1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
|
.. -*- rest -*-
..
Copyright (c) 2017-2023 Science and Technology Facilities Council.
All rights reserved.
Modifications made as part of the fparser project are distributed
under the following license:
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
.. _fparser:
fparser
=======
Getting Going
^^^^^^^^^^^^^
fparser was the original parser provided by the fparser package and
was implemented to parse Fortran code written in Fortran 66, 70 or 90
syntax. It is gradually being extended on an as-required basis in
order to support some of the aspects of more recent versions of
Fortran (see :ref:`beyond_f90`). In order to use it you will need to
have installed the fparser package which is available from the Python
Packagage Index (pypi) or github (https://github.com/stfc/fparser).
Once installed, you should be able to open the python interpreter and
try it out, e.g.:
::
>>> from fparser.api import parse
>>> code = """
... c comment
... subroutine foo(a)
... integer a
... print*,"a=",a
... end
... """
>>> tree = parse(code, isfree=False)
>>> print tree
!BEGINSOURCE <cStringIO.StringI object at 0xb75ac410> mode=fix90
SUBROUTINE foo(a)
INTEGER a
PRINT *, "a=", a
END SUBROUTINE foo
>>>
>>> tree
BeginSource
blocktype='beginsource'
name='<cStringIO.StringI object at 0xb75ac410> mode=fix90'
a=AttributeHolder:
external_subprogram=<dict with keys ['foo']>
content:
Subroutine
args=['a']
item=Line('subroutine foo(a)',(3, 3),'')
a=AttributeHolder:
variables=<dict with keys ['a']>
content:
Integer
selector=('', '')
entity_decls=['a']
item=Line('integer a',(4, 4),'')
Print
item=Line('print*,"a=",a',(5, 5),'')
EndSubroutine
blocktype='subroutine'
name='foo'
item=Line('end',(6, 6),'')
As indicated by the above output, the `fparser.api.parse()` function
returns a `Statement` tree representation of the parsed source code.
This `parse()` function is actually a convenience method that wraps
the creation of a reader for Fortran source code (either
`FortranStringReader` or `FortranFileReader`) followed by a call to use
that reader to create the tree, e.g.:
::
>>> from fparser.common.readfortran import FortranStringReader
>>> from fparser.one.parsefortran import FortranParser
>>> reader = FortranStringReader(code, FortranFormat(isfree, isstrict))
>>> parser = FortranParser(reader)
>>> parser.parse()
>>> print parser.block
!BEGINSOURCE <cStringIO.StringI object at 0xb751d500> mode=fix77
SUBROUTINE foo(a)
PRINT *, "a=", a
END SUBROUTINE foo
The full interface to the `parse()` function is:
.. autofunction:: fparser.api.parse
The `FortranParser` class holds the parser information while
iterating over items returned by a `FortranReaderBase` iterator.
The parsing information, collected when calling `.parse()` method,
is saved in the `.block` attribute as an instance
of the `BeginSource` class defined in the `block_statements.py` file.
.. _beyond_f90:
Support for Fortran Standards beyond Fortran90
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
fparser has full support for Fortran conforming to the 66, 70 or 90
standards. Support for Fortran following more recent standards is
being added on an as-required basis and currently consists of:
* The SELECT TYPE block, including the TYPE IS, CLASS IS and CLASS
DEFAULT clauses (Fortran 2003)
* Calls to type-bound procedures (Fortran 2003), e.g.
::
call an_array(3)%a_proc(an_arg)
* Declaration of a CLASS variable (Fortran 2003), e.g.
::
class(my_class) var
* Declaration of a procedure (Fortran 2003), e.g.
::
procedure(interface_name) :: proc
Logging
^^^^^^^
fparser uses the standard Python logging package in order to note various
events which occur while parsing. Following standard Python practice it uses a
logger named after the module which raises the event. As such they all have
their root in the name "fparser". This name may be used by the calling program
to handle logged messages as it sees fit.
For instance, to just dump them to a file the following may be used::
handler = logging.FileHandler(filename, mode='a')
logging.getLogger('fparser').addhandler(handler)
Fparser sets a default `NullHandler`. This prevents missing handler errors but
also eats all logged messages. You will need to add additional handlers if you
wish to do something with these messages.
If you want to intercept fparser's messages and handle them as part of your own
logging regime you will need to write a handler which repeats them::
class MyHandler(logging.Handler):
def emit(self, record):
logging.getLogger(__name__).handle(record)
Reference
^^^^^^^^^
The fparser package contains the following modules:
* :ref:`api`
* :ref:`readfortran`
* :ref:`parsefortran`
The functionality of each of these is described in the sections below.
.. _api :
api.py
------
`This file`_ provides the public API to fparser. It exposes
`Statement` subclasses and a function, `parse`.
.. _This file: https://github.com/stfc/fparser/blob/master/src/fparser/api.py
Function `parse(<input>, ..)` parses, analyzes and returns a `Statement`
tree of Fortran input.
.. _readfortran :
readfortran.py
--------------
`This file`__ contains tools for reading Fortran codes from file and
from string objects.
__ https://github.com/stfc/fparser/blob/master/src/fparser/common/readfortran.py
To read Fortran code from a file, use the `FortranFileReader` class.
The `FortranFileReader` class is an iterator over Fortran code lines
and is derived from the `FortranReaderBase` class.
.. autoclass:: fparser.common.readfortran.FortranReaderBase
It automatically handles line continuations and comments, as
well as detecting whether a Fortran file is in free or fixed format.
For example,
::
>>> from fparser.common.readfortran import *
>>> import os
>>> reader = FortranFileReader(os.path.expanduser('~/src/blas/daxpy.f'))
>>> reader.next()
Line('subroutine daxpy(n,da,dx,incx,dy,incy)',(1, 1),'')
>>> reader.next()
Comment('c constant times a vector plus a vector.\nc uses unrolled loops for increments equal to one.\nc jack dongarra, linpack, 3/11/78.\nc modified 12/3/93, array(1) declarations changed to array(*)',(3, 6))
>>> reader.next()
Line('double precision dx(*),dy(*),da',(8, 8),'')
>>> reader.next()
Line('integer i,incx,incy,ix,iy,m,mp1,n',(9, 9),'')
Owing to its origins in the f2py project, the reader contains functionality
to identify the format of the provided source by examining Python-style
encoding information (c.f. `PEP 263`). Since this is not a part of the Fortran
standard, this functionality is disabled by default. It can be enabled by
providing the argument `ignore_encoding=False` to the reader.
.. _PEP 263: https://peps.python.org/pep-0263/
Note that the `FortranReaderBase.next()` method may return `Line`,
`SyntaxErrorLine`, `Comment`, `MultiLine`, or `SyntaxErrorMultiLine`
instances.
A `Line` instance has the following attributes:
* `.line` - contains Fortran code line
* `.span` - a 2-tuple containing the span of line numbers containing
Fortran code in the original Fortran file
* `.label` - the label of Fortran code line
* `.reader` - the `FortranReaderBase` class instance
* `.strline` - if it is not `None` then it contains Fortran code line
with parenthesis
content and string literal constants saved in the `.strlinemap` dictionary.
* `.is_f2py_directive` - `True` if line starts with the f2py directive
comment.
and the following methods:
* `.get_line()` - returns `.strline` (also evalutes it if None). Also
handles Hollerith contstants in the fixed F77 mode.
* `.isempty()` - returns `True` if Fortran line contains no code.
* `.copy(line=None, apply_map=False)` - returns a `Line` instance
with given `.span`, `.label`, `.reader` information but the line content
replaced with `line` (when not `None`) and applying `.strlinemap`
mapping (when `apply_map` is `True`).
* `.apply_map(line)` - apply `.strlinemap` mapping to line content.
* `.has_map()` - returns `True` if `.strlinemap` mapping exists.
For example,
::
>>> item = reader.next()
>>> item
Line('if(n.le.0)return',(11, 11),'')
>>> item.line
'if(n.le.0)return'
>>> item.strline
'if(F2PY_EXPR_TUPLE_4)return'
>>> item.strlinemap
{'F2PY_EXPR_TUPLE_4': 'n.le.0'}
>>> item.label
''
>>> item.span
(11, 11)
>>> item.get_line()
'if(F2PY_EXPR_TUPLE_4)return'
>>> item.copy('if(F2PY_EXPR_TUPLE_4)pause',True)
Line('if(n.le.0)pause',(11, 11),'')
A `Comment` instance has the following attributes:
* `.comment` - a comment string
* `.span` - a 2-tuple containing the span of line numbers containing
Fortran comment in the original Fortran file
* `.reader` - the `FortranReaderBase` class instance
and `.isempty()` method.
A `MultiLine` class represents multiline syntax in the .pyf files::
<prefix>'''<lines>'''<suffix>
A `MultiLine` instance has the following attributes:
* `.prefix` - the content of `<prefix>`
* `.block` - a list of lines
* `.suffix` - the content of `<suffix>`
* `.span` - a 2-tuple containing the span of line numbers containing
multiline syntax in the original Fortran file
* `.reader` - the `FortranReaderBase` class instance
and a `.isempty()` method.
`SyntaxErrorLine` and `SyntaxErrorMultiLine` are like `Line` and `MultiLine`
classes, respectively, with a functionality of issuing an error
message to `sys.stdout` when constructing an instance of the corresponding
class.
To read a Fortran code from a string, use `FortranStringReader` class::
reader = FortranStringReader(<string>, <isfree>, <isstrict>)
where the second and third arguments are used to specify the format
of the given `<string>` content. When `<isfree>` and `<isstrict>` are both
`True`, the content of a .pyf file is assumed. For example,
::
>>> code = """
... c comment
... subroutine foo(a)
... print*, "a=",a
... end
... """
>>> reader = FortranStringReader(code, False, True)
>>> reader.next()
Comment('c comment',(2, 2))
>>> reader.next()
Line('subroutine foo(a)',(3, 3),'')
>>> reader.next()
Line('print*, "a=",a',(4, 4),'')
>>> reader.next()
Line('end',(5, 5),'')
An instance of `FortranReaderBase` has the following attributes:
* `.source` - a file-like object with a `.next()` method to retrive
a source code line
* `.source_lines` - a list of read source lines
* `.reader` - a `FortranReaderBase` instance for reading files
from INCLUDE statements.
* `.include_dirs` - a list of directories where INCLUDE files
are searched. Default is `['.']`.
and the following methods:
* `.set_mode(isfree, isstrict)` - set Fortran code format information
* `.close_source()` - called when `.next()` raises `StopIteration` exception.
.. _parsefortran :
Model for Fortran Code Statements
---------------------------------
The model for representing Fortran code statements is defined in files
`block_statements.py`__, `base_classes.py`__,
`typedecl_statements.py`__ and `statements.py`__.
It consists of a tree of `Statement` classes defined in
`base_classes.py`. There are two types of statements: one-line
statements and block statements. Block statements consists of start
and end statements, and content statements in between that can be of
both types again.
__ https://github.com/stfc/fparser/blob/master/src/fparser/one/block_statements.py
__ https://github.com/stfc/fparser/blob/master/src/fparser/common/base_classes.py
__ https://github.com/stfc/fparser/blob/master/src/fparser/one/typedecl_statements.py
__ https://github.com/stfc/fparser/blob/master/src/fparser/one/statements.py
A `Statement` instance has the following attributes:
* `.parent` - either the parent block-type statement or the `FortranParser`
instance.
* `.item` - a `Line` instance containing Fortran statement line
information, see above.
* `.isvalid` - when `False` then processing of this `Statement` instance will
be skipped. e.g. when the content of `.item` does not match with
the `Statement` class.
* `.ignore` - when `True` then the `Statement` instance will be ignored.
* `.modes` - a list of Fortran format modes where the `Statement`
instance is valid.
and the following methods:
* `.info(message)`, `.warning(message)`, `.error(message)` - to spit out
messages to the `sys.stderr` stream.
* `.get_variable(name)` - get `Variable` instance by name that is defined in
current namespace. If name is not defined, then the corresponding
`Variable` instance is created.
* `.analyze()` - calculate various information about the `Statement`,
this information is saved in `.a` attribute that is an instance of
`AttributeHolder`.
All statement classes are derived from the `Statement` class. Block
statements are derived from the `BeginStatement` class and are assumed
to end with an `EndStatement` instance in the `.content` attribute
list. `BeginStatement` and `EndStatement` instances have the following
attributes:
* `.name` - name of the block, blocks without names use line label
as the name.
* `.blocktype` - type of the block (derived from class name)
* `.content` - a list of `Statement` (or `Line`) instances.
and the following methods:
* `.__str__()` - returns a string representation of the Fortran code.
A number of statements may declare a variable that is used in other
statement expressions. Variables are represented via the `Variable` class
and its instances have the following attributes:
* `.name` - name of the variable
* `.typedecl` - type declaration
* `.dimension` - list of dimensions
* `.bounds` - list of bounds
* `.length` - length specs
* `.attributes` - list of attributes
* `.bind` - list of bind information
* `.intent` - list of intent information
* `.check` - list of check expressions
* `.init` - initial value of the variable
* `.parent` - statement instance declaring the variable
* `.parents` - list of statements that specify variable information
and the following methods:
* `.is_private()`
* `.is_public()`
* `.is_allocatable()`
* `.is_external()`
* `.is_intrinsic()`
* `.is_parameter()`
* `.is_optional()`
* `.is_required()`
Block Statements
~~~~~~~~~~~~~~~~
The following block statements are defined in `block_statements.py`:
`BeginSource`, `Module`, `PythonModule`, `Program`, `BlockData`, `Interface`,
`Subroutine`, `Function`, `Select`, `Where`, `Forall`, `IfThen`, `If`, `Do`,
`Associate`, `TypeDecl (Type)`, `Enum`
Block statement classes may have different properties which are declared via
deriving them from the following classes:
`HasImplicitStmt`, `HasUseStmt`, `HasVariables`, `HasTypeDecls`,
`HasAttributes`, `HasModuleProcedures`, `ProgramBlock`
In summary, the `.a` attribute may hold different information sets as follows:
* `BeginSource` - `.module`, `.external_subprogram`, `.blockdata`
* `Module` - `.attributes`, `.implicit_rules`, `.use`, `.use_provides`,
`.variables`, `.type_decls`, `.module_subprogram`, `.module_data`
* `PythonModule` - `.implicit_rules`, `.use`, `.use_provides`
* `Program` - `.attributes`, `.implicit_rules`, `.use`, `.use_provides`
* `BlockData` - `.implicit_rules`, `.use`, `.use_provides`, `.variables`
* `Interface` - `.implicit_rules`, `.use`, `.use_provides`,
`.module_procedures`
* `Function`, `Subroutine` - `.implicit_rules`, `.attributes`, `.use`,
`.use_statements`, `.variables`, `.type_decls`, `.internal_subprogram`
* `TypeDecl` - `.variables`, `.attributes`
Block statements have the following methods:
* `.get_classes()` - returns a list of `Statement` classes that are valid
as a content of the given block statement.
Type-declaration Statements
~~~~~~~~~~~~~~~~~~~~~~~~~~~
The following type-declaration statements are defined in
`typedecl_statements.py`:
`Integer`, `Real`, `DoublePrecision`, `Complex`, `DoubleComplex`, `Logical`,
`Character`, `Byte`, `Type`, `Class`
and they have the following attributes:
* `.selector` - contains length and kind specs
* `.entity_decls`, `.attrspec`
and methods:
* `.tostr()` - return string representation of Fortran type declaration
* `.astypedecl()` - pure type declaration instance, it has no `.entity_decls`
and `.attrspec`.
* `.analyze()` - processes `.entity_decls` and `.attrspec` attributes and adds
`Variable` instance to `.parent.a.variables` dictionary.
Statements
~~~~~~~~~~
The following one-line statements are defined:
`Implicit`, `TypeDeclarationStatement` derivatives (see above),
`Assignment`, `PointerAssignment`, `Assign`, `Call`, `Goto`, `ComputedGoto`,
`AssignedGoto`, `Continue`, `Return`, `Stop`, `Print`, `Read`, `Write`, `Flush`,
`Wait`, `Contains`, `Allocate`, `Deallocate`, `ModuleProcedure`, `Access`,
`Public`, `Private`, `Close`, `Cycle`, `Backspace`, `Endfile`, `Reeinf`, `Open`,
`Format`, `Save`, `Data`, `Nullify`, `Use`, `Exit`, `Parameter`, `Equivalence`,
`Dimension`, `Target`, `Pointer`, `Protected`, `Volatile`, `Value`,
`ArithmeticIf`, `Intrinsic`, `Inquire`, `Sequence`, `External`, `Namelist`,
`Common`, `Optional`, `Intent`, `Entry`, `Import`, `Forall`,
`SpecificBinding`, `GenericBinding`, `FinalBinding`, `Allocatable`,
`Asynchronous`, `Bind`, `Else`, `ElseIf`, `Case`, `Where`, `ElseWhere`,
`Enumerator`, `FortranName`, `Threadsafe`, `Depend`, `Check`,
`CallStatement`, `CallProtoArgument`, `Pause`
|