to do many terms
* and give them to idle workers. This is called first level load balancing.
*
* A new feature is that for expressions with a bracket index the terms
* can be distributed in collections of complete brackets (12-nov-2009).
*
* The routine is called for each expression separately by Processor.
*
* @param e The expression to be executed
* @param LastExpression Indicates whether it is the last expression in which case
* in the end the input scratch file can be deleted before
* the output is written. This saves diskspace.
*/
int ThreadsProcessor(EXPRESSIONS e, WORD LastExpression, WORD fromspectator)
{
ALLPRIVATES *B0 = AB[0], *B = B0;
int id, oldgzipCompress, endofinput = 0, j, still, k, defcount = 0, bra = 0, first = 1;
LONG dd = 0, ddd, thrbufsiz, thrbufsiz0, thrbufsiz2, numbucket = 0, numpasses;
LONG num, i;
WORD *oldworkpointer = AT0.WorkPointer, *tt, *ttco = 0, *t1 = 0, ter, *tstop = 0, *t2;
THREADBUCKET *thr = 0;
FILEHANDLE *oldoutfile = AR0.outfile;
GETTERM GetTermP = &GetTerm;
POSITION eonfile = AS.OldOnFile[e-Expressions];
numberoffullbuckets = 0;
/*
Start up all threads. The lock needs to be around the whole loop
to keep processes from terminating quickly and putting themselves
in the list of available threads again.
*/
AM.tracebackflag = 1;
AS.sLevel = AR0.sLevel;
LOCK(availabilitylock);
topofavailables = 0;
for ( id = 1; id <= numberofworkers; id++ ) {
WakeupThread(id,STARTNEWEXPRESSION);
}
UNLOCK(availabilitylock);
NewSort(BHEAD0);
AN0.ninterms = 1;
/*
Now for redefine
*/
if ( AC.numpfirstnum > 0 ) {
for ( j = 0; j < AC.numpfirstnum; j++ ) {
AC.inputnumbers[j] = -1;
}
}
MasterWaitAll();
/*
Determine a reasonable bucketsize.
This is based on the value of AC.ThreadBucketSize and the number
of terms. We want at least 5 buckets per worker at the moment.
Some research should show whether this is reasonable.
The number of terms in the expression is in e->counter
*/
thrbufsiz2 = thrbufsiz = AC.ThreadBucketSize-1;
if ( ( e->counter / ( numberofworkers * 5 ) ) < thrbufsiz ) {
thrbufsiz = e->counter / ( numberofworkers * 5 ) - 1;
if ( thrbufsiz < 0 ) thrbufsiz = 0;
}
thrbufsiz0 = thrbufsiz;
numpasses = 5; /* this is just for trying */
thrbufsiz = thrbufsiz0 / (2 << numpasses);
/*
Mark all buckets as free and take the first.
*/
for ( j = 0; j < numthreadbuckets; j++ )
threadbuckets[j]->free = BUCKETFREE;
thr = threadbuckets[0];
/*
#[ Whole brackets :
First we look whether we have to work with entire brackets
This is the case when there is a non-NULL address in e->bracketinfo.
Of course we shouldn't have interference from a collect or keep statement.
*/
#ifdef WHOLEBRACKETS
if ( e->bracketinfo && AC.CollectFun == 0 && AR0.DeferFlag == 0 ) {
FILEHANDLE *curfile;
int didone = 0;
LONG num, n;
AN0.expr = e;
for ( n = 0; n < e->bracketinfo->indexfill; n++ ) {
num = TreatIndexEntry(B0,n);
if ( num > 0 ) {
didone = 1;
/*
This bracket can be sent off.
1: Look for an empty bucket
*/
ReTry:;
for ( j = 0; j < numthreadbuckets; j++ ) {
switch ( threadbuckets[j]->free ) {
case BUCKETFREE:
thr = threadbuckets[j];
goto Found1;
case BUCKETCOMINGFREE:
thr = threadbuckets[j];
thr->free = BUCKETFREE;
for ( k = j+1; k < numthreadbuckets; k++ )
threadbuckets[k-1] = threadbuckets[k];
threadbuckets[numthreadbuckets-1] = thr;
j--;
break;
default:
break;
}
}
Found1:;
if ( j < numthreadbuckets ) {
/*
Found an empty bucket. Fill it.
*/
thr->firstbracket = n;
thr->lastbracket = n + num - 1;
thr->type = BUCKETDOINGBRACKET;
thr->free = BUCKETFILLED;
thr->firstterm = AN0.ninterms;
for ( j = n; j < n+num; j++ ) {
AN0.ninterms += e->bracketinfo->indexbuffer[j].termsinbracket;
}
n += num-1;
numberoffullbuckets++;
if ( topofavailables > 0 ) {
SendOneBucket(DOBRACKETS);
}
}
/*
All buckets are in use.
Look/wait for an idle worker. Give it a bucket.
After that, retry for a bucket
*/
else {
while ( topofavailables <= 0 ) {
MasterWait();
}
SendOneBucket(DOBRACKETS);
goto ReTry;
}
}
}
if ( didone ) {
/*
And now put the input back in the original position.
*/
switch ( e->status ) {
case UNHIDELEXPRESSION:
case UNHIDEGEXPRESSION:
case DROPHLEXPRESSION:
case DROPHGEXPRESSION:
case HIDDENLEXPRESSION:
case HIDDENGEXPRESSION:
curfile = AR0.hidefile;
break;
default:
curfile = AR0.infile;
break;
}
SetScratch(curfile,&eonfile);
GetTerm(B0,AT0.WorkPointer);
/*
Now we point the GetTerm that is used to the one that is selective
*/
GetTermP = &GetTerm2;
/*
Next wait till there is a bucket available and initialize thr to it.
*/
for(;;) {
for ( j = 0; j < numthreadbuckets; j++ ) {
switch ( threadbuckets[j]->free ) {
case BUCKETFREE:
thr = threadbuckets[j];
goto Found2;
case BUCKETCOMINGFREE:
thr = threadbuckets[j];
thr->free = BUCKETFREE;
for ( k = j+1; k < numthreadbuckets; k++ )
threadbuckets[k-1] = threadbuckets[k];
threadbuckets[numthreadbuckets-1] = thr;
j--;
break;
default:
break;
}
}
while ( topofavailables <= 0 ) {
MasterWait();
}
while ( topofavailables > 0 && numberoffullbuckets > 0 ) {
SendOneBucket(DOBRACKETS);
}
}
Found2:;
while ( numberoffullbuckets > 0 ) {
while ( topofavailables <= 0 ) {
MasterWait();
}
while ( topofavailables > 0 && numberoffullbuckets > 0 ) {
SendOneBucket(DOBRACKETS);
}
}
/*
Disable the 'warming up' with smaller buckets.
numpasses = 0;
thrbufsiz = thrbufsiz0;
*/
AN0.lastinindex = -1;
}
MasterWaitAll();
}
#endif
/*
#] Whole brackets :
Now the loop to start a bucket
*/
for(;;) {
if ( fromspectator ) {
ter = GetFromSpectator(thr->threadbuffer,fromspectator-1);
if ( ter == 0 ) fromspectator = 0;
}
else {
ter = GetTermP(B0,thr->threadbuffer);
/*
At this point we could check whether the input term is
just an expression that resides in a scratch file.
If this is the case we should store the current input info
(file and buffer content) and redirect the input.
At the end we can go back to where we were.
There are two possibilities: we are in the same scratchfile
as the main input and the other expression is still in the
input buffer, or we have to do some reading. The reading is
of course done in GetTerm.
How to set this up can also be studied in TestSub (in file proces.c)
where it checks for EXPRESSION.
*/
}
if ( ter < 0 ) break;
if ( ter == 0 ) { endofinput = 1; goto Finalize; }
dd = AN0.deferskipped;
if ( AR0.DeferFlag ) {
defcount = 0;
thr->deferbuffer[defcount++] = AR0.DefPosition;
ttco = thr->compressbuffer; t1 = AR0.CompressBuffer; j = *t1;
NCOPY(ttco,t1,j);
}
else if ( first && ( AC.CollectFun == 0 ) ) { /* Brackets ? */
first = 0;
t1 = tstop = thr->threadbuffer;
tstop += *tstop; tstop -= ABS(tstop[-1]);
t1++;
while ( t1 < tstop ) {
if ( t1[0] == HAAKJE ) { bra = 1; break; }
t1 += t1[1];
}
t1 = thr->threadbuffer;
}
/*
Check whether we have a collect,function going. If so execute it.
*/
if ( AC.CollectFun && *(thr->threadbuffer) < (AM.MaxTer/((LONG)sizeof(WORD))-10) ) {
if ( ( dd = GetMoreTerms(thr->threadbuffer) ) < 0 ) {
LowerSortLevel(); goto ProcErr;
}
}
/*
Check whether we have a priority task:
*/
if ( topofavailables > 0 && numberoffullbuckets > 0 ) SendOneBucket(LOWESTLEVELGENERATION);
/*
Now put more terms in the bucket. Position tt after the first term
*/
tt = thr->threadbuffer; tt += *tt;
thr->totnum = 1;
thr->usenum = 0;
/*
Next we worry about the 'slow startup' in which we make the initial
buckets smaller, so that we get all threads busy as soon as possible.
*/
if ( numpasses > 0 ) {
numbucket++;
if ( numbucket >= numberofworkers ) {
numbucket = 0;
numpasses--;
if ( numpasses == 0 ) thrbufsiz = thrbufsiz0;
else thrbufsiz = thrbufsiz0 / (2 << numpasses);
}
thrbufsiz2 = thrbufsiz + thrbufsiz/5; /* for completing brackets */
}
/*
we have already 1+dd terms
*/
while ( ( dd < thrbufsiz ) &&
( tt - thr->threadbuffer ) < ( thr->threadbuffersize - AM.MaxTer/((LONG)sizeof(WORD)) - 2 ) ) {
/*
First check:
*/
if ( topofavailables > 0 && numberoffullbuckets > 0 ) SendOneBucket(LOWESTLEVELGENERATION);
/*
There is room in the bucket. Fill yet another term.
*/
if ( GetTermP(B0,tt) == 0 ) { endofinput = 1; break; }
dd++;
thr->totnum++;
dd += AN0.deferskipped;
if ( AR0.DeferFlag ) {
thr->deferbuffer[defcount++] = AR0.DefPosition;
t1 = AR0.CompressBuffer; j = *t1;
NCOPY(ttco,t1,j);
}
if ( AC.CollectFun && *tt < (AM.MaxTer/((LONG)sizeof(WORD))-10) ) {
if ( ( ddd = GetMoreTerms(tt) ) < 0 ) {
LowerSortLevel(); goto ProcErr;
}
dd += ddd;
}
t1 = tt;
tt += *tt;
}
/*
Check whether there are regular brackets and if we have no DeferFlag
and no collect, we try to add more terms till we finish the current
bracket. We should however not overdo it. Let us say: up to 20%
more terms are allowed.
*/
if ( bra ) {
tstop = t1 + *t1; tstop -= ABS(tstop[-1]);
t2 = t1+1;
while ( t2 < tstop ) {
if ( t2[0] == HAAKJE ) { break; }
t2 += t2[1];
}
if ( t2[0] == HAAKJE ) {
t2 += t2[1]; num = t2 - t1;
while ( ( dd < thrbufsiz2 ) &&
( tt - thr->threadbuffer ) < ( thr->threadbuffersize - AM.MaxTer - 2 ) ) {
/*
First check:
*/
if ( topofavailables > 0 && numberoffullbuckets > 0 ) SendOneBucket(LOWESTLEVELGENERATION);
/*
There is room in the bucket. Fill yet another term.
*/
if ( GetTermP(B0,tt) == 0 ) { endofinput = 1; break; }
/*
Same bracket?
*/
tstop = tt + *tt; tstop -= ABS(tstop[-1]);
if ( tstop-tt < num ) { /* Different: abort */
AR0.KeptInHold = 1;
break;
}
for ( i = 1; i < num; i++ ) {
if ( t1[i] != tt[i] ) break;
}
if ( i < num ) { /* Different: abort */
AR0.KeptInHold = 1;
break;
}
/*
Same bracket. We need this term.
*/
dd++;
thr->totnum++;
tt += *tt;
}
}
}
thr->ddterms = dd; /* total number of terms including keep brackets */
thr->firstterm = AN0.ninterms;
AN0.ninterms += dd;
*tt = 0; /* mark end of bucket */
thr->free = BUCKETFILLED;
thr->type = BUCKETDOINGTERMS;
numberoffullbuckets++;
if ( topofavailables <= 0 && endofinput == 0 ) {
/*
Problem: topofavailables may already be > 0, but the
thread has not yet gone into waiting. Can the signal get lost?
How can we tell that a thread is waiting for a signal?
All threads are busy. Try to load up another bucket.
In the future we could be more sophisticated.
At the moment we load a complete bucket which could be
1000 terms or even more.
In principle it is better to keep a full bucket ready
and check after each term we put in the next bucket. That
way we don't waste time of the workers.
*/
for ( j = 0; j < numthreadbuckets; j++ ) {
switch ( threadbuckets[j]->free ) {
case BUCKETFREE:
thr = threadbuckets[j];
if ( !endofinput ) goto NextBucket;
/*
If we are at the end of the input we mark
the free buckets in a special way. That way
we don't keep running into them.
*/
thr->free = BUCKETATEND;
break;
case BUCKETCOMINGFREE:
thr = threadbuckets[j];
thr->free = BUCKETFREE;
/*
Bucket has just been finished.
Put at the end of the list. We don't want
an early bucket to wait to be treated last.
*/
for ( k = j+1; k < numthreadbuckets; k++ )
threadbuckets[k-1] = threadbuckets[k];
threadbuckets[numthreadbuckets-1] = thr;
j--; /* we have to redo the same number j. */
break;
default:
break;
}
}
/*
We have no free bucket or we are at the end.
The only thing we can do now is wait for a worker to come free,
provided there are still buckets to send.
*/
}
/*
Look for the next bucket to send. There is at least one full bucket!
*/
for ( j = 0; j < numthreadbuckets; j++ ) {
if ( threadbuckets[j]->free == BUCKETFILLED ) {
thr = threadbuckets[j];
for ( k = j+1; k < numthreadbuckets; k++ )
threadbuckets[k-1] = threadbuckets[k];
threadbuckets[numthreadbuckets-1] = thr;
break;
}
}
/*
Wait for a thread to become available
The bucket we are going to use is in thr.
*/
DoBucket:;
AN0.ninterms++;
while ( ( id = GetAvailableThread() ) < 0 ) { MasterWait(); }
/*
Prepare the thread. Give it the term and variables.
*/
LoadOneThread(0,id,thr,0);
LOCK(thr->lock);
thr->busy = BUCKETASSIGNED;
UNLOCK(thr->lock);
thr->free = BUCKETINUSE;
numberoffullbuckets--;
/*
And signal the thread to run.
Form now on we may only interfere with this bucket
1: after it has been marked BUCKETCOMINGFREE
2: when thr->busy == BUCKETDOINGTERM and then only when protected by
thr->lock. This would be for load balancing.
*/
WakeupThread(id,LOWESTLEVELGENERATION);
/* AN0.ninterms += thr->ddterms; */
/*
Now look whether there is another bucket filled and a worker available
*/
if ( topofavailables > 0 ) { /* there is a worker */
for ( j = 0; j < numthreadbuckets; j++ ) {
if ( threadbuckets[j]->free == BUCKETFILLED ) {
thr = threadbuckets[j];
for ( k = j+1; k < numthreadbuckets; k++ )
threadbuckets[k-1] = threadbuckets[k];
threadbuckets[numthreadbuckets-1] = thr;
goto DoBucket; /* and we found a bucket */
}
}
/*
no bucket is loaded but there is a thread available
find a bucket to load. If there is none (all are USED or ATEND)
we jump out of the loop.
*/
for ( j = 0; j < numthreadbuckets; j++ ) {
switch ( threadbuckets[j]->free ) {
case BUCKETFREE:
thr = threadbuckets[j];
if ( !endofinput ) goto NextBucket;
thr->free = BUCKETATEND;
break;
case BUCKETCOMINGFREE:
thr = threadbuckets[j];
if ( endofinput ) {
thr->free = BUCKETATEND;
}
else {
thr->free = BUCKETFREE;
for ( k = j+1; k < numthreadbuckets; k++ )
threadbuckets[k-1] = threadbuckets[k];
threadbuckets[numthreadbuckets-1] = thr;
j--;
}
break;
default:
break;
}
}
if ( j >= numthreadbuckets ) break;
}
else {
/*
No worker available.
Look for a bucket to load.
Its number will be in "still"
*/
Finalize:;
still = -1;
for ( j = 0; j < numthreadbuckets; j++ ) {
switch ( threadbuckets[j]->free ) {
case BUCKETFREE:
thr = threadbuckets[j];
if ( !endofinput ) goto NextBucket;
thr->free = BUCKETATEND;
break;
case BUCKETCOMINGFREE:
thr = threadbuckets[j];
if ( endofinput ) thr->free = BUCKETATEND;
else {
thr->free = BUCKETFREE;
for ( k = j+1; k < numthreadbuckets; k++ )
threadbuckets[k-1] = threadbuckets[k];
threadbuckets[numthreadbuckets-1] = thr;
j--;
}
break;
case BUCKETFILLED:
if ( still < 0 ) still = j;
break;
default:
break;
}
}
if ( still < 0 ) {
/*
No buckets to be executed and no buckets FREE.
We must be at the end. Break out of the loop.
*/
break;
}
thr = threadbuckets[still];
for ( k = still+1; k < numthreadbuckets; k++ )
threadbuckets[k-1] = threadbuckets[k];
threadbuckets[numthreadbuckets-1] = thr;
goto DoBucket;
}
NextBucket:;
}
/*
Now the stage one load balancing.
If the load has been readjusted we have again filled buckets.
In that case we jump back in the loop.
Tricky point: when do the workers see the new value of AT.LoadBalancing?
It should activate the locks on thr->busy
*/
if ( AC.ThreadBalancing ) {
for ( id = 1; id <= numberofworkers; id++ ) {
AB[id]->T.LoadBalancing = 1;
}
if ( LoadReadjusted() ) goto Finalize;
for ( id = 1; id <= numberofworkers; id++ ) {
AB[id]->T.LoadBalancing = 0;
}
}
if ( AC.ThreadBalancing ) {
/*
The AS.Balancing flag should have Generator look for
free workers and apply the "buro" method.
There is still a serious problem.
When for instance a sum_, there may be space created in a local
compiler buffer for a wildcard substitution or whatever.
Compiler buffer execution scribble space.....
This isn't copied along?
Look up ebufnum. There are 12 places with AddRHS!
Problem: one process allocates in ebuf. Then term is given to
other process. It would like to use from this ebuf, but the sender
finishes first and removes the ebuf (and/or overwrites it).
Other problem: local $ variables aren't copied along.
*/
AS.Balancing = 0;
}
MasterWaitAll();
AS.Balancing = 0;
/*
When we deal with the last expression we can now remove the input
scratch file. This saves potentially much disk space (up to 1/3)
*/
if ( LastExpression ) {
UpdateMaxSize();
if ( AR0.infile->handle >= 0 ) {
CloseFile(AR0.infile->handle);
AR0.infile->handle = -1;
remove(AR0.infile->name);
PUTZERO(AR0.infile->POposition);
AR0.infile->POfill = AR0.infile->POfull = AR0.infile->PObuffer;
}
}
/*
We order the threads to finish in the MasterMerge routine
It will start with waiting for all threads to finish.
One could make an administration in which threads that have
finished can start already with the final sort but
1: The load balancing should not make this super urgent
2: It would definitely not be very compatible with the second
stage load balancing.
*/
oldgzipCompress = AR0.gzipCompress;
AR0.gzipCompress = 0;
if ( AR0.outtohide ) AR0.outfile = AR0.hidefile;
if ( MasterMerge() < 0 ) {
if ( AR0.outtohide ) AR0.outfile = oldoutfile;
AR0.gzipCompress = oldgzipCompress;
goto ProcErr;
}
if ( AR0.outtohide ) AR0.outfile = oldoutfile;
AR0.gzipCompress = oldgzipCompress;
/*
Now wait for all threads to be ready to give them the cleaning up signal.
With the new MasterMerge routine we can do the cleanup already automatically
avoiding having to send these signals.
*/
MasterWaitAll();
AR0.sLevel--;
for ( id = 1; id < AM.totalnumberofthreads; id++ ) {
if ( GetThread(id) > 0 ) WakeupThread(id,CLEANUPEXPRESSION);
}
e->numdummies = 0;
for ( id = 1; id < AM.totalnumberofthreads; id++ ) {
if ( AB[id]->R.MaxDum - AM.IndDum > e->numdummies )
e->numdummies = AB[id]->R.MaxDum - AM.IndDum;
AR0.expchanged |= AB[id]->R.expchanged;
}
/*
And wait for all to be clean.
*/
MasterWaitAll();
AT0.WorkPointer = oldworkpointer;
return(0);
ProcErr:;
return(-1);
}
/*
#] ThreadsProcessor :
#[ LoadReadjusted :
*/
/**
* This routine does the load readjustment at the end of a module.
* It may be that there are still some threads that have a bucket full of
* difficult terms. In that case we steal the bucket from such a thread
* and redistribute the terms over the available buckets to be sent to
* the free threads. As we steal all remaining terms from the bucket
* it can happen that eventually the same worker gets some of the terms
* back at a later stage.
*
* The only tricky point is the stealing process. We have to do this
* without having to send signals or testing locks for each term processed.
* The lock is set around thr->busy when AT.LoadBalancing == 1 but
* when does the worker see this? (caching?)
*
* Remark: the thr->busy == BUCKETASSIGNED flag is to prevent stealing
* from a thread that has not done anything yet.
*/
int LoadReadjusted(void)
{
ALLPRIVATES *B0 = AB[0];
THREADBUCKET *thr = 0, *thrtogo = 0;
int numtogo, numfree, numbusy, n, nperbucket, extra, i, j, u, bus;
LONG numinput;
WORD *t1, *c1, *t2, *c2, *t3;
/*
Start with waiting for at least one free processor.
We don't want the master competing for time when all are busy.
*/
while ( topofavailables <= 0 ) MasterWait();
/*
Now look for the fullest bucket and make a list of free buckets
The bad part is that most numbers can change at any moment.
*/
restart:;
numtogo = 0;
numfree = 0;
numbusy = 0;
for ( j = 0; j < numthreadbuckets; j++ ) {
thr = threadbuckets[j];
if ( thr->free == BUCKETFREE || thr->free == BUCKETATEND
|| thr->free == BUCKETCOMINGFREE ) {
freebuckets[numfree++] = thr;
}
else if ( thr->type != BUCKETDOINGTERMS ) {}
else if ( thr->totnum > 1 ) { /* never steal from a bucket with one term */
LOCK(thr->lock);
bus = thr->busy;
UNLOCK(thr->lock);
if ( thr->free == BUCKETINUSE ) {
n = thr->totnum-thr->usenum;
if ( bus == BUCKETASSIGNED ) numbusy++;
else if ( ( bus != BUCKETASSIGNED )
&& ( n > numtogo ) ) {
numtogo = n;
thrtogo = thr;
}
}
else if ( bus == BUCKETTOBERELEASED
&& thr->free == BUCKETRELEASED ) {
freebuckets[numfree++] = thr;
thr->free = BUCKETATEND;
LOCK(thr->lock);
thr->busy = BUCKETPREPARINGTERM;
UNLOCK(thr->lock);
}
}
}
if ( numfree == 0 ) return(0); /* serious problem */
if ( numtogo > 0 ) { /* provisionally there is something to be stolen */
thr = thrtogo;
/*
If the number has changed there is good progress.
Maybe there is another thread that needs assistance.
We start all over.
*/
if ( thr->totnum-thr->usenum < numtogo ) goto restart;
/*
If the thread is in the term loading phase
(thr->busy == BUCKETPREPARINGTERM) we better stay away from it.
We wait now for the thread to be busy, and don't allow it
now to drop out of this state till we are done here.
This all depends on whether AT.LoadBalancing == 1 is seen by
the thread.
*/
LOCK(thr->lock);
if ( thr->busy != BUCKETDOINGTERM ) {
UNLOCK(thr->lock);
goto restart;
}
if ( thr->totnum-thr->usenum < numtogo ) {
UNLOCK(thr->lock);
goto restart;
}
thr->free = BUCKETTERMINATED;
/*
The above will signal the thread we want to terminate.
Next all effort goes into making sure the landing is soft.
Unfortunately we don't want to wait for a signal, because the thread
may be working for a long time on a single term.
*/
if ( thr->usenum == thr->totnum ) {
/*
Terminated in the mean time or by now working on the
last term. Try again.
*/
thr->free = BUCKETATEND;
UNLOCK(thr->lock);
goto restart;
}
goto intercepted;
}
/* This has always been commented. Indeed no lock is held here. */
/* UNLOCK(thr->lock); */
if ( numbusy > 0 ) {
/* JD: this avoids large runtimes for tform tests under valgrind.
What seems to happen is we return from here, goto Finalize, and
end up in LoadReadjusted again without the threads having a
chance to update their busy status. Then we end up here again.
Sleep the thread for, say, 1us to allow threads to aquire the lock. */
struct timespec sleeptime;
sleeptime.tv_sec = 0;
sleeptime.tv_nsec = 1000L;
nanosleep(&sleeptime, NULL);
return(1); /* Wait a bit.... */
}
return(0);
intercepted:;
/*
We intercepted one successfully. Now it becomes interesting. Action:
1: determine how many terms per free bucket.
2: find the first untreated term.
3: put the terms in the free buckets.
Remember: we still have the lock to avoid interference from the thread
that is being robbed. We were holding it and then jumped here with
goto intercepted.
*/
numinput = thr->firstterm + thr->usenum;
nperbucket = numtogo / numfree;
extra = numtogo - nperbucket*numfree;
if ( AR0.DeferFlag ) {
t1 = thr->threadbuffer; c1 = thr->compressbuffer; u = thr->usenum;
for ( n = 0; n < thr->usenum; n++ ) { t1 += *t1; c1 += *c1; }
t3 = t1;
if ( extra > 0 ) {
for ( i = 0; i < extra; i++ ) {
thrtogo = freebuckets[i];
t2 = thrtogo->threadbuffer;
c2 = thrtogo->compressbuffer;
thrtogo->free = BUCKETFILLED;
thrtogo->type = BUCKETDOINGTERMS;
thrtogo->totnum = nperbucket+1;
thrtogo->ddterms = 0;
thrtogo->usenum = 0;
thrtogo->busy = BUCKETASSIGNED;
thrtogo->firstterm = numinput;
numinput += nperbucket+1;
for ( n = 0; n <= nperbucket; n++ ) {
j = *t1; NCOPY(t2,t1,j);
j = *c1; NCOPY(c2,c1,j);
thrtogo->deferbuffer[n] = thr->deferbuffer[u++];
}
*t2 = *c2 = 0;
}
}
if ( nperbucket > 0 ) {
for ( i = extra; i < numfree; i++ ) {
thrtogo = freebuckets[i];
t2 = thrtogo->threadbuffer;
c2 = thrtogo->compressbuffer;
thrtogo->free = BUCKETFILLED;
thrtogo->type = BUCKETDOINGTERMS;
thrtogo->totnum = nperbucket;
thrtogo->ddterms = 0;
thrtogo->usenum = 0;
thrtogo->busy = BUCKETASSIGNED;
thrtogo->firstterm = numinput;
numinput += nperbucket;
for ( n = 0; n < nperbucket; n++ ) {
j = *t1; NCOPY(t2,t1,j);
j = *c1; NCOPY(c2,c1,j);
thrtogo->deferbuffer[n] = thr->deferbuffer[u++];
}
*t2 = *c2 = 0;
}
}
}
else {
t1 = thr->threadbuffer;
for ( n = 0; n < thr->usenum; n++ ) { t1 += *t1; }
t3 = t1;
if ( extra > 0 ) {
for ( i = 0; i < extra; i++ ) {
thrtogo = freebuckets[i];
t2 = thrtogo->threadbuffer;
thrtogo->free = BUCKETFILLED;
thrtogo->type = BUCKETDOINGTERMS;
thrtogo->totnum = nperbucket+1;
thrtogo->ddterms = 0;
thrtogo->usenum = 0;
thrtogo->busy = BUCKETASSIGNED;
thrtogo->firstterm = numinput;
numinput += nperbucket+1;
for ( n = 0; n <= nperbucket; n++ ) {
j = *t1; NCOPY(t2,t1,j);
}
*t2 = 0;
}
}
if ( nperbucket > 0 ) {
for ( i = extra; i < numfree; i++ ) {
thrtogo = freebuckets[i];
t2 = thrtogo->threadbuffer;
thrtogo->free = BUCKETFILLED;
thrtogo->type = BUCKETDOINGTERMS;
thrtogo->totnum = nperbucket;
thrtogo->ddterms = 0;
thrtogo->usenum = 0;
thrtogo->busy = BUCKETASSIGNED;
thrtogo->firstterm = numinput;
numinput += nperbucket;
for ( n = 0; n < nperbucket; n++ ) {
j = *t1; NCOPY(t2,t1,j);
}
*t2 = 0;
}
}
}
*t3 = 0; /* This is some form of extra insurance */
if ( thr->free == BUCKETRELEASED && thr->busy == BUCKETTOBERELEASED ) {
thr->free = BUCKETATEND; thr->busy = BUCKETPREPARINGTERM;
}
UNLOCK(thr->lock);
return(1);
}
/*
#] LoadReadjusted :
#[ SortStrategy :
*/
/**
* When the final sort to the scratch file should take place
* in a thread we should redirect to a different PutOut say PutToMaster.
* The buffer in the Master should be an integer number times the size
* of the buffer for PutToMaster (the PObuffersize in the 'scratchfile').
* The action should be (assume the multiple is 3):
* Once the worker has its buffer full it fills block 1. Next 2. etc.
* After filling block 3 the next fill will be at 1 when it is available
* again. Becarefull to have a locked variable that indicates whether the
* Master has started to claim all blocks 1.
* The Master starts working once all blocks 1 are full.
* Each Worker has an array for the blocks that tells their status. ???
* (Maybe better the lock on the whole block).
* There should be a lock on them. The locks will make the threads
* wait properly. When the Master finished a block, it marks it as
* empty. When the master reaches the end of the last block it moves
* the remainder to the piece before block 1. Etc.
* Once terminated the worker can do the same as currently after
* the call to EndSort (leave control to the master).
* The master starts after there is a signal that all blocks 1 have
* been filled. The tricky point is this signal without having
* threads spend time in a waiting loop.
* Don't compress the terms. It costs more time and serves here no real
* purpose. It only makes things slower for the master.
*
* At the moment the scratch buffer of the workers is 1/N times the scratch
* buffer of the master which is usually about the size of the Large buffer
* of the master. This way we can save a factor on the scratch buffer size
* of the workers. Alternative: let PutToMaster write directly into the
* buffer/block of the master and leave out the scratch of the worker
* completely.
*/
/*
#] SortStrategy :
#[ PutToMaster :
*/
/**
* Writes the term (uncompressed) to the masters buffers.
* We put it inside a block. The blocks have locks. This makes
* that we have to wait automatically when all blocks are full.
* This routine takes the place of PutOut when making the final
* sort in a thread.
* It takes the place of FlushOut when the argument is NULL.
*
* We need an initialization first in which the first MasterBlockLock
* is set and MasterBlock is set to 1.
* At the end we need to unlock the last block. Both actions can
* be done in the routine that calls EndSort for the thread.
*
* The initialization of the variables in SB is done in
* IniSortBlocks. This is done only once but it has to wait till
* all threads exist and the masters sort buffers have been allocated.
*
* Note: the zero block is reserved for leftovers at the end of the
* last block that get moved back to the front to keep the terms
* contiguous (done in MasterMerge).
*/
int PutToMaster(PHEAD WORD *term)
{
int i,j,nexti,ret = 0;
WORD *t, *fill, *top, zero = 0;
if ( term == 0 ) { /* Mark the end of the expression */
t = &zero; j = 1;
}
else {
t = term; ret = j = *term;
if ( j == 0 ) { j = 1; } /* Just in case there is a spurious end */
}
i = AT.SB.FillBlock; /* The block we are working at */
fill = AT.SB.MasterFill[i]; /* Where we are filling */
top = AT.SB.MasterStop[i]; /* End of the block */
while ( j > 0 ) {
while ( j > 0 && fill < top ) {
*fill++ = *t++; j--;
}
if ( j > 0 ) {
/*
We reached the end of the block.
Get the next block and release this block.
The order is important. This is why there should be at least
4 blocks or deadlocks can occur.
*/
nexti = i+1;
if ( nexti > AT.SB.MasterNumBlocks ) {
nexti = 1;
}
LOCK(AT.SB.MasterBlockLock[nexti]);
UNLOCK(AT.SB.MasterBlockLock[i]);
AT.SB.MasterFill[i] = AT.SB.MasterStart[i];
AT.SB.FillBlock = i = nexti;
fill = AT.SB.MasterStart[i];
top = AT.SB.MasterStop[i];
}
}
AT.SB.MasterFill[i] = fill;
return(ret);
}
/*
#] PutToMaster :
#[ SortBotOut :
*/
#ifdef WITHSORTBOTS
/**
* This is the output routine of the SortBots.
* It can run PutToMaster, except for the final merge.
* In that case we need to do special things like calling PutOut.
* Hence the first thing we have to do is to figure out where our
* output should be going.
*/
int
SortBotOut(PHEAD WORD *term)
{
WORD im;
if ( AT.identity != 0 ) return(PutToMaster(BHEAD term));
if ( term == 0 ) {
if ( FlushOut(&SortBotPosition,AR.outfile,1) ) return(-1);
ADDPOS(AT.SS->SizeInFile[0],1);
return(0);
}
else {
numberofterms++;
if ( ( im = PutOut(BHEAD term,&SortBotPosition,AR.outfile,1) ) < 0 ) {
MLOCK(ErrorMessageLock);
MesPrint("Called from MasterMerge/SortBotOut");
MUNLOCK(ErrorMessageLock);
return(-1);
}
ADDPOS(AT.SS->SizeInFile[0],im);
return(im);
}
}
#endif
/*
#] SortBotOut :
#[ MasterMerge :
*/
/**
* This is the routine in which the master merges the sorted output that
* comes from the workers. It is similar to MergePatches in sort.c from which
* it takes much code.
* The important concept here is that we want the master to be working as
* little as possible because it constitutes the bottleneck.
* The workers fill the buffers of the master. These buffers are divided
* into parts for each worker as is done with the file patches in MergePatches
* but now also each worker part is divided into blocks. This allows the
* worker to fill blocks while the master is already working on blocks that
* were filled before. The blocks are arranged in a circular fashion.
* The whole is controlled by locks which seems faster than setting it up
* with signals.
*
* This routine is run by the master when we don't use the sortbots.
*/
int MasterMerge(void)
{
ALLPRIVATES *B0 = AB[0], *B = 0;
SORTING *S = AT0.SS;
WORD **poin, **poin2, ul, k, i, im, *m1, j;
WORD lpat, mpat, level, l1, l2, r1, r2, r3, c;
WORD *m2, *m3, r31, r33, ki, *rr;
UWORD *coef;
POSITION position;
FILEHANDLE *fin, *fout;
#ifdef WITHSORTBOTS
if ( numberofworkers > 2 ) return(SortBotMasterMerge());
#endif
fin = &S->file;
if ( AR0.PolyFun == 0 ) { S->PolyFlag = 0; }
else if ( AR0.PolyFunType == 1 ) { S->PolyFlag = 1; }
else if ( AR0.PolyFunType == 2 ) {
if ( AR0.PolyFunExp == 2
|| AR0.PolyFunExp == 3 ) S->PolyFlag = 1;
else S->PolyFlag = 2;
}
S->TermsLeft = 0;
coef = AN0.SoScratC;
poin = S->poina; poin2 = S->poin2a;
rr = AR0.CompressPointer;
*rr = 0;
/*
#[ Setup :
*/
S->inNum = numberofthreads;
fout = AR0.outfile;
/*
Load the patches. The threads have to finish their sort first.
*/
S->lPatch = S->inNum - 1;
/*
Claim all zero blocks. We need them anyway.
In principle the workers should never get into these.
We also claim all last blocks. This is a safety procedure that
should prevent the workers from working their way around the clock
before the master gets started again.
*/
AS.MasterSort = 1;
numberclaimed = 0;
for ( i = 1; i <= S->lPatch; i++ ) {
B = AB[i];
LOCK(AT.SB.MasterBlockLock[0]);
LOCK(AT.SB.MasterBlockLock[AT.SB.MasterNumBlocks]);
}
/*
Now wake up the threads and have them start their final sorting.
They should start with claiming their block and the master is
not allowed to continue until that has been done.
This waiting of the master will be done below in MasterWaitAllBlocks
*/
for ( i = 0; i < S->lPatch; i++ ) {
GetThread(i+1);
WakeupThread(i+1,FINISHEXPRESSION);
}
/*
Prepare the output file.
*/
if ( fout->handle >= 0 ) {
PUTZERO(position);
SeekFile(fout->handle,&position,SEEK_END);
ADDPOS(position,((fout->POfill-fout->PObuffer)*sizeof(WORD)));
}
else {
SETBASEPOSITION(position,(fout->POfill-fout->PObuffer)*sizeof(WORD));
}
/*
Wait for all threads to finish loading their first block.
*/
MasterWaitAllBlocks();
/*
Claim all first blocks.
We don't release the last blocks.
The strategy is that we always keep the previous block.
In principle it looks like it isn't needed for the last block but
actually it is to keep the front from overrunning the tail when writing.
*/
for ( i = 1; i <= S->lPatch; i++ ) {
B = AB[i];
LOCK(AT.SB.MasterBlockLock[1]);
AT.SB.MasterBlock = 1;
}
/*
#] Setup :
Now construct the tree:
*/
lpat = 1;
do { lpat <<= 1; } while ( lpat < S->lPatch );
mpat = ( lpat >> 1 ) - 1;
k = lpat - S->lPatch;
/*
k is the number of empty places in the tree. they will
be at the even positions from 2 to 2*k
*/
for ( i = 1; i < lpat; i++ ) { S->tree[i] = -1; }
for ( i = 1; i <= k; i++ ) {
im = ( i * 2 ) - 1;
poin[im] = AB[i]->T.SB.MasterStart[AB[i]->T.SB.MasterBlock];
poin2[im] = poin[im] + *(poin[im]);
S->used[i] = im;
S->ktoi[im] = i-1;
S->tree[mpat+i] = 0;
poin[im-1] = poin2[im-1] = 0;
}
for ( i = (k*2)+1; i <= lpat; i++ ) {
S->used[i-k] = i;
S->ktoi[i] = i-k-1;
poin[i] = AB[i-k]->T.SB.MasterStart[AB[i-k]->T.SB.MasterBlock];
poin2[i] = poin[i] + *(poin[i]);
}
/*
the array poin tells the position of the i-th element of the S->tree
'S->used' is a stack with the S->tree elements that need to be entered
into the S->tree. at the beginning this is S->lPatch. during the
sort there will be only very few elements.
poin2 is the next value of poin. it has to be determined
before the comparisons as the position or the size of the
term indicated by poin may change.
S->ktoi translates a S->tree element back to its stream number.
start the sort
*/
level = S->lPatch;
/*
introduce one term
*/
OneTerm:
k = S->used[level];
i = k + lpat - 1;
if ( !*(poin[k]) ) {
do { if ( !( i >>= 1 ) ) goto EndOfMerge; } while ( !S->tree[i] );
if ( S->tree[i] == -1 ) {
S->tree[i] = 0;
level--;
goto OneTerm;
}
k = S->tree[i];
S->used[level] = k;
S->tree[i] = 0;
}
/*
move terms down the tree
*/
while ( i >>= 1 ) {
if ( S->tree[i] > 0 ) {
if ( ( c = CompareTerms(B0, poin[S->tree[i]],poin[k],(WORD)0) ) > 0 ) {
/*
S->tree[i] is the smaller. Exchange and go on.
*/
S->used[level] = S->tree[i];
S->tree[i] = k;
k = S->used[level];
}
else if ( !c ) { /* Terms are equal */
/*
S->TermsLeft--;
Here the terms are equal and their coefficients
have to be added.
*/
l1 = *( m1 = poin[S->tree[i]] );
l2 = *( m2 = poin[k] );
if ( S->PolyWise ) { /* Here we work with PolyFun */
WORD *tt1, *w;
tt1 = m1;
m1 += S->PolyWise;
m2 += S->PolyWise;
if ( S->PolyFlag == 2 ) {
w = poly_ratfun_add(B0,m1,m2);
if ( *tt1 + w[1] - m1[1] > AM.MaxTer/((LONG)sizeof(WORD)) ) {
MLOCK(ErrorMessageLock);
MesPrint("Term too complex in PolyRatFun addition. MaxTermSize of %10l is too small",AM.MaxTer);
MUNLOCK(ErrorMessageLock);
Terminate(-1);
}
AT0.WorkPointer = w;
if ( w[FUNHEAD] == -SNUMBER && w[FUNHEAD+1] == 0 && w[1] > FUNHEAD ) {
goto cancelled;
}
}
else {
w = AT0.WorkPointer;
if ( w + m1[1] + m2[1] > AT0.WorkTop ) {
MLOCK(ErrorMessageLock);
MesPrint("MasterMerge: A WorkSpace of %10l is too small",AM.WorkSize);
MUNLOCK(ErrorMessageLock);
Terminate(-1);
}
AddArgs(B0,m1,m2,w);
}
r1 = w[1];
if ( r1 <= FUNHEAD
|| ( w[FUNHEAD] == -SNUMBER && w[FUNHEAD+1] == 0 ) )
{ goto cancelled; }
if ( r1 == m1[1] ) {
NCOPY(m1,w,r1);
}
else if ( r1 < m1[1] ) {
r2 = m1[1] - r1;
m2 = w + r1;
m1 += m1[1];
while ( --r1 >= 0 ) *--m1 = *--m2;
m2 = m1 - r2;
r1 = S->PolyWise;
while ( --r1 >= 0 ) *--m1 = *--m2;
*m1 -= r2;
poin[S->tree[i]] = m1;
}
else {
r2 = r1 - m1[1];
m2 = tt1 - r2;
r1 = S->PolyWise;
m1 = tt1;
*m1 += r2;
poin[S->tree[i]] = m2;
NCOPY(m2,m1,r1);
r1 = w[1];
NCOPY(m2,w,r1);
}
}
#ifdef WITHFLOAT
else if ( AT.SortFloatMode ) {
WORD *term1, *term2;
term1 = poin[S->tree[i]];
term2 = poin[k];
if ( MergeWithFloat(B0, &term1,&term2) == 0 )
goto cancelled;
poin[S->tree[i]] = term1;
}
#endif
else {
r1 = *( m1 += l1 - 1 );
m1 -= ABS(r1) - 1;
r1 = ( ( r1 > 0 ) ? (r1-1) : (r1+1) ) >> 1;
r2 = *( m2 += l2 - 1 );
m2 -= ABS(r2) - 1;
r2 = ( ( r2 > 0 ) ? (r2-1) : (r2+1) ) >> 1;
if ( AddRat(B0,(UWORD *)m1,r1,(UWORD *)m2,r2,coef,&r3) ) {
MLOCK(ErrorMessageLock);
MesCall("MasterMerge");
MUNLOCK(ErrorMessageLock);
SETERROR(-1)
}
if ( AN.ncmod != 0 ) {
if ( ( AC.modmode & POSNEG ) != 0 ) {
NormalModulus(coef,&r3);
}
else if ( BigLong(coef,r3,(UWORD *)AC.cmod,ABS(AN.ncmod)) >= 0 ) {
WORD ii;
SubPLon(coef,r3,(UWORD *)AC.cmod,ABS(AN.ncmod),coef,&r3);
coef[r3] = 1;
for ( ii = 1; ii < r3; ii++ ) coef[r3+ii] = 0;
}
}
r3 *= 2;
r33 = ( r3 > 0 ) ? ( r3 + 1 ) : ( r3 - 1 );
if ( r3 < 0 ) r3 = -r3;
if ( r1 < 0 ) r1 = -r1;
r1 *= 2;
r31 = r3 - r1;
if ( !r3 ) { /* Terms cancel */
cancelled:
ul = S->used[level] = S->tree[i];
S->tree[i] = -1;
/*
We skip to the next term in stream ul
*/
im = *poin2[ul];
poin[ul] = poin2[ul];
ki = S->ktoi[ul];
if ( (poin[ul] + im + COMPINC) >=
AB[ki+1]->T.SB.MasterStop[AB[ki+1]->T.SB.MasterBlock]
&& im > 0 ) {
/*
We made it to the end of the block. We have to
release the previous block and claim the next.
*/
B = AB[ki+1];
i = AT.SB.MasterBlock;
if ( i == 1 ) {
UNLOCK(AT.SB.MasterBlockLock[AT.SB.MasterNumBlocks]);
}
else {
UNLOCK(AT.SB.MasterBlockLock[i-1]);
}
if ( i == AT.SB.MasterNumBlocks ) {
/*
Move the remainder down into block 0
*/
WORD *from, *to;
to = AT.SB.MasterStart[1];
from = AT.SB.MasterStop[i];
while ( from > poin[ul] ) *--to = *--from;
poin[ul] = to;
i = 1;
}
else { i++; }
LOCK(AT.SB.MasterBlockLock[i]);
AT.SB.MasterBlock = i;
poin2[ul] = poin[ul] + im;
}
else {
poin2[ul] += im;
}
S->used[++level] = k;
}
else if ( !r31 ) { /* copy coef into term1 */
goto CopCof2;
}
else if ( r31 < 0 ) { /* copy coef into term1
and adjust the length of term1 */
goto CopCoef;
}
else {
/*
this is the dreaded calamity.
is there enough space?
*/
if( (poin[S->tree[i]]+l1+r31) >= poin2[S->tree[i]] ) {
/*
no space! now the special trick for which
we left 2*maxlng spaces open at the beginning
of each patch.
*/
if ( (l1 + r31)*((LONG)sizeof(WORD)) >= AM.MaxTer ) {
MLOCK(ErrorMessageLock);
MesPrint("MasterMerge: Coefficient overflow during sort");
MUNLOCK(ErrorMessageLock);
goto ReturnError;
}
m2 = poin[S->tree[i]];
m3 = ( poin[S->tree[i]] -= r31 );
do { *m3++ = *m2++; } while ( m2 < m1 );
m1 = m3;
}
CopCoef:
*(poin[S->tree[i]]) += r31;
CopCof2:
m2 = (WORD *)coef; im = r3;
NCOPY(m1,m2,im);
*m1 = r33;
}
}
/*
Now skip to the next term in stream k.
*/
NextTerm:
im = poin2[k][0];
poin[k] = poin2[k];
ki = S->ktoi[k];
if ( (poin[k] + im + COMPINC) >=
AB[ki+1]->T.SB.MasterStop[AB[ki+1]->T.SB.MasterBlock]
&& im > 0 ) {
/*
We made it to the end of the block. We have to
release the previous block and claim the next.
*/
B = AB[ki+1];
i = AT.SB.MasterBlock;
if ( i == 1 ) {
UNLOCK(AT.SB.MasterBlockLock[AT.SB.MasterNumBlocks]);
}
else {
UNLOCK(AT.SB.MasterBlockLock[i-1]);
}
if ( i == AT.SB.MasterNumBlocks ) {
/*
Move the remainder down into block 0
*/
WORD *from, *to;
to = AT.SB.MasterStart[1];
from = AT.SB.MasterStop[i];
while ( from > poin[k] ) *--to = *--from;
poin[k] = to;
i = 1;
}
else { i++; }
LOCK(AT.SB.MasterBlockLock[i]);
AT.SB.MasterBlock = i;
poin2[k] = poin[k] + im;
}
else {
poin2[k] += im;
}
goto OneTerm;
}
}
else if ( S->tree[i] < 0 ) {
S->tree[i] = k;
level--;
goto OneTerm;
}
}
/*
found the smallest in the set. indicated by k.
write to its destination.
*/
S->TermsLeft++;
if ( ( im = PutOut(B0,poin[k],&position,fout,1) ) < 0 ) {
MLOCK(ErrorMessageLock);
MesPrint("Called from MasterMerge with k = %d (stream %d)",k,S->ktoi[k]);
MUNLOCK(ErrorMessageLock);
goto ReturnError;
}
ADDPOS(S->SizeInFile[0],im);
goto NextTerm;
EndOfMerge:
if ( FlushOut(&position,fout,1) ) goto ReturnError;
ADDPOS(S->SizeInFile[0],1);
CloseFile(fin->handle);
remove(fin->name);
fin->handle = -1;
position = S->SizeInFile[0];
MULPOS(position,sizeof(WORD));
S->GenTerms = 0;
for ( j = 1; j <= numberofworkers; j++ ) {
S->GenTerms += AB[j]->T.SS->GenTerms;
}
WriteStats(&position,STATSPOSTSORT,NOCHECKLOGTYPE);
Expressions[AR0.CurExpr].counter = S->TermsLeft;
Expressions[AR0.CurExpr].size = position;
/*
Release all locks
*/
for ( i = 1; i <= S->lPatch; i++ ) {
B = AB[i];
UNLOCK(AT.SB.MasterBlockLock[0]);
if ( AT.SB.MasterBlock == 1 ) {
UNLOCK(AT.SB.MasterBlockLock[AT.SB.MasterNumBlocks]);
}
else {
UNLOCK(AT.SB.MasterBlockLock[AT.SB.MasterBlock-1]);
}
UNLOCK(AT.SB.MasterBlockLock[AT.SB.MasterBlock]);
}
AS.MasterSort = 0;
return(0);
ReturnError:
for ( i = 1; i <= S->lPatch; i++ ) {
B = AB[i];
UNLOCK(AT.SB.MasterBlockLock[0]);
if ( AT.SB.MasterBlock == 1 ) {
UNLOCK(AT.SB.MasterBlockLock[AT.SB.MasterNumBlocks]);
}
else {
UNLOCK(AT.SB.MasterBlockLock[AT.SB.MasterBlock-1]);
}
UNLOCK(AT.SB.MasterBlockLock[AT.SB.MasterBlock]);
}
AS.MasterSort = 0;
return(-1);
}
/*
#] MasterMerge :
#[ SortBotMasterMerge :
*/
#ifdef WITHSORTBOTS
/**
* This is the master routine for the final stage in a sortbot merge.
* A sortbot merge is a merge in which the output of two workers is
* merged into a single output which then can be given as one of two
* streams to another sortbot. The idea is that each sortbot is responsible
* for one one compare per term. In the end the master does the last
* merge of only two streams and writes the result to the output.
* There doesn't seem to be an advantage to splitting this last task.
*
* The use of the sortbots gives a measurable improvement but it isn't
* optimal yet.
*
* This routine is run as master. Hence B = B0. Etc.
*/
int SortBotMasterMerge(void)
{
FILEHANDLE *fin, *fout;
ALLPRIVATES *B = AB[0], *BB;
POSITION position;
SORTING *S = AT.SS;
int i, j;
/*
Get the sortbots get to claim their writing blocks.
We have to wait till all have been claimed because they also have to
claim the last writing blocks of the workers to prevent the head of
the circular buffer to overrun the tail.
Before waiting we can do some needed initializations.
Also the master has to claim the last writing blocks of its input.
*/
topsortbotavailables = 0;
for ( i = numberofworkers+1; i <= numberofworkers+numberofsortbots; i++ ) {
WakeupThread(i,INISORTBOT);
}
AS.MasterSort = 1;
fout = AR.outfile;
numberofterms = 0;
AR.CompressPointer[0] = 0;
numberclaimed = 0;
BB = AB[AT.SortBotIn1];
LOCK(BB->T.SB.MasterBlockLock[BB->T.SB.MasterNumBlocks]);
BB = AB[AT.SortBotIn2];
LOCK(BB->T.SB.MasterBlockLock[BB->T.SB.MasterNumBlocks]);
MasterWaitAllSortBots();
/*
Now we can start up the workers. They will claim their writing blocks.
Here the master will wait till all writing blocks have been claimed.
*/
for ( i = 1; i <= numberofworkers; i++ ) {
j = GetThread(i);
WakeupThread(i,FINISHEXPRESSION);
}
/*
Prepare the output file in the mean time.
*/
if ( fout->handle >= 0 ) {
PUTZERO(SortBotPosition);
SeekFile(fout->handle,&SortBotPosition,SEEK_END);
ADDPOS(SortBotPosition,((fout->POfill-fout->PObuffer)*sizeof(WORD)));
}
else {
SETBASEPOSITION(SortBotPosition,(fout->POfill-fout->PObuffer)*sizeof(WORD));
}
MasterWaitAllBlocks();
/*
Now we can start the sortbots after which the master goes in
sortbot mode to do its part of the job (the very final merge and
the writing to output file).
*/
topsortbotavailables = 0;
for ( i = numberofworkers+1; i <= numberofworkers+numberofsortbots; i++ ) {
WakeupThread(i,RUNSORTBOT);
}
if ( SortBotMerge(BHEAD0) ) {
MLOCK(ErrorMessageLock);
MesPrint("Called from SortBotMasterMerge");
MUNLOCK(ErrorMessageLock);
AS.MasterSort = 0;
return(-1);
}
/*
And next the cleanup
*/
if ( S->file.handle >= 0 )
{
fin = &S->file;
CloseFile(fin->handle);
remove(fin->name);
fin->handle = -1;
}
position = S->SizeInFile[0];
MULPOS(position,sizeof(WORD));
S->GenTerms = 0;
for ( j = 1; j <= numberofworkers; j++ ) {
S->GenTerms += AB[j]->T.SS->GenTerms;
}
S->TermsLeft = numberofterms;
WriteStats(&position,STATSPOSTSORT,NOCHECKLOGTYPE);
Expressions[AR.CurExpr].counter = S->TermsLeft;
Expressions[AR.CurExpr].size = position;
AS.MasterSort = 0;
/*
The next statement is to prevent one of the sortbots not having
completely cleaned up before the next module starts.
If this statement is omitted every once in a while one of the sortbots
is still running when the next expression starts and misses its
initialization. The result is usually disastrous.
*/
MasterWaitAllSortBots();
return(0);
}
#endif
/*
#] SortBotMasterMerge :
#[ SortBotMerge :
*/
#ifdef WITHSORTBOTS
/**
* This routine is run by a sortbot and merges two sorted output streams into
* a single sorted stream.
*/
int SortBotMerge(PHEAD0)
{
GETBIDENTITY
ALLPRIVATES *Bin1 = AB[AT.SortBotIn1],*Bin2 = AB[AT.SortBotIn2];
WORD *term1, *term2, *next, *wp;
int blin1, blin2; /* Current block numbers */
int error = 0;
WORD l1, l2, *m1, *m2, *w, r1, r2, r3, r33, r31, *tt1, ii;
WORD *to, *from, im, c;
UWORD *coef;
SORTING *S = AT.SS;
#ifdef WITHFLOAT
WORD *fun1, *fun2, *fun3, *tstop1, *tstop2, size1, size2, size3, l3, jj, *m3;
#endif
/*
Set the pointers to the input terms and the output space
*/
coef = AN.SoScratC;
blin1 = 1;
blin2 = 1;
if ( AT.identity == 0 ) {
wp = AT.WorkPointer;
}
else {
wp = AT.WorkPointer = AT.WorkSpace;
}
/*
Get the locks for reading the input
This means that we can start once these locks have been cleared
which means that there will be input.
*/
LOCK(Bin1->T.SB.MasterBlockLock[blin1]);
LOCK(Bin2->T.SB.MasterBlockLock[blin2]);
term1 = Bin1->T.SB.MasterStart[blin1];
term2 = Bin2->T.SB.MasterStart[blin2];
AT.SB.FillBlock = 1;
/*
Now the main loop. Keep going until one of the two hits the end.
*/
while ( *term1 && *term2 ) {
if ( ( c = CompareTerms(BHEAD term1,term2,(WORD)0) ) > 0 ) {
/*
#[ One is smallest :
*/
if ( SortBotOut(BHEAD term1) < 0 ) {
MLOCK(ErrorMessageLock);
MesPrint("Called from SortBotMerge with thread = %d",AT.identity);
MUNLOCK(ErrorMessageLock);
error = -1;
goto ReturnError;
}
im = *term1;
next = term1 + im;
if ( next >= Bin1->T.SB.MasterStop[blin1] || ( *next &&
next+*next+COMPINC > Bin1->T.SB.MasterStop[blin1] ) ) {
if ( blin1 == 1 ) {
UNLOCK(Bin1->T.SB.MasterBlockLock[Bin1->T.SB.MasterNumBlocks]);
}
else {
UNLOCK(Bin1->T.SB.MasterBlockLock[blin1-1]);
}
if ( blin1 == Bin1->T.SB.MasterNumBlocks ) {
/*
Move the remainder down into block 0
*/
to = Bin1->T.SB.MasterStart[1];
from = Bin1->T.SB.MasterStop[Bin1->T.SB.MasterNumBlocks];
while ( from > next ) *--to = *--from;
next = to;
blin1 = 1;
}
else {
blin1++;
}
LOCK(Bin1->T.SB.MasterBlockLock[blin1]);
Bin1->T.SB.MasterBlock = blin1;
}
term1 = next;
/*
#] One is smallest :
*/
}
else if ( c < 0 ) {
/*
#[ Two is smallest :
*/
if ( SortBotOut(BHEAD term2) < 0 ) {
MLOCK(ErrorMessageLock);
MesPrint("Called from SortBotMerge with thread = %d",AT.identity);
MUNLOCK(ErrorMessageLock);
error = -1;
goto ReturnError;
}
next2: im = *term2;
next = term2 + im;
if ( next >= Bin2->T.SB.MasterStop[blin2] || ( *next
&& next+*next+COMPINC > Bin2->T.SB.MasterStop[blin2] ) ) {
if ( blin2 == 1 ) {
UNLOCK(Bin2->T.SB.MasterBlockLock[Bin2->T.SB.MasterNumBlocks]);
}
else {
UNLOCK(Bin2->T.SB.MasterBlockLock[blin2-1]);
}
if ( blin2 == Bin2->T.SB.MasterNumBlocks ) {
/*
Move the remainder down into block 0
*/
to = Bin2->T.SB.MasterStart[1];
from = Bin2->T.SB.MasterStop[Bin2->T.SB.MasterNumBlocks];
while ( from > next ) *--to = *--from;
next = to;
blin2 = 1;
}
else {
blin2++;
}
LOCK(Bin2->T.SB.MasterBlockLock[blin2]);
Bin2->T.SB.MasterBlock = blin2;
}
term2 = next;
/*
#] Two is smallest :
*/
}
else {
/*
#[ Equal :
*/
l1 = *( m1 = term1 );
l2 = *( m2 = term2 );
if ( S->PolyWise ) { /* Here we work with PolyFun */
tt1 = m1;
m1 += S->PolyWise;
m2 += S->PolyWise;
if ( S->PolyFlag == 2 ) {
AT.WorkPointer = wp;
w = poly_ratfun_add(BHEAD m1,m2);
if ( *tt1 + w[1] - m1[1] > AM.MaxTer/((LONG)sizeof(WORD)) ) {
MLOCK(ErrorMessageLock);
MesPrint("Term too complex in PolyRatFun addition. MaxTermSize of %10l is too small",AM.MaxTer);
MUNLOCK(ErrorMessageLock);
Terminate(-1);
}
AT.WorkPointer = wp;
if ( w[FUNHEAD] == -SNUMBER && w[FUNHEAD+1] == 0 && w[1] > FUNHEAD ) {
goto cancelled;
}
}
else {
w = wp;
if ( w + m1[1] + m2[1] > AT.WorkTop ) {
MLOCK(ErrorMessageLock);
MesPrint("SortBotMerge(%d): A Maxtermsize of %10l is too small",
AT.identity,AM.MaxTer/sizeof(WORD));
MesPrint("m1[1] = %d, m2[1] = %d, Space = %l",m1[1],m2[1],(LONG)(AT.WorkTop-wp));
PrintTerm(term1,"term1");
PrintTerm(term2,"term2");
MesPrint("PolyWise = %d",S->PolyWise);
MUNLOCK(ErrorMessageLock);
Terminate(-1);
}
AddArgs(BHEAD m1,m2,w);
}
r1 = w[1];
if ( r1 <= FUNHEAD
|| ( w[FUNHEAD] == -SNUMBER && w[FUNHEAD+1] == 0 ) )
{ goto cancelled; }
if ( r1 == m1[1] ) {
NCOPY(m1,w,r1);
}
else if ( r1 < m1[1] ) {
r2 = m1[1] - r1;
m2 = w + r1;
m1 += m1[1];
while ( --r1 >= 0 ) *--m1 = *--m2;
m2 = m1 - r2;
r1 = S->PolyWise;
while ( --r1 >= 0 ) *--m1 = *--m2;
*m1 -= r2;
term1 = m1;
}
else {
r2 = r1 - m1[1];
m2 = tt1 - r2;
r1 = S->PolyWise;
m1 = tt1;
*m1 += r2;
term1 = m2;
NCOPY(m2,m1,r1);
r1 = w[1];
NCOPY(m2,w,r1);
}
}
#ifdef WITHFLOAT
else if ( AT.SortFloatMode ) {
/*
The terms are in m1/term1 and m2/term2 and their length in l1 and l2.
We have to locate the floats which have already been
verified in the compare routine. Once we have the new
term we can jump to the code that writes away the
result after adding the rationals.
*/
tstop1 = m1+l1; size1 = tstop1[-1]; tstop1 -= ABS(size1);
tstop2 = m2+l2; size2 = tstop2[-1]; tstop2 -= ABS(size2);
if ( AT.SortFloatMode == 3 ) {
fun1 = m1+1;
while ( fun1[0] != FLOATFUN && fun1+fun1[1] < tstop1 ) {
fun1 += fun1[1];
}
if ( size1 < 0 ) fun1[FUNHEAD+3] = -fun1[FUNHEAD+3];
UnpackFloat(aux1,fun1);
fun2 = m2+1;
while ( fun2[0] != FLOATFUN && fun2+fun2[1] < tstop2 ) {
fun2 += fun2[1];
}
if ( size2 < 0 ) fun2[FUNHEAD+3] = -fun2[FUNHEAD+3];
UnpackFloat(aux2,fun2);
}
else if ( AT.SortFloatMode == 1 ) {
fun1 = m1+1;
while ( fun1[0] != FLOATFUN && fun1+fun1[1] < tstop1 ) {
fun1 += fun1[1];
}
if ( size1 < 0 ) fun1[FUNHEAD+3] = -fun1[FUNHEAD+3];
UnpackFloat(aux1,fun1);
fun2 = tstop2;
RatToFloat(aux2,(UWORD *)fun2,size2);
}
else if ( AT.SortFloatMode == 2 ) {
fun1 = tstop1;
RatToFloat(aux1,(UWORD *)fun1,size1);
fun2 = m2+1;
while ( fun2[0] != FLOATFUN && fun2+fun2[1] < tstop2 ) {
fun2 += fun2[1];
}
if ( size2 < 0 ) fun2[FUNHEAD+3] = -fun2[FUNHEAD+3];
UnpackFloat(aux2,fun2);
}
else {
MLOCK(ErrorMessageLock);
MesPrint("Illegal value %d for AT.SortFloatMode in SortBotMerge.",AT.SortFloatMode);
MUNLOCK(ErrorMessageLock);
Terminate(-1);
return(0);
}
mpf_add(aux3,aux1,aux2);
size3 = mpf_sgn(aux3);
if ( size3 == 0 ) { /* Cancelling! Rare! */
goto cancelled;
}
else if ( size3 < 0 ) mpf_neg(aux3,aux3);
fun3 = TermMalloc("MasterMerge");
PackFloat(fun3,aux3);
l3 = fun3[1]+(fun1-m1)+3; /* new size */
if ( l3 != l1 ) {
/*
Copy it all to wp
*/
if ( (l3)*((LONG)sizeof(WORD)) >= AM.MaxTer ) {
MLOCK(ErrorMessageLock);
MesPrint("MasterMerge: Coefficient overflow during sort");
MUNLOCK(ErrorMessageLock);
goto ReturnError;
}
m3 = wp; m2 = term1;
while ( m2 < fun1 ) *m3++ = *m2++;
for ( jj = 0; jj < fun3[1]; jj++ ) *m3++ = fun3[jj];
*m3++ = 1; *m3++ = 1;
*m3++ = size3 < 0 ? -3: 3;
*wp = m3-wp;
TermFree(fun3,"MasterMerge");
goto PutOutwp;
}
for ( jj = 0; jj < fun3[1]; jj++ ) fun1[jj] = fun3[jj];
fun1 += fun3[1];
*fun1++ = 1; *fun1++ = 1;
*fun1++ = size3 < 0 ? -3: 3;
*term1 = fun1-term1;
TermFree(fun3,"MasterMerge");
}
#endif
else {
r1 = *( m1 += l1 - 1 );
m1 -= ABS(r1) - 1;
r1 = ( ( r1 > 0 ) ? (r1-1) : (r1+1) ) >> 1;
r2 = *( m2 += l2 - 1 );
m2 -= ABS(r2) - 1;
r2 = ( ( r2 > 0 ) ? (r2-1) : (r2+1) ) >> 1;
if ( AddRat(BHEAD (UWORD *)m1,r1,(UWORD *)m2,r2,coef,&r3) ) {
MLOCK(ErrorMessageLock);
MesCall("SortBotMerge");
MUNLOCK(ErrorMessageLock);
SETERROR(-1)
}
if ( AN.ncmod != 0 ) {
if ( ( AC.modmode & POSNEG ) != 0 ) {
NormalModulus(coef,&r3);
}
else if ( BigLong(coef,r3,(UWORD *)AC.cmod,ABS(AN.ncmod)) >= 0 ) {
SubPLon(coef,r3,(UWORD *)AC.cmod,ABS(AN.ncmod),coef,&r3);
coef[r3] = 1;
for ( ii = 1; ii < r3; ii++ ) coef[r3+ii] = 0;
}
}
if ( !r3 ) { goto cancelled; }
r3 *= 2;
r33 = ( r3 > 0 ) ? ( r3 + 1 ) : ( r3 - 1 );
if ( r3 < 0 ) r3 = -r3;
if ( r1 < 0 ) r1 = -r1;
r1 *= 2;
r31 = r3 - r1;
if ( !r31 ) { /* copy coef into term1 */
m2 = (WORD *)coef; im = r3;
NCOPY(m1,m2,im);
*m1 = r33;
}
else {
to = wp; from = term1;
while ( from < m1 ) *to++ = *from++;
from = (WORD *)coef; im = r3;
NCOPY(to,from,im);
*to++ = r33;
wp[0] = to - wp;
PutOutwp:
if ( SortBotOut(BHEAD wp) < 0 ) {
MLOCK(ErrorMessageLock);
MesPrint("Called from SortBotMerge with thread = %d",AT.identity);
MUNLOCK(ErrorMessageLock);
error = -1;
goto ReturnError;
}
goto cancelled;
}
}
if ( SortBotOut(BHEAD term1) < 0 ) {
MLOCK(ErrorMessageLock);
MesPrint("Called from SortBotMerge with thread = %d",AT.identity);
MUNLOCK(ErrorMessageLock);
error = -1;
goto ReturnError;
}
cancelled:; /* Now we need two new terms */
im = *term1;
next = term1 + im;
if ( next >= Bin1->T.SB.MasterStop[blin1] || ( *next &&
next+*next+COMPINC > Bin1->T.SB.MasterStop[blin1] ) ) {
if ( blin1 == 1 ) {
UNLOCK(Bin1->T.SB.MasterBlockLock[Bin1->T.SB.MasterNumBlocks]);
}
else {
UNLOCK(Bin1->T.SB.MasterBlockLock[blin1-1]);
}
if ( blin1 == Bin1->T.SB.MasterNumBlocks ) {
/*
Move the remainder down into block 0
*/
to = Bin1->T.SB.MasterStart[1];
from = Bin1->T.SB.MasterStop[Bin1->T.SB.MasterNumBlocks];
while ( from > next ) *--to = *--from;
next = to;
blin1 = 1;
}
else {
blin1++;
}
LOCK(Bin1->T.SB.MasterBlockLock[blin1]);
Bin1->T.SB.MasterBlock = blin1;
}
term1 = next;
goto next2;
/*
#] Equal :
*/
}
}
/*
Copy the tail
*/
if ( *term1 ) {
/*
#[ Tail in one :
*/
while ( *term1 ) {
if ( SortBotOut(BHEAD term1) < 0 ) {
MLOCK(ErrorMessageLock);
MesPrint("Called from SortBotMerge with thread = %d",AT.identity);
MUNLOCK(ErrorMessageLock);
error = -1;
goto ReturnError;
}
im = *term1;
next = term1 + im;
if ( next >= Bin1->T.SB.MasterStop[blin1] || ( *next &&
next+*next+COMPINC > Bin1->T.SB.MasterStop[blin1] ) ) {
if ( blin1 == 1 ) {
UNLOCK(Bin1->T.SB.MasterBlockLock[Bin1->T.SB.MasterNumBlocks]);
}
else {
UNLOCK(Bin1->T.SB.MasterBlockLock[blin1-1]);
}
if ( blin1 == Bin1->T.SB.MasterNumBlocks ) {
/*
Move the remainder down into block 0
*/
to = Bin1->T.SB.MasterStart[1];
from = Bin1->T.SB.MasterStop[Bin1->T.SB.MasterNumBlocks];
while ( from > next ) *--to = *--from;
next = to;
blin1 = 1;
}
else {
blin1++;
}
LOCK(Bin1->T.SB.MasterBlockLock[blin1]);
Bin1->T.SB.MasterBlock = blin1;
}
term1 = next;
}
/*
#] Tail in one :
*/
}
else if ( *term2 ) {
/*
#[ Tail in two :
*/
while ( *term2 ) {
if ( SortBotOut(BHEAD term2) < 0 ) {
MLOCK(ErrorMessageLock);
MesPrint("Called from SortBotMerge with thread = %d",AT.identity);
MUNLOCK(ErrorMessageLock);
error = -1;
goto ReturnError;
}
im = *term2;
next = term2 + im;
if ( next >= Bin2->T.SB.MasterStop[blin2] || ( *next
&& next+*next+COMPINC > Bin2->T.SB.MasterStop[blin2] ) ) {
if ( blin2 == 1 ) {
UNLOCK(Bin2->T.SB.MasterBlockLock[Bin2->T.SB.MasterNumBlocks]);
}
else {
UNLOCK(Bin2->T.SB.MasterBlockLock[blin2-1]);
}
if ( blin2 == Bin2->T.SB.MasterNumBlocks ) {
/*
Move the remainder down into block 0
*/
to = Bin2->T.SB.MasterStart[1];
from = Bin2->T.SB.MasterStop[Bin2->T.SB.MasterNumBlocks];
while ( from > next ) *--to = *--from;
next = to;
blin2 = 1;
}
else {
blin2++;
}
LOCK(Bin2->T.SB.MasterBlockLock[blin2]);
Bin2->T.SB.MasterBlock = blin2;
}
term2 = next;
}
/*
#] Tail in two :
*/
}
SortBotOut(BHEAD 0);
ReturnError:;
/*
Release all locks
*/
UNLOCK(Bin1->T.SB.MasterBlockLock[blin1]);
if ( blin1 > 1 ) {
UNLOCK(Bin1->T.SB.MasterBlockLock[blin1-1]);
}
else {
UNLOCK(Bin1->T.SB.MasterBlockLock[Bin1->T.SB.MasterNumBlocks]);
}
UNLOCK(Bin2->T.SB.MasterBlockLock[blin2]);
if ( blin2 > 1 ) {
UNLOCK(Bin2->T.SB.MasterBlockLock[blin2-1]);
}
else {
UNLOCK(Bin2->T.SB.MasterBlockLock[Bin2->T.SB.MasterNumBlocks]);
}
if ( AT.identity > 0 ) {
UNLOCK(AT.SB.MasterBlockLock[AT.SB.FillBlock]);
}
/*
And that was all folks
*/
return(error);
}
#endif
/*
#] SortBotMerge :
#[ IniSortBlocks :
*/
static int SortBlocksInitialized = 0;
/**
* Initializes the blocks in the sort buffers of the master.
* These blocks are needed to keep both the workers and the master working
* simultaneously. See also the commentary at the routine MasterMerge.
*/
int IniSortBlocks(int numworkers)
{
ALLPRIVATES *B;
SORTING *S;
LONG totalsize, workersize, blocksize, numberofterms;
int maxter, id, j;
int numberofblocks = NUMBEROFBLOCKSINSORT, numparts;
WORD *w;
if ( SortBlocksInitialized ) return(0);
SortBlocksInitialized = 1;
if ( numworkers == 0 ) return(0);
#ifdef WITHSORTBOTS
if ( numworkers > 2 ) {
numparts = 2*numworkers - 2;
numberofblocks = numberofblocks/2;
}
else {
numparts = numworkers;
}
#else
numparts = numworkers;
#endif
S = AM.S0;
totalsize = S->LargeSize + S->SmallEsize;
workersize = totalsize / numparts;
maxter = AM.MaxTer/sizeof(WORD);
blocksize = ( workersize - maxter )/numberofblocks;
numberofterms = blocksize / maxter;
if ( numberofterms < MINIMUMNUMBEROFTERMS ) {
/*
This should have been taken care of in RecalcSetups.
*/
MesPrint("We have a problem with the size of the blocks in IniSortBlocks");
Terminate(-1);
}
/*
Layout: For each worker
block 0: size is maxter WORDS
numberofblocks blocks of size blocksize WORDS
*/
w = S->lBuffer;
if ( w == 0 ) w = S->sBuffer;
for ( id = 1; id <= numparts; id++ ) {
B = AB[id];
AT.SB.MasterBlockLock = (pthread_mutex_t *)Malloc1(
sizeof(pthread_mutex_t)*(numberofblocks+1),"MasterBlockLock");
AT.SB.MasterStart = (WORD **)Malloc1(sizeof(WORD *)*(numberofblocks+1)*3,"MasterBlock");
AT.SB.MasterFill = AT.SB.MasterStart + (numberofblocks+1);
AT.SB.MasterStop = AT.SB.MasterFill + (numberofblocks+1);
AT.SB.MasterNumBlocks = numberofblocks;
AT.SB.MasterBlock = 0;
AT.SB.FillBlock = 0;
AT.SB.MasterFill[0] = AT.SB.MasterStart[0] = w;
w += maxter;
AT.SB.MasterStop[0] = w;
AT.SB.MasterBlockLock[0] = dummylock;
for ( j = 1; j <= numberofblocks; j++ ) {
AT.SB.MasterFill[j] = AT.SB.MasterStart[j] = w;
w += blocksize;
AT.SB.MasterStop[j] = w;
AT.SB.MasterBlockLock[j] = dummylock;
}
}
if ( w > S->sTop2 ) {
MesPrint("Counting problem in IniSortBlocks");
Terminate(-1);
}
return(0);
}
/*
#] IniSortBlocks :
#[ UpdateSortBlocks :
*/
/**
* A version of IniSortBlocks which only updates the pointers in the master's
* buffer, to be used after reallocation of that buffer.
*/
int UpdateSortBlocks(int numworkers)
{
ALLPRIVATES *B;
SORTING *S;
LONG totalsize, workersize, blocksize, numberofterms;
int maxter, id, j;
int numberofblocks = NUMBEROFBLOCKSINSORT, numparts;
WORD *w;
if ( numworkers == 0 ) return(0);
#ifdef WITHSORTBOTS
if ( numworkers > 2 ) {
numparts = 2*numworkers - 2;
numberofblocks = numberofblocks/2;
}
else {
numparts = numworkers;
}
#else
numparts = numworkers;
#endif
S = AM.S0;
totalsize = S->LargeSize + S->SmallEsize;
workersize = totalsize / numparts;
maxter = AM.MaxTer/sizeof(WORD);
blocksize = ( workersize - maxter )/numberofblocks;
numberofterms = blocksize / maxter;
if ( numberofterms < MINIMUMNUMBEROFTERMS ) {
/*
This should have been taken care of in RecalcSetups.
*/
MesPrint("We have a problem with the size of the blocks in UpdateSortBlocks");
Terminate(-1);
}
/*
Layout: For each worker
block 0: size is maxter WORDS
numberofblocks blocks of size blocksize WORDS
*/
w = S->lBuffer;
if ( w == 0 ) w = S->sBuffer;
for ( id = 1; id <= numparts; id++ ) {
B = AB[id];
AT.SB.MasterFill[0] = AT.SB.MasterStart[0] = w;
w += maxter;
AT.SB.MasterStop[0] = w;
for ( j = 1; j <= numberofblocks; j++ ) {
AT.SB.MasterFill[j] = AT.SB.MasterStart[j] = w;
w += blocksize;
AT.SB.MasterStop[j] = w;
}
}
if ( w > S->sTop2 ) {
MesPrint("Counting problem in UpdateSortBlocks");
Terminate(-1);
}
return(0);
}
/*
#] UpdateSortBlocks :
#[ DefineSortBotTree :
*/
#ifdef WITHSORTBOTS
/**
* To be used in a sortbot merge. It initializes the whole sortbot
* system by telling the sortbot which threads provide their input.
*/
void DefineSortBotTree(void)
{
ALLPRIVATES *B;
int n, i, from;
if ( numberofworkers <= 2 ) return;
n = numberofworkers*2-2;
for ( i = numberofworkers+1, from = 1; i <= n; i++ ) {
B = AB[i];
AT.SortBotIn1 = from++;
AT.SortBotIn2 = from++;
}
B = AB[0];
AT.SortBotIn1 = from++;
AT.SortBotIn2 = from++;
}
#endif
/*
#] DefineSortBotTree :
#[ GetTerm2 :
Routine does a GetTerm but only when a bracket index is involved and
only from brackets that have been judged not suitable for treatment
as complete brackets by a single worker. Whether or not a bracket should
be treated by a single worker is decided by TreatIndexEntry
*/
WORD GetTerm2(PHEAD WORD *term)
{
WORD *ttco, *tt, retval;
LONG n,i;
FILEHANDLE *fi;
EXPRESSIONS e = AN.expr;
BRACKETINFO *b = e->bracketinfo;
BRACKETINDEX *bi = b->indexbuffer;
POSITION where, eonfile = AS.OldOnFile[e-Expressions], bstart, bnext;
/*
1: Get the current position.
*/
switch ( e->status ) {
case UNHIDELEXPRESSION:
case UNHIDEGEXPRESSION:
case DROPHLEXPRESSION:
case DROPHGEXPRESSION:
case HIDDENLEXPRESSION:
case HIDDENGEXPRESSION:
fi = AR.hidefile;
break;
default:
fi = AR.infile;
break;
}
if ( AR.KeptInHold ) {
retval = GetTerm(BHEAD term);
return(retval);
}
SeekScratch(fi,&where);
if ( AN.lastinindex < 0 ) {
/*
We have to test whether we have to do the first bracket
*/
if ( ( n = TreatIndexEntry(BHEAD 0) ) <= 0 ) {
AN.lastinindex = n;
where = bi[n].start;
ADD2POS(where,eonfile);
SetScratch(fi,&where);
/*
Put the bracket in the Compress buffer.
*/
ttco = AR.CompressBuffer;
tt = b->bracketbuffer + bi[0].bracket;
i = *tt;
NCOPY(ttco,tt,i)
AR.CompressPointer = ttco;
retval = GetTerm(BHEAD term);
return(retval);
}
else AN.lastinindex = n-1;
}
/*
2: Find the corresponding index number
a: test whether it is in the current bracket
*/
n = AN.lastinindex;
bstart = bi[n].start;
ADD2POS(bstart,eonfile);
bnext = bi[n].next;
ADD2POS(bnext,eonfile);
if ( ISLESSPOS(bstart,where) && ISLESSPOS(where,bnext) ) {
retval = GetTerm(BHEAD term);
return(retval);
}
for ( n++ ; n < b->indexfill; n++ ) {
i = TreatIndexEntry(BHEAD n);
if ( i <= 0 ) {
/*
Put the bracket in the Compress buffer.
*/
ttco = AR.CompressBuffer;
tt = b->bracketbuffer + bi[n].bracket;
i = *tt;
NCOPY(ttco,tt,i)
AR.CompressPointer = ttco;
AN.lastinindex = n;
where = bi[n].start;
ADD2POS(where,eonfile);
SetScratch(fi,&(where));
retval = GetTerm(BHEAD term);
return(retval);
}
else n += i - 1;
}
return(0);
}
/*
#] GetTerm2 :
#[ TreatIndexEntry :
*/
/**
* Routine has to decide whether a bracket has to be sent as a complete
* bracket to a worker or whether it has to be treated by the bucket system.
* Return value is positive when we should send it as a complete bracket and
* 0 when it should be done via the buckets.
* The positive return value indicates how many brackets should be treated.
*/
int TreatIndexEntry(PHEAD LONG n)
{
BRACKETINFO *b = AN.expr->bracketinfo;
LONG numbra = b->indexfill - 1, i;
LONG totterms;
BRACKETINDEX *bi;
POSITION pos1, average;
/*
1: number of the bracket should be such that there is one bucket
for each worker remaining.
*/
if ( ( numbra - n ) <= numberofworkers ) return(0);
/*
2: size of the bracket contents should be less than what remains in
the expression divided by the number of workers.
*/
bi = b->indexbuffer;
DIFPOS(pos1,bi[numbra].next,bi[n].next); /* Size of what remains */
BASEPOSITION(average) = DIVPOS(pos1,(3*numberofworkers));
DIFPOS(pos1,bi[n].next,bi[n].start); /* Size of the current bracket */
if ( ISLESSPOS(average,pos1) ) return(0);
/*
It passes.
Now check whether we can do more brackets
*/
totterms = bi->termsinbracket;
if ( totterms > 2*AC.ThreadBucketSize ) return(1);
for ( i = 1; i < numbra-n; i++ ) {
DIFPOS(pos1,bi[n+i].next,bi[n].start); /* Size of the combined brackets */
if ( ISLESSPOS(average,pos1) ) return(i);
totterms += bi->termsinbracket;
if ( totterms > 2*AC.ThreadBucketSize ) return(i+1);
}
/*
We have a problem at the end of the system. Just do one.
*/
return(1);
}
/*
#] TreatIndexEntry :
#[ SetHideFiles :
*/
void SetHideFiles(void) {
int i;
ALLPRIVATES *B, *B0 = AB[0];
for ( i = 1; i <= numberofworkers; i++ ) {
B = AB[i];
AR.hidefile->handle = AR0.hidefile->handle;
if ( AR.hidefile->handle < 0 ) {
AR.hidefile->PObuffer = AR0.hidefile->PObuffer;
AR.hidefile->POstop = AR0.hidefile->POstop;
AR.hidefile->POfill = AR0.hidefile->POfill;
AR.hidefile->POfull = AR0.hidefile->POfull;
AR.hidefile->POsize = AR0.hidefile->POsize;
AR.hidefile->POposition = AR0.hidefile->POposition;
AR.hidefile->filesize = AR0.hidefile->filesize;
}
else {
AR.hidefile->PObuffer = AR.hidefile->wPObuffer;
AR.hidefile->POstop = AR.hidefile->wPOstop;
AR.hidefile->POfill = AR.hidefile->wPOfill;
AR.hidefile->POfull = AR.hidefile->wPOfull;
AR.hidefile->POsize = AR.hidefile->wPOsize;
PUTZERO(AR.hidefile->POposition);
}
}
}
/*
#] SetHideFiles :
#[ IniFbufs :
*/
void IniFbufs(void)
{
int i;
for ( i = 0; i < AM.totalnumberofthreads; i++ ) {
IniFbuffer(AB[i]->T.fbufnum);
}
}
/*
#] IniFbufs :
#[ SetMods :
*/
void SetMods(void)
{
ALLPRIVATES *B;
int i, n, j;
for ( j = 0; j < AM.totalnumberofthreads; j++ ) {
B = AB[j];
AN.ncmod = AC.ncmod;
if ( AN.cmod != 0 ) M_free(AN.cmod,"AN.cmod");
n = ABS(AN.ncmod);
AN.cmod = (UWORD *)Malloc1(sizeof(WORD)*n,"AN.cmod");
for ( i = 0; i < n; i++ ) AN.cmod[i] = AC.cmod[i];
}
}
/*
#] SetMods :
#[ UnSetMods :
*/
void UnSetMods(void)
{
ALLPRIVATES *B;
int j;
for ( j = 0; j < AM.totalnumberofthreads; j++ ) {
B = AB[j];
if ( AN.cmod != 0 ) M_free(AN.cmod,"AN.cmod");
AN.cmod = 0;
}
}
/*
#] UnSetMods :
#[ find_Horner_MCTS_expand_tree_threaded :
*/
void find_Horner_MCTS_expand_tree_threaded(void) {
int id;
while (( id = GetAvailableThread() ) < 0)
MasterWait();
WakeupThread(id,MCTSEXPANDTREE);
}
/*
#] find_Horner_MCTS_expand_tree_threaded :
#[ optimize_expression_given_Horner_threaded :
*/
extern void optimize_expression_given_Horner_threaded(void) {
int id;
while (( id = GetAvailableThread() ) < 0)
MasterWait();
WakeupThread(id,OPTIMIZEEXPRESSION);
}
/*
#] optimize_expression_given_Horner_threaded :
*/
#endif
|