1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
|
/***************************************************************************\
|* Function Parser for C++ v4.5.2 *|
|*-------------------------------------------------------------------------*|
|* Copyright: Juha Nieminen, Joel Yliluoma *|
|* *|
|* This library is distributed under the terms of the *|
|* GNU Lesser General Public License version 3. *|
|* (See lgpl.txt and gpl.txt for the license text.) *|
\***************************************************************************/
// NOTE:
// This file contains only internal types for the function parser library.
// You don't need to include this file in your code. Include "fparser.hh"
// only.
#ifndef ONCE_FPARSER_TYPES_H_
#define ONCE_FPARSER_TYPES_H_
#include "../fpconfig.hh"
#include <cstring>
#ifdef ONCE_FPARSER_H_
#include <map>
#endif
namespace FUNCTIONPARSERTYPES
{
enum OPCODE
{
// The order of opcodes in the function list must
// match that which is in the Functions[] array.
cAbs,
cAcos, cAcosh,
cArg, /* get the phase angle of a complex value */
cAsin, cAsinh,
cAtan, cAtan2, cAtanh,
cCbrt, cCeil,
cConj, /* get the complex conjugate of a complex value */
cCos, cCosh, cCot, cCsc,
cExp, cExp2, cFloor, cHypot,
cIf,
cImag, /* get imaginary part of a complex value */
cInt, cLog, cLog10, cLog2, cMax, cMin,
cPolar, /* create a complex number from polar coordinates */
cPow,
cReal, /* get real part of a complex value */
cSec, cSin, cSinh, cSqrt, cTan, cTanh,
cTrunc,
// These do not need any ordering:
// Except that if you change the order of {eq,neq,lt,le,gt,ge}, you
// must also change the order in ConstantFolding_ComparisonOperations().
cImmed, cJump,
cNeg, cAdd, cSub, cMul, cDiv, cMod,
cEqual, cNEqual, cLess, cLessOrEq, cGreater, cGreaterOrEq,
cNot, cAnd, cOr,
cNotNot, /* Protects the double-not sequence from optimizations */
cDeg, cRad, /* Multiplication and division by 180 / pi */
cFCall, cPCall,
#ifdef FP_SUPPORT_OPTIMIZER
cPopNMov, /* cPopNMov(x,y) moves [y] to [x] and deletes anything
* above [x]. Used for disposing of temporaries.
*/
cLog2by, /* log2by(x,y) = log2(x) * y */
cNop, /* Used by fpoptimizer internally; should not occur in bytecode */
#endif
cSinCos, /* sin(x) followed by cos(x) (two values are pushed to stack) */
cSinhCosh, /* hyperbolic equivalent of sincos */
cAbsAnd, /* As cAnd, but assume both operands are absolute values */
cAbsOr, /* As cOr, but assume both operands are absolute values */
cAbsNot, /* As cAbsNot, but assume the operand is an absolute value */
cAbsNotNot, /* As cAbsNotNot, but assume the operand is an absolute value */
cAbsIf, /* As cAbsIf, but assume the 1st operand is an absolute value */
cDup, /* Duplicates the last value in the stack: Push [Stacktop] */
cFetch, /* Same as Dup, except with absolute index
* (next value is index) */
cInv, /* Inverts the last value in the stack (x = 1/x) */
cSqr, /* squares the last operand in the stack, no push/pop */
cRDiv, /* reverse division (not x/y, but y/x) */
cRSub, /* reverse subtraction (not x-y, but y-x) */
cRSqrt, /* inverse square-root (1/sqrt(x)) */
VarBegin
};
#ifdef ONCE_FPARSER_H_
struct FuncDefinition
{
enum FunctionFlags
{
Enabled = 0x01,
AngleIn = 0x02,
AngleOut = 0x04,
OkForInt = 0x08,
ComplexOnly = 0x10
};
#ifdef FUNCTIONPARSER_SUPPORT_DEBUGGING
const char name[8];
#endif
unsigned params : 8;
unsigned flags : 8;
inline bool okForInt() const { return (flags & OkForInt) != 0; }
inline bool complexOnly() const { return (flags & ComplexOnly) != 0; }
};
#ifdef FUNCTIONPARSER_SUPPORT_DEBUGGING
# define FP_FNAME(n) n,
#else
# define FP_FNAME(n)
#endif
// This list must be in the same order as that in OPCODE enum,
// because the opcode value is used to index this array, and
// the pointer to array element is used for generating the opcode.
const FuncDefinition Functions[]=
{
/*cAbs */ { FP_FNAME("abs") 1, FuncDefinition::OkForInt },
/*cAcos */ { FP_FNAME("acos") 1, FuncDefinition::AngleOut },
/*cAcosh*/ { FP_FNAME("acosh") 1, FuncDefinition::AngleOut },
/*cArg */ { FP_FNAME("arg") 1, FuncDefinition::AngleOut | FuncDefinition::ComplexOnly },
/*cAsin */ { FP_FNAME("asin") 1, FuncDefinition::AngleOut },
/*cAsinh*/ { FP_FNAME("asinh") 1, FuncDefinition::AngleOut },
/*cAtan */ { FP_FNAME("atan") 1, FuncDefinition::AngleOut },
/*cAtan2*/ { FP_FNAME("atan2") 2, FuncDefinition::AngleOut },
/*cAtanh*/ { FP_FNAME("atanh") 1, 0 },
/*cCbrt */ { FP_FNAME("cbrt") 1, 0 },
/*cCeil */ { FP_FNAME("ceil") 1, 0 },
/*cConj */ { FP_FNAME("conj") 1, FuncDefinition::ComplexOnly },
/*cCos */ { FP_FNAME("cos") 1, FuncDefinition::AngleIn },
/*cCosh */ { FP_FNAME("cosh") 1, FuncDefinition::AngleIn },
/*cCot */ { FP_FNAME("cot") 1, FuncDefinition::AngleIn },
/*cCsc */ { FP_FNAME("csc") 1, FuncDefinition::AngleIn },
/*cExp */ { FP_FNAME("exp") 1, 0 },
/*cExp2 */ { FP_FNAME("exp2") 1, 0 },
/*cFloor*/ { FP_FNAME("floor") 1, 0 },
/*cHypot*/ { FP_FNAME("hypot") 2, 0 },
/*cIf */ { FP_FNAME("if") 0, FuncDefinition::OkForInt },
/*cImag */ { FP_FNAME("imag") 1, FuncDefinition::ComplexOnly },
/*cInt */ { FP_FNAME("int") 1, 0 },
/*cLog */ { FP_FNAME("log") 1, 0 },
/*cLog10*/ { FP_FNAME("log10") 1, 0 },
/*cLog2 */ { FP_FNAME("log2") 1, 0 },
/*cMax */ { FP_FNAME("max") 2, FuncDefinition::OkForInt },
/*cMin */ { FP_FNAME("min") 2, FuncDefinition::OkForInt },
/*cPolar */{ FP_FNAME("polar") 2, FuncDefinition::ComplexOnly | FuncDefinition::AngleIn },
/*cPow */ { FP_FNAME("pow") 2, 0 },
/*cReal */ { FP_FNAME("real") 1, FuncDefinition::ComplexOnly },
/*cSec */ { FP_FNAME("sec") 1, FuncDefinition::AngleIn },
/*cSin */ { FP_FNAME("sin") 1, FuncDefinition::AngleIn },
/*cSinh */ { FP_FNAME("sinh") 1, FuncDefinition::AngleIn },
/*cSqrt */ { FP_FNAME("sqrt") 1, 0 },
/*cTan */ { FP_FNAME("tan") 1, FuncDefinition::AngleIn },
/*cTanh */ { FP_FNAME("tanh") 1, FuncDefinition::AngleIn },
/*cTrunc*/ { FP_FNAME("trunc") 1, 0 }
};
#undef FP_FNAME
struct NamePtr
{
const char* name;
unsigned nameLength;
NamePtr(const char* n, unsigned l): name(n), nameLength(l) {}
inline bool operator==(const NamePtr& rhs) const
{
return nameLength == rhs.nameLength
&& std::memcmp(name, rhs.name, nameLength) == 0;
}
inline bool operator<(const NamePtr& rhs) const
{
for(unsigned i = 0; i < nameLength; ++i)
{
if(i == rhs.nameLength) return false;
const char c1 = name[i], c2 = rhs.name[i];
if(c1 < c2) return true;
if(c2 < c1) return false;
}
return nameLength < rhs.nameLength;
}
};
template<typename Value_t>
struct NameData
{
enum DataType { CONSTANT, UNIT, FUNC_PTR, PARSER_PTR, VARIABLE };
DataType type;
unsigned index;
Value_t value;
NameData(DataType t, unsigned v) : type(t), index(v), value() { }
NameData(DataType t, Value_t v) : type(t), index(), value(v) { }
NameData() { }
};
template<typename Value_t>
class NamePtrsMap: public
std::map<FUNCTIONPARSERTYPES::NamePtr,
FUNCTIONPARSERTYPES::NameData<Value_t> >
{
};
const unsigned FUNC_AMOUNT = sizeof(Functions)/sizeof(Functions[0]);
#endif // ONCE_FPARSER_H_
}
#ifdef ONCE_FPARSER_H_
#include <vector>
template<typename Value_t>
struct FunctionParserBase<Value_t>::Data
{
unsigned mReferenceCounter;
char mDelimiterChar;
ParseErrorType mParseErrorType;
int mEvalErrorType;
bool mUseDegreeConversion;
bool mHasByteCodeFlags;
const char* mErrorLocation;
unsigned mVariablesAmount;
std::string mVariablesString;
FUNCTIONPARSERTYPES::NamePtrsMap<Value_t> mNamePtrs;
struct InlineVariable
{
FUNCTIONPARSERTYPES::NamePtr mName;
unsigned mFetchIndex;
};
typedef std::vector<InlineVariable> InlineVarNamesContainer;
InlineVarNamesContainer mInlineVarNames;
struct FuncWrapperPtrData
{
/* Only one of the pointers will point to a function, the other
will be null. (The raw function pointer could be implemented
as a FunctionWrapper specialization, but it's done like this
for efficiency.) */
FunctionPtr mRawFuncPtr;
FunctionWrapper* mFuncWrapperPtr;
unsigned mParams;
FuncWrapperPtrData();
~FuncWrapperPtrData();
FuncWrapperPtrData(const FuncWrapperPtrData&);
FuncWrapperPtrData& operator=(const FuncWrapperPtrData&);
};
struct FuncParserPtrData
{
FunctionParserBase<Value_t>* mParserPtr;
unsigned mParams;
};
std::vector<FuncWrapperPtrData> mFuncPtrs;
std::vector<FuncParserPtrData> mFuncParsers;
std::vector<unsigned> mByteCode;
std::vector<Value_t> mImmed;
#if !defined(FP_USE_THREAD_SAFE_EVAL) && \
!defined(FP_USE_THREAD_SAFE_EVAL_WITH_ALLOCA)
std::vector<Value_t> mStack;
// Note: When mStack exists,
// mStack.size() and mStackSize are mutually redundant.
#endif
unsigned mStackSize;
Data();
Data(const Data&);
Data& operator=(const Data&); // not implemented on purpose
~Data();
};
#endif
//#include "fpaux.hh"
#endif
|