1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
|
#include "rangeestimation.hh"
#include "consts.hh"
#ifdef FP_SUPPORT_OPTIMIZER
using namespace FUNCTIONPARSERTYPES;
using namespace FPoptimizer_CodeTree;
//#define DEBUG_SUBSTITUTIONS_extra_verbose
namespace FPoptimizer_CodeTree
{
template<typename Value_t>
range<Value_t> CalculateResultBoundaries(const CodeTree<Value_t>& tree)
#ifdef DEBUG_SUBSTITUTIONS_extra_verbose
{
using namespace FUNCTIONPARSERTYPES;
range<Value_t> tmp = CalculateResultBoundaries_do(tree);
std::cout << "Estimated boundaries: ";
if(tmp.min.known) std::cout << tmp.min.val; else std::cout << "-inf";
std::cout << " .. ";
if(tmp.max.known) std::cout << tmp.max.val; else std::cout << "+inf";
std::cout << ": ";
DumpTree(tree);
std::cout << std::endl;
return tmp;
}
template<typename Value_t>
range<Value_t> CodeTree<Value_t>::CalculateResultBoundaries_do(const CodeTree<Value_t>& tree)
#endif
{
static const range<Value_t> pihalf_limits
(-fp_const_pihalf<Value_t>(),
fp_const_pihalf<Value_t>());
static const range<Value_t> pi_limits
(-fp_const_pi<Value_t>(),
fp_const_pi<Value_t>());
static const range<Value_t> abs_pi_limits
( Value_t(0),
fp_const_pi<Value_t>());
static const range<Value_t> plusminus1_limits
( Value_t(-1),
Value_t(1) );
using namespace std;
switch( tree.GetOpcode() )
{
case cImmed:
return range<Value_t>(tree.GetImmed(), tree.GetImmed()); // a definite value.
case cAnd:
case cAbsAnd:
case cOr:
case cAbsOr:
case cNot:
case cAbsNot:
case cNotNot:
case cAbsNotNot:
case cEqual:
case cNEqual:
case cLess:
case cLessOrEq:
case cGreater:
case cGreaterOrEq:
{
/* These operations always produce truth values (0 or 1) */
/* Narrowing them down is a matter of performing Constant optimization */
return range<Value_t>( Value_t(0), Value_t(1) );
}
case cAbs:
{
/* cAbs always produces a positive value */
range<Value_t> m = CalculateResultBoundaries( tree.GetParam(0) );
m.set_abs();
return m;
}
case cLog: /* Defined for 0.0 < x <= inf */
{
range<Value_t> m = CalculateResultBoundaries( tree.GetParam(0) );
m.min.template set_if<cGreater>(Value_t(0), fp_log); // No boundaries
m.max.template set_if<cGreater>(Value_t(0), fp_log); // No boundaries
return m;
}
case cLog2: /* Defined for 0.0 < x <= inf */
{
range<Value_t> m = CalculateResultBoundaries( tree.GetParam(0) );
m.min.template set_if<cGreater>(Value_t(0), fp_log2); // No boundaries
m.max.template set_if<cGreater>(Value_t(0), fp_log2); // No boundaries
return m;
}
case cLog10: /* Defined for 0.0 < x <= inf */
{
range<Value_t> m = CalculateResultBoundaries( tree.GetParam(0) );
m.min.template set_if<cGreater>(Value_t(0), fp_log10); // No boundaries
m.max.template set_if<cGreater>(Value_t(0), fp_log10); // No boundaries
return m;
}
case cAcosh: /* defined for 1.0 <= x <= inf */
{
range<Value_t> m = CalculateResultBoundaries( tree.GetParam(0) );
m.min.template set_if<cGreaterOrEq>(Value_t(1), fp_acosh); // No boundaries
m.max.template set_if<cGreaterOrEq>(Value_t(1), fp_acosh); // No boundaries
return m;
}
case cAsinh: /* defined for all values -inf <= x <= inf */
{
range<Value_t> m = CalculateResultBoundaries( tree.GetParam(0) );
m.min.set(fp_asinh); // No boundaries
m.max.set(fp_asinh); // No boundaries
return m;
}
case cAtanh: /* defined for -1.0 <= x < 1, results within -inf..+inf */
{
range<Value_t> m = CalculateResultBoundaries( tree.GetParam(0) );
m.min.template set_if<cGreater> (Value_t(-1), fp_atanh);
m.max.template set_if<cLess> (Value_t( 1), fp_atanh);
return m;
}
case cAcos: /* defined for -1.0 <= x <= 1, results within CONSTANT_PI..0 */
{
range<Value_t> m = CalculateResultBoundaries( tree.GetParam(0) );
return range<Value_t>( // Note that the range is flipped!
(m.max.known && (m.max.val) < Value_t(1))
? fp_acos(m.max.val) : Value_t(0),
(m.min.known && (m.min.val) >= Value_t(-1))
? fp_acos(m.min.val) : fp_const_pi<Value_t>()
);
}
case cAsin: /* defined for -1.0 <= x < 1, results within -CONSTANT_PIHALF..CONSTANT_PIHALF */
{
range<Value_t> m = CalculateResultBoundaries( tree.GetParam(0) );
/* Assuming that x is never outside valid limits */
m.min.template set_if<cGreater>(Value_t(-1), fp_asin, pihalf_limits.min.val);
m.max.template set_if<cLess >(Value_t( 1), fp_asin, pihalf_limits.max.val);
return m;
}
case cAtan: /* defined for all values -inf <= x <= inf, results within -CONSTANT_PIHALF..CONSTANT_PIHALF */
{
range<Value_t> m = CalculateResultBoundaries( tree.GetParam(0) );
m.min.set(fp_atan, pihalf_limits.min.val);
m.max.set(fp_atan, pihalf_limits.max.val);
return m;
}
case cAtan2: /* too complicated to estimate */
{
//range<Value_t> p0 = CalculateResultBoundaries( tree.GetParam(0) );
//range<Value_t> p1 = CalculateResultBoundaries( tree.GetParam(1) );
if(tree.GetParam(0).IsImmed()
&& fp_equal(tree.GetParam(0).GetImmed(), Value_t(0))) // y == 0
{
// Either 0.0 or CONSTANT_PI
return abs_pi_limits;
}
if(tree.GetParam(1).IsImmed()
&& fp_equal(tree.GetParam(1).GetImmed(), Value_t(0))) // x == 0
{
// Either -CONSTANT_PIHALF or +CONSTANT_PIHALF
return pihalf_limits;
}
// Anything else
/* Somewhat complicated to narrow down from this */
/* TODO: A resourceful programmer may add it later. */
return pi_limits;
}
case cSin:
{
/* Quite difficult to estimate due to the cyclic nature of the function. */
range<Value_t> m = CalculateResultBoundaries( tree.GetParam(0) );
bool covers_full_cycle
= !m.min.known || !m.max.known
|| (m.max.val - m.min.val) >= (fp_const_twopi<Value_t>());
if(covers_full_cycle)
return range<Value_t>(Value_t(-1), Value_t(1));
Value_t min = fp_mod(m.min.val, fp_const_twopi<Value_t>()); if(min<Value_t(0)) min+=fp_const_twopi<Value_t>();
Value_t max = fp_mod(m.max.val, fp_const_twopi<Value_t>()); if(max<Value_t(0)) max+=fp_const_twopi<Value_t>();
if(max < min) max += fp_const_twopi<Value_t>();
bool covers_plus1 = (min <= fp_const_pihalf<Value_t>() && max >= fp_const_pihalf<Value_t>());
bool covers_minus1 = (min <= Value_t(1.5)*fp_const_pi<Value_t>() && max >= Value_t(1.5)*fp_const_pi<Value_t>());
if(covers_plus1 && covers_minus1)
return range<Value_t>(Value_t(-1), Value_t(1));
if(covers_minus1)
return range<Value_t>(Value_t(-1), fp_max(fp_sin(min), fp_sin(max)));
if(covers_plus1)
return range<Value_t>(fp_min(fp_sin(min), fp_sin(max)), Value_t(1));
return range<Value_t>(fp_min(fp_sin(min), fp_sin(max)),
fp_max(fp_sin(min), fp_sin(max)));
}
case cCos:
{
/* Quite difficult to estimate due to the cyclic nature of the function. */
/* cos(x) = sin(pi/2 - x) = sin(x + pi/2) */
range<Value_t> m = CalculateResultBoundaries( tree.GetParam(0) );
if(m.min.known) m.min.val += fp_const_pihalf<Value_t>();/*for cCos*/
if(m.max.known) m.max.val += fp_const_pihalf<Value_t>();/*for cCos*/
bool covers_full_cycle
= !m.min.known || !m.max.known
|| (m.max.val - m.min.val) >= (fp_const_twopi<Value_t>());
if(covers_full_cycle)
return range<Value_t>(Value_t(-1), Value_t(1));
Value_t min = fp_mod(m.min.val, fp_const_twopi<Value_t>()); if(min<Value_t(0)) min+=fp_const_twopi<Value_t>();
Value_t max = fp_mod(m.max.val, fp_const_twopi<Value_t>()); if(max<Value_t(0)) max+=fp_const_twopi<Value_t>();
if(max < min) max += fp_const_twopi<Value_t>();
bool covers_plus1 = (min <= fp_const_pihalf<Value_t>() && max >= fp_const_pihalf<Value_t>());
bool covers_minus1 = (min <= Value_t(1.5)*fp_const_pi<Value_t>() && max >= Value_t(1.5)*fp_const_pi<Value_t>());
if(covers_plus1 && covers_minus1)
return range<Value_t>(Value_t(-1), Value_t(1));
if(covers_minus1)
return range<Value_t>(Value_t(-1), fp_max(fp_sin(min), fp_sin(max)));
if(covers_plus1)
return range<Value_t>(fp_min(fp_sin(min), fp_sin(max)), Value_t(1));
return range<Value_t>(fp_min(fp_sin(min), fp_sin(max)),
fp_max(fp_sin(min), fp_sin(max)));
}
case cTan:
{
/* Could be narrowed down from here,
* but it's too complicated due to
* the cyclic nature of the function */
/* TODO: A resourceful programmer may add it later. */
return range<Value_t>(); // (CONSTANT_NEG_INF, CONSTANT_POS_INF);
}
case cCeil:
{
range<Value_t> m = CalculateResultBoundaries( tree.GetParam(0) );
m.max.set(fp_ceil); // ceil() may increase the value, may not decrease
return m;
}
case cFloor:
{
range<Value_t> m = CalculateResultBoundaries( tree.GetParam(0) );
m.min.set(fp_floor); // floor() may decrease the value, may not increase
return m;
}
case cTrunc:
{
range<Value_t> m = CalculateResultBoundaries( tree.GetParam(0) );
m.min.set(fp_floor); // trunc() may either increase or decrease the value
m.max.set(fp_ceil); // for safety, we assume both
return m;
}
case cInt:
{
range<Value_t> m = CalculateResultBoundaries( tree.GetParam(0) );
m.min.set(fp_floor); // int() may either increase or decrease the value
m.max.set(fp_ceil); // for safety, we assume both
return m;
}
case cSinh: /* defined for all values -inf <= x <= inf */
{
range<Value_t> m = CalculateResultBoundaries( tree.GetParam(0) );
m.min.set(fp_sinh); // No boundaries
m.max.set(fp_sinh); // No boundaries
return m;
}
case cTanh: /* defined for all values -inf <= x <= inf, results within -1..1 */
{
range<Value_t> m = CalculateResultBoundaries( tree.GetParam(0) );
m.min.set(fp_tanh, plusminus1_limits.min);
m.max.set(fp_tanh, plusminus1_limits.max);
return m;
}
case cCosh: /* defined for all values -inf <= x <= inf, results within 1..inf */
{
range<Value_t> m = CalculateResultBoundaries( tree.GetParam(0) );
if(m.min.known)
{
if(m.max.known) // max, min
{
if(m.min.val >= Value_t(0) && m.max.val >= Value_t(0)) // +x .. +y
{ m.min.val = fp_cosh(m.min.val); m.max.val = fp_cosh(m.max.val); }
else if((m.min.val) < Value_t(0) && m.max.val >= Value_t(0)) // -x .. +y
{ Value_t tmp = fp_cosh(m.min.val); m.max.val = fp_cosh(m.max.val);
if(tmp > m.max.val) m.max.val = tmp;
m.min.val = Value_t(1); }
else // -x .. -y
{ m.min.val = fp_cosh(m.min.val); m.max.val = fp_cosh(m.max.val);
std::swap(m.min.val, m.max.val); }
}
else // min, no max
{
if(m.min.val >= Value_t(0)) // 0..inf -> 1..inf
{ m.max.known = false; m.min.val = fp_cosh(m.min.val); }
else
{ m.max.known = false; m.min.val = Value_t(1); } // Anything between 1..inf
}
}
else // no min
{
m.min.known = true; m.min.val = Value_t(1); // always a lower boundary
if(m.max.known) // max, no min
{
m.min.val = fp_cosh(m.max.val); // n..inf
m.max.known = false; // No upper boundary
}
else // no max, no min
m.max.known = false; // No upper boundary
}
return m;
}
case cIf:
case cAbsIf:
{
// No guess which branch is chosen. Produce a spanning min & max.
range<Value_t> res1 = CalculateResultBoundaries( tree.GetParam(1) );
range<Value_t> res2 = CalculateResultBoundaries( tree.GetParam(2) );
if(!res2.min.known) res1.min.known = false; else if(res1.min.known && (res2.min.val) < res1.min.val) res1.min.val = res2.min.val;
if(!res2.max.known) res1.max.known = false; else if(res1.max.known && (res2.max.val) > res1.max.val) res1.max.val = res2.max.val;
return res1;
}
case cMin:
{
bool has_unknown_min = false;
bool has_unknown_max = false;
range<Value_t> result;
for(size_t a=0; a<tree.GetParamCount(); ++a)
{
range<Value_t> m = CalculateResultBoundaries( tree.GetParam(a) );
if(!m.min.known)
has_unknown_min = true;
else if(!result.min.known || (m.min.val) < result.min.val)
result.min.val = m.min.val;
if(!m.max.known)
has_unknown_max = true;
else if(!result.max.known || (m.max.val) < result.max.val)
result.max.val = m.max.val;
}
if(has_unknown_min) result.min.known = false;
if(has_unknown_max) result.max.known = false;
return result;
}
case cMax:
{
bool has_unknown_min = false;
bool has_unknown_max = false;
range<Value_t> result;
for(size_t a=0; a<tree.GetParamCount(); ++a)
{
range<Value_t> m = CalculateResultBoundaries( tree.GetParam(a) );
if(!m.min.known)
has_unknown_min = true;
else if(!result.min.known || m.min.val > result.min.val)
result.min.val = m.min.val;
if(!m.max.known)
has_unknown_max = true;
else if(!result.max.known || m.max.val > result.max.val)
result.max.val = m.max.val;
}
if(has_unknown_min) result.min.known = false;
if(has_unknown_max) result.max.known = false;
return result;
}
case cAdd:
{
/* It's complicated. Follow the logic below. */
/* Note: This also deals with the following opcodes:
* cNeg, cSub, cRSub
*/
range<Value_t> result(Value_t(0), Value_t(0));
for(size_t a=0; a<tree.GetParamCount(); ++a)
{
range<Value_t> item = CalculateResultBoundaries( tree.GetParam(a) );
if(item.min.known) result.min.val += item.min.val;
else result.min.known = false;
if(item.max.known) result.max.val += item.max.val;
else result.max.known = false;
if(!result.min.known && !result.max.known) break; // hopeless
}
if(result.min.known && result.max.known
&& result.min.val > result.max.val) std::swap(result.min.val, result.max.val);
return result;
}
case cMul:
{
/* It's very complicated. Follow the logic below. */
struct Value
{
enum ValueType { Finite, MinusInf, PlusInf };
ValueType valueType;
Value_t value;
Value(ValueType t): valueType(t), value(0) {}
Value(Value_t v): valueType(Finite), value(v) {}
bool isNegative() const
{
return valueType == MinusInf ||
(valueType == Finite && value < Value_t(0));
}
void operator*=(const Value& rhs)
{
if(valueType == Finite && rhs.valueType == Finite)
value *= rhs.value;
else
valueType = (isNegative() != rhs.isNegative() ?
MinusInf : PlusInf);
}
bool operator<(const Value& rhs) const
{
return
(valueType == MinusInf && rhs.valueType != MinusInf) ||
(valueType == Finite &&
(rhs.valueType == PlusInf ||
(rhs.valueType == Finite && value < rhs.value)));
}
};
struct MultiplicationRange
{
Value minValue, maxValue;
MultiplicationRange():
minValue(Value::PlusInf),
maxValue(Value::MinusInf) {}
void multiply(Value value1, const Value& value2)
{
value1 *= value2;
if(value1 < minValue) minValue = value1;
if(maxValue < value1) maxValue = value1;
}
};
range<Value_t> result(Value_t(1), Value_t(1));
for(size_t a=0; a<tree.GetParamCount(); ++a)
{
range<Value_t> item = CalculateResultBoundaries( tree.GetParam(a) );
if(!item.min.known && !item.max.known) return range<Value_t>(); // hopeless
Value minValue0 = result.min.known ? Value(result.min.val) : Value(Value::MinusInf);
Value maxValue0 = result.max.known ? Value(result.max.val) : Value(Value::PlusInf);
Value minValue1 = item.min.known ? Value(item.min.val) : Value(Value::MinusInf);
Value maxValue1 = item.max.known ? Value(item.max.val) : Value(Value::PlusInf);
MultiplicationRange range;
range.multiply(minValue0, minValue1);
range.multiply(minValue0, maxValue1);
range.multiply(maxValue0, minValue1);
range.multiply(maxValue0, maxValue1);
if(range.minValue.valueType == Value::Finite)
result.min.val = range.minValue.value;
else result.min.known = false;
if(range.maxValue.valueType == Value::Finite)
result.max.val = range.maxValue.value;
else result.max.known = false;
if(!result.min.known && !result.max.known) break; // hopeless
}
if(result.min.known && result.max.known
&& result.min.val > result.max.val) std::swap(result.min.val, result.max.val);
return result;
}
case cMod:
{
/* TODO: The boundaries of modulo operator could be estimated better. */
range<Value_t> x = CalculateResultBoundaries( tree.GetParam(0) );
range<Value_t> y = CalculateResultBoundaries( tree.GetParam(1) );
if(y.max.known)
{
if(y.max.val >= Value_t(0))
{
if(!x.min.known || (x.min.val) < Value_t(0))
return range<Value_t>(-y.max.val, y.max.val);
else
return range<Value_t>(Value_t(0), y.max.val);
}
else
{
if(!x.max.known || (x.max.val) >= Value_t(0))
return range<Value_t>(y.max.val, -y.max.val);
else
return range<Value_t>(y.max.val, fp_const_negativezero<Value_t>());
}
}
else
return range<Value_t>();
}
case cPow:
{
if(tree.GetParam(1).IsImmed() && tree.GetParam(1).GetImmed() == Value_t(0))
{
// Note: This makes 0^0 evaluate into 1.
return range<Value_t>(Value_t(1), Value_t(1)); // x^0 = 1
}
if(tree.GetParam(0).IsImmed() && tree.GetParam(0).GetImmed() == Value_t(0))
{
// Note: This makes 0^0 evaluate into 0.
return range<Value_t>(Value_t(0), Value_t(0)); // 0^x = 0
}
if(tree.GetParam(0).IsImmed() && fp_equal(tree.GetParam(0).GetImmed(), Value_t(1)))
{
return range<Value_t>(Value_t(1), Value_t(1)); // 1^x = 1
}
if(tree.GetParam(1).IsImmed()
&& tree.GetParam(1).GetImmed() > Value_t(0)
&& GetEvennessInfo(tree.GetParam(1)) == IsAlways)
{
// x ^ even_int_const always produces a non-negative value.
Value_t exponent = tree.GetParam(1).GetImmed();
range<Value_t> tmp = CalculateResultBoundaries( tree.GetParam(0) );
range<Value_t> result;
result.min.known = true;
result.min.val = 0;
if(tmp.min.known && tmp.min.val >= Value_t(0))
result.min.val = fp_pow(tmp.min.val, exponent);
else if(tmp.max.known && tmp.max.val <= Value_t(0))
result.min.val = fp_pow(tmp.max.val, exponent);
result.max.known = false;
if(tmp.min.known && tmp.max.known)
{
result.max.known = true;
result.max.val = fp_max(fp_abs(tmp.min.val), fp_abs(tmp.max.val));
result.max.val = fp_pow(result.max.val, exponent);
}
return result;
}
range<Value_t> p0 = CalculateResultBoundaries( tree.GetParam(0) );
range<Value_t> p1 = CalculateResultBoundaries( tree.GetParam(1) );
TriTruthValue p0_positivity =
(p0.min.known && (p0.min.val) >= Value_t(0)) ? IsAlways
: (p0.max.known && (p0.max.val) < Value_t(0) ? IsNever
: Unknown);
TriTruthValue p1_evenness = GetEvennessInfo(tree.GetParam(1));
/* If param0 IsAlways, the return value is also IsAlways */
/* If param1 is even, the return value is IsAlways */
/* If param1 is odd, the return value is same as param0's */
/* If param0 is negative and param1 is not integer,
* the return value is imaginary (assumed Unknown)
*
* Illustrated in this truth table:
* P=positive, N=negative
* E=even, O=odd, U=not integer
* *=unknown, X=invalid (unknown), x=maybe invalid (unknown)
*
* param1: PE PO P* NE NO N* PU NU *
* param0:
* PE P P P P P P P P P
* PO P P P P P P P P P
* PU P P P P P P P P P
* P* P P P P P P P P P
* NE P N * P N * X X x
* NO P N * P N * X X x
* NU P N * P N * X X x
* N* P N * P N * X X x
* * P * * P * * x x *
*
* Note: This also deals with the following opcodes:
* cSqrt (param0, PU) (x^0.5)
* cRSqrt (param0, NU) (x^-0.5)
* cExp (PU, param1) (CONSTANT_E^x)
*/
TriTruthValue result_positivity = Unknown;
switch(p0_positivity)
{
case IsAlways:
// e.g. 5^x = positive.
result_positivity = IsAlways;
break;
case IsNever:
{
result_positivity = p1_evenness;
break;
}
default:
switch(p1_evenness)
{
case IsAlways:
// e.g. x^( 4) = positive
// e.g. x^(-4) = positive
result_positivity = IsAlways;
break;
case IsNever:
break;
case Unknown:
{
/* If p1 is const non-integer,
* assume the result is positive
* though it may be NaN instead.
*/
if(tree.GetParam(1).IsImmed()
&& !isInteger(tree.GetParam(1).GetImmed())
&& tree.GetParam(1).GetImmed() >= Value_t(0))
{
result_positivity = IsAlways;
}
break;
}
}
}
switch(result_positivity)
{
case IsAlways:
{
/* The result is always positive.
* Figure out whether we know the minimum value. */
if((p1.max.known && p1.max.val < 0)
|| (p1.min.known && p1.min.val < 0))
{
// Fix regression 50/10:
// 1/abs(x) must not be estimated to be >=inf
// TODO: Better fix
return range<Value_t>();
}
Value_t min = Value_t(0);
if(p0.min.known && p1.min.known)
{
min = fp_pow(p0.min.val, p1.min.val);
if(p0.min.val < Value_t(0) && (!p1.max.known || p1.max.val >= Value_t(0)) && min >= Value_t(0))
min = Value_t(0);
}
if(p0.min.known && p0.min.val >= Value_t(0) && p0.max.known && p1.max.known)
{
Value_t max = fp_pow(p0.max.val, p1.max.val);
if(min > max) std::swap(min, max);
return range<Value_t>(min, max);
}
return range<Value_t>(min, false);
}
case IsNever:
{
/* The result is always negative.
* TODO: Figure out whether we know the maximum value.
*/
return range<Value_t>(false, fp_const_negativezero<Value_t>());
}
default:
{
/* It can be negative or positive.
* We know nothing about the boundaries. */
break;
}
}
break;
}
/* The following opcodes are processed by GenerateFrom()
* within fpoptimizer_bytecode_to_codetree.cc and thus
* they will never occur in the calling context for the
* most of the parsing context. They may however occur
* at the late phase, so we deal with them.
*/
case cNeg:
{
range<Value_t> m = CalculateResultBoundaries( tree.GetParam(0) );
m.set_neg();
return m;
}
case cSub: // converted into cAdd(x, cNeg(y))
{
CodeTree<Value_t> tmp, tmp2;
tmp2.SetOpcode(cNeg);
tmp2.AddParam(tree.GetParam(1));
tmp.SetOpcode(cAdd);
tmp.AddParam(tree.GetParam(0));
tmp.AddParamMove(tmp2);
return CalculateResultBoundaries(tmp);
}
case cInv: // converted into cPow x -1
{
CodeTree<Value_t> tmp;
tmp.SetOpcode(cPow);
tmp.AddParam(tree.GetParam(0));
tmp.AddParam(CodeTreeImmed(Value_t(-1)));
return CalculateResultBoundaries(tmp);
}
case cDiv: // converted into cPow y -1
{
CodeTree<Value_t> tmp, tmp2;
tmp2.SetOpcode(cInv);
tmp2.AddParam(tree.GetParam(1));
tmp.SetOpcode(cMul);
tmp.AddParam(tree.GetParam(0));
tmp.AddParamMove(tmp2);
return CalculateResultBoundaries(tmp);
}
case cRad: // converted into cMul x CONSTANT_RD
{
CodeTree<Value_t> tmp;
tmp.SetOpcode(cMul);
tmp.AddParam(tree.GetParam(0));
tmp.AddParam(CodeTreeImmed(fp_const_rad_to_deg<Value_t>()));
return CalculateResultBoundaries(tmp);
}
case cDeg: // converted into cMul x CONSTANT_DR
{
CodeTree<Value_t> tmp;
tmp.SetOpcode(cMul);
tmp.AddParam(tree.GetParam(0));
tmp.AddParam(CodeTreeImmed(fp_const_deg_to_rad<Value_t>()));
return CalculateResultBoundaries(tmp);
}
case cSqr: // converted into cMul x x or cPow x 2
{
CodeTree<Value_t> tmp;
tmp.SetOpcode(cPow);
tmp.AddParam(tree.GetParam(0));
tmp.AddParam(CodeTreeImmed(Value_t(2)));
return CalculateResultBoundaries(tmp);
}
case cExp: // converted into cPow CONSTANT_E x
{
CodeTree<Value_t> tmp;
tmp.SetOpcode(cPow);
tmp.AddParam(CodeTreeImmed(fp_const_e<Value_t>()));
tmp.AddParam(tree.GetParam(0));
return CalculateResultBoundaries(tmp);
}
case cExp2: // converted into cPow 2 x
{
CodeTree<Value_t> tmp;
tmp.SetOpcode(cPow);
tmp.AddParam(CodeTreeImmed(Value_t(2)));
tmp.AddParam(tree.GetParam(0));
return CalculateResultBoundaries(tmp);
}
case cCbrt: // converted into cPow x 0.33333333
{
// However, contrary to x^(1/3), this allows
// negative values for x, and produces those
// as well.
range<Value_t> m = CalculateResultBoundaries( tree.GetParam(0) );
m.min.set(fp_cbrt);
m.max.set(fp_cbrt);
return m;
}
case cSqrt: // converted into cPow x 0.5
{
range<Value_t> m = CalculateResultBoundaries( tree.GetParam(0) );
if(m.min.known) m.min.val = (m.min.val) < Value_t(0) ? 0 : fp_sqrt(m.min.val);
if(m.max.known) m.max.val = (m.max.val) < Value_t(0) ? 0 : fp_sqrt(m.max.val);
return m;
}
case cRSqrt: // converted into cPow x -0.5
{
CodeTree<Value_t> tmp;
tmp.SetOpcode(cPow);
tmp.AddParam(tree.GetParam(0));
tmp.AddParam(CodeTreeImmed( Value_t(-0.5) ));
return CalculateResultBoundaries(tmp);
}
case cHypot: // converted into cSqrt(cAdd(cMul(x x), cMul(y y)))
{
CodeTree<Value_t> xsqr, ysqr, add, sqrt;
xsqr.AddParam(tree.GetParam(0)); xsqr.AddParam(CodeTreeImmed( Value_t(2) ));
ysqr.AddParam(tree.GetParam(1)); ysqr.AddParam(CodeTreeImmed( Value_t(2) ));
xsqr.SetOpcode(cPow); ysqr.SetOpcode(cPow);
add.AddParamMove(xsqr); add.AddParamMove(ysqr);
add.SetOpcode(cAdd); sqrt.AddParamMove(add);
sqrt.SetOpcode(cSqrt);
return CalculateResultBoundaries(sqrt);
}
case cLog2by: // converted into cMul y CONSTANT_L2I (cLog x)
{
CodeTree<Value_t> tmp, tmp2;
tmp2.SetOpcode(cLog2);
tmp2.AddParam(tree.GetParam(0));
tmp.SetOpcode(cMul);
tmp.AddParamMove(tmp2);
tmp.AddParam(tree.GetParam(1));
return CalculateResultBoundaries(tmp);
}
case cCot: // converted into 1 / cTan
{
CodeTree<Value_t> tmp, tmp2;
tmp2.SetOpcode(cTan);
tmp2.AddParam(tree.GetParam(0));
tmp.SetOpcode(cInv);
tmp.AddParamMove(tmp2);
return CalculateResultBoundaries(tmp);
}
case cSec: // converted into 1 / cCos
{
CodeTree<Value_t> tmp, tmp2;
tmp2.SetOpcode(cCos);
tmp2.AddParam(tree.GetParam(0));
tmp.SetOpcode(cInv);
tmp.AddParamMove(tmp2);
return CalculateResultBoundaries(tmp);
}
case cCsc: // converted into 1 / cSin
{
CodeTree<Value_t> tmp, tmp2;
tmp2.SetOpcode(cSin);
tmp2.AddParam(tree.GetParam(0));
tmp.SetOpcode(cInv);
tmp.AddParamMove(tmp2);
return CalculateResultBoundaries(tmp);
}
/* The following opcodes are processed by GenerateFrom()
* within fpoptimizer_bytecode_to_codetree.cc and thus
* they will never occur in the calling context:
*/
break; /* Should never occur */
/* Opcodes that do not occur in the tree for other reasons */
case cRDiv: // version of cDiv
case cRSub: // version of cSub
case cDup:
case cFetch:
case cPopNMov:
case cSinCos:
case cSinhCosh:
case cNop:
case cJump:
case VarBegin:
break; /* Should never occur */
/* Complex functions */
case cArg:
case cConj:
case cImag:
case cReal:
case cPolar:
break; /* Should never occur */
/* Opcodes that are completely unpredictable */
case cPCall:
break;
case cFCall:
break; // Cannot deduce
}
return range<Value_t>(); /* Cannot deduce */
}
template<typename Value_t>
TriTruthValue GetIntegerInfo(const CodeTree<Value_t>& tree)
{
switch(tree.GetOpcode())
{
case cImmed:
return isInteger(tree.GetImmed()) ? IsAlways : IsNever;
case cFloor:
case cCeil:
case cTrunc:
case cInt:
return IsAlways;
case cAnd:
case cOr:
case cNot:
case cNotNot:
case cEqual:
case cNEqual:
case cLess:
case cLessOrEq:
case cGreater:
case cGreaterOrEq:
/* These operations always produce truth values (0 or 1) */
return IsAlways; /* 0 and 1 are both integers */
case cIf:
{
TriTruthValue a = GetIntegerInfo(tree.GetParam(1));
TriTruthValue b = GetIntegerInfo(tree.GetParam(2));
if(a == b) return a;
return Unknown;
}
case cAdd:
case cMul:
{
// It's integer if all the components are integer
// Otherwise, unknown whether it's integer
// A confirmed non-integer does not necessarily
// mean the result isn't an integer, because:
// 0.5 + 0.5 = 1.0; sqrt(2) * sqrt(2) = 2.0
for(size_t a=tree.GetParamCount(); a-- > 0; )
if(GetIntegerInfo(tree.GetParam(a)) != IsAlways)
return Unknown;
return IsAlways;
}
default:
break;
}
return Unknown; /* Don't know whether it's integer. */
}
template<typename Value_t>
bool IsLogicalValue(const CodeTree<Value_t>& tree)
{
switch(tree.GetOpcode())
{
case cImmed:
return fp_equal(tree.GetImmed(), Value_t(0))
|| fp_equal(tree.GetImmed(), Value_t(1));
case cAnd:
case cOr:
case cNot:
case cNotNot:
case cAbsAnd:
case cAbsOr:
case cAbsNot:
case cAbsNotNot:
case cEqual:
case cNEqual:
case cLess:
case cLessOrEq:
case cGreater:
case cGreaterOrEq:
/* These operations always produce truth values (0 or 1) */
return true;
case cMul:
{
for(size_t a=tree.GetParamCount(); a-- > 0; )
if(!IsLogicalValue(tree.GetParam(a)))
return false;
return true;
}
case cIf:
case cAbsIf:
{
return IsLogicalValue(tree.GetParam(1))
&& IsLogicalValue(tree.GetParam(2));
}
default:
break;
}
return false; // Not a logical value.
}
}
/* BEGIN_EXPLICIT_INSTANTATION */
#include "instantiate.hh"
namespace FPoptimizer_CodeTree
{
#define FP_INSTANTIATE(type) \
template range<type> CalculateResultBoundaries(const CodeTree<type> &); \
template bool IsLogicalValue(const CodeTree<type> &); \
template TriTruthValue GetIntegerInfo(const CodeTree<type> &);
FPOPTIMIZER_EXPLICITLY_INSTANTIATE(FP_INSTANTIATE)
#undef FP_INSTANTIATE
}
/* END_EXPLICIT_INSTANTATION */
#endif
|