File: treerules.dat

package info (click to toggle)
fparserc%2B%2B 4.5.2-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, buster, forky, sid, trixie
  • size: 6,132 kB
  • sloc: cpp: 23,297; pascal: 7,097; yacc: 1,650; ansic: 973; makefile: 307; php: 53; sh: 28
file content (1005 lines) | stat: -rw-r--r-- 48,696 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
# This datafile documents all the possible optimizations that the optimizer can/should do.
# It is parsed by the parser described in fpoptimizer_grammar_gen.y, which
# is compiled into C++ code in fpoptimizer_grammar_gen.cc. The parser produces
# a C++ file, fpoptimizer_grammar.cc , which lists the grammar rules in tabular
# format. The grammar rules are utilized by fpoptimizer_optimize.cc , which
# matches the function trees into the rules and performing those replacements
# which can be performed.
#
# Copyright 2010 Joel Yliluoma, written specifically
#               for Warp's Function Parser (fparser).
#

#   asinh: log(x + sqrt(x*x + 1))
#   acosh: log(x + sqrt(x*x - 1))
#   atanh: log( (1+x) / (1-x)) / 2
#   asin: atan2(x, sqrt(1-x*x))     Complex: -i*log(i*x + sqrt(1 - x*x))
#   acos: atan2(sqrt(1-x*x), x)     Complex: -i*log(x + i*sqrt(1 - x*x))
#   atan:                           Complex: -0.5i * log( (1+i*x) / (1-i*x) )
#   atan2: atan(y/x)
#        = 2*atan(y/(sqrt(x^2+y^2) + x))
#   sin:                            Complex: (exp(i*x) - exp(-i*x)) / (2i)
#   cos:                            Complex: (exp(i*x) + exp(-i*x)) / (2)
#   tan: sin/cos                    Complex: (i-i*exp(2i*x)) / (exp(2i*x)+1)
#   sinh: (exp(x)-exp(-x)) / 2
#       = exp(-x) * (exp(2*x)-1) / 2
#   cosh: (exp(x)+exp(-x)) / 2
#       = exp(-x) * (exp(2*x)+1) / 2
#   tanh: sinh/cosh
#       = (exp(2*x)-1) / (exp(2*x)+1)
#   log10: log/CONSTANT_L10I
#   log2: log/CONSTANT_L2I
#   sqrt: pow(x, 0.5)
#   exp: pow(CONSTANT_E, x)
#   int: floor(x + 0.5)

# Substitution rule syntax:
#
# %token NUMERIC_CONSTANT     # literals such as 0, 1, 1.5 or CONSTANT_DR, CONSTANT_L10I
# %token NAMEDHOLDER_TOKEN    # placeholders such as x, y, a, b
# %token RESTHOLDER_TOKEN     # placeholders such as <1>, <2>, <7>
# %token IMMEDHOLDER_TOKEN    # placeholders % and &
# %token BUILTIN_FUNC_NAME    # such as COS, CEIL, POW, +, *, MIN, MAX
# %token OPCODE_TOKEN         # opcodes such as cCos, cMul
# %token UNARY_TRANSFORMATION # /, -, !  # inverts/negates/inverts the param
# %token PARAM_CONSTRAINT     # parameter constraint specifier:
#                                 @E  = Even integer only
#                                 @O  = Odd integer only
#                                 @I  = Integer only
#                                 @F  = (Float) non-integer only
#                                 @L  = Logical operation (something that only yields 0 or 1)
#                                 @P  = Positive only (also zero)
#                                 @N  = Negative only
#                                 @Q  = Only those where positive/negative not known
#                                 @1  = value evaluating to +1 or -1 only
#                                 @M  = (Multiple) value NOT evaluating to +1 or -1
#                                 @C  = Const (x@C is similar to % and &)
#                                 @V  = Explicitly non-const
# %token CONST_CONSTRAINT     # constraint applicable to a numeric literal:
#                                 @R  = Radians: Constant is tested after normalizing to -pi/2..pi/2 range
#                             # they can be applied to IMMEDHOLDER_TOKENs and NAMEDHOLDER_TOKENs
# %token RULE_CONSTRAINT          @L  = Logical context only
#                                       i.e. when the result of the tree will only
#                                       only be evaluated using fabs(value) >= 0.5.
#                                 @I  = This rule applies for integer types only
#                                 @F  = This rule applies for non-integer types only
#                                 @C  = This rule applies to complex types only
#                                 @R  = This rule applies to real (non-complex) types only
# %token NEWLINE              # newline
#
# %%
#     grammar:
#       grammar substitution
#     | grammar rule_constraints substitution
#     | grammar NEWLINE
#     | /* empty */
#     ;
#
#     substitution:
#       function '->' param NEWLINE
#       /* Entire function is changed into the particular param */
#
#     | function '->' function NEWLINE
#       /* Entire function changes, the param_notinv_list is rewritten */
#       /* NOTE: "p x -> o y"  is a shortcut for "p x -> (o y)"  */
#
#     | function ':'  paramlist NEWLINE
#       /* The params provided are replaced with the new param_maybeinv_list */
#     ;
#
#     function:
#        OPCODE_TOKEN '[' paramlist ']'
#        /* Match a function with opcode=opcode,
#         * and the exact parameter list as specified
#         */
#        OPCODE_TOKEN '{' paramlist '}'
#        /* Match a function with opcode=opcode,
#         * and the exact parameter list in any order
#         */
#     |  OPCODE_TOKEN paramlist
#        /* Match a function with opcode=opcode and the given way of matching params */
#        /* There may be more parameters, don't care about them */
#     ;
#
#     paramlist: /* left-recursive list of 0-n params with no delimiter */
#       | paramlist param             /* param */
#       | paramlist RESTHOLDER_TOKEN  /* a placeholder for all remaining params */
#       | /* empty */
#     ;
#
#     param:
#        NUMERIC_CONSTANT const_constraints   /* particular immed */
#     |  IMMEDHOLDER_TOKEN param_constraints  /* a placeholder for some immed */
#     |  BUILTIN_FUNC_NAME '(' paramlist ')'  /* literal logarithm/sin/etc. of the provided immed-type params -- also sum/product/minimum/maximum */
#     |  NAMEDHOLDER_TOKEN param_constraints  /* any expression, indicated by "x", "a" etc. */
#     |  (' function ')' param_constraints    /* a subtree */
#     |  UNARY_TRANSFORMATION param           /* the negated/inverted literal value of the param */
#     ;
#
#     param_constraints: /* List of possible constraints to the given param, eg. odd,int,etc */
#        param_constraints PARAM_CONSTRAINT
#     |  /* empty */
#     ;
#
#     rule_constraints: /* List of possible constraints to the given rule */
#        rule_constraints RULE_CONSTRAINT
#     |  /* empty */
#     ;
#
#     const_constraints: /* List of possible constraints to the given numeric value */
#        const_constraints CONST_CONSTRAINT
#     |  /* empty */
#     ;

[LOGICAL]

# Change cLessOrEq into cLess for less rules to check
# This way, the only comparison opcodes appearing in cIf
# are cEqual,cNEqual,cLess.
# cNEqual could be changed to cEqual, but we see no need.
cIf [(cLessOrEq[x y]) z a] : (cLess[y x]) a z
cIf [(cGreaterOrEq[x y]) z a] : (cGreater[y x]) a z
#cIf [(cNEqual[x y]) z a]   : (cEqual[y x]) a z

cIf [(cLess[x y]) x y] -> cMin x y             # TEST 20/cmp*_minmax
cIf [(cLess[x y]) y x] -> cMax x y             # TEST 20/cmp*_minmax
#cIf [(cLessOrEq[x y]) x y] -> cMin x y         # TEST 20/cmp*_minmax
#cIf [(cLessOrEq[x y]) y x] -> cMax x y         # TEST 20/cmp*_minmax
cIf [(cGreater[x y]) y x] -> cMin x y          # TEST 20/cmp*_minmax
cIf [(cGreater[x y]) x y] -> cMax x y          # TEST 20/cmp*_minmax
#cIf [(cGreaterOrEq[x y]) y x] -> cMin x y      # TEST 20/cmp*_minmax
#cIf [(cGreaterOrEq[x y]) x y] -> cMax x y      # TEST 20/cmp*_minmax

#  abs(x) = (x<0 ? -x : x)
#  abs(x) = x * (x<0 ? -1 : 1)
#           x * (x<0 ? -5 : 5) = abs(x)*5
#           x * ((x<0 ? -5 : 5) + y) = abs(x)*5 + x*y

#x<0 ? -x : x   POS
#x>0 ?  x : -x  POS
#x<0 ?  x : -x  NEG
#x>0 ? -x : x   NEG

@R cMul (cIf [(cLess[x 0])    % -%]) x : (cAbs[x]) -%      # TEST 20/ifabs
@R cMul (cIf [(cGreater[x 0]) % -%]) x : (cAbs[x])  %      # TEST 20/ifabs

@R cMul (cAdd (cIf [(cLess[x 0])    % -%]) <1>) x : (cAdd (cMul (cAbs[x]) -%) (cMul x (cAdd <1>)))  # TEST 20/ifabs
@R cMul (cAdd (cIf [(cGreater[x 0]) % -%]) <1>) x : (cAdd (cMul (cAbs[x])  %) (cMul x (cAdd <1>)))  # TEST 20/ifabs

cMul % (cIf [x & z@C]) : (cIf [x *(% &) *(% z@C)])       # TEST 20/if_join_mul2, ifabs
cAdd % (cIf [x & z@C]) : (cIf [x +(% &) +(% z@C)])       # TEST 20/if_join_add2

@R cIf [(cGreater[x 0])     (cFloor[x]) (cCeil[x])] -> cTrunc x  # TEST 20/trunc_from_if
#@R cIf [(cGreaterOrEq[x 0]) (cFloor[x]) (cCeil[x])] -> cTrunc x # TEST 20/trunc_from_if
@R cIf [(cLess[x 0])     (cCeil[x]) (cFloor[x])] -> cTrunc x     # TEST 20/trunc_from_if
#@R cIf [(cLessOrEq[x 0]) (cCeil[x]) (cFloor[x])] -> cTrunc x    # TEST 20/trunc_from_if

cAdd (cIf[x y z]) (cIf[x a b]) : (cIf [x (cAdd y a) (cAdd z b)]) # TEST 20/if_join_add
cMul (cIf[x y z]) (cIf[x a b]) : (cIf [x (cMul y a) (cMul z b)]) # TEST 20/if_join_mul
cAnd (cIf[x y z]) (cIf[x a b]) : (cIf [x (cAnd y a) (cAnd z b)]) # TEST 20/if_join_and
cOr  (cIf[x y z]) (cIf[x a b]) : (cIf [x (cOr  y a) (cOr  z b)]) # TEST 20/if_join_or
@R cMin (cIf[x y z]) (cIf[x a b]) : (cIf [x (cMin y a) (cMin z b)]) # TEST 20/if_join_min
@R cMax (cIf[x y z]) (cIf[x a b]) : (cIf [x (cMax y a) (cMax z b)]) # TEST 20/if_join_max

@R cAnd (cNot[x]) (cNot[y]) : (cNot [(cOr  x y)]) # TEST 20/nor2, nor2plus, nor3
@R cOr  (cNot[x]) (cNot[y]) : (cNot [(cAnd x y)]) # TEST 20/nand2, nand2plus, nand3

@R cAnd (cNot[z]) (cIf[x (cNot[y]) %@L]) : (cNot [(cOr  z (cIf[x y (cNot[%])]))])
@R cOr  (cNot[z]) (cIf[x (cNot[y]) %@L]) : (cNot [(cAnd z (cIf[x y (cNot[%])]))])

@R cAnd (cNot[z]) (cIf[x %@L (cNot[y])]) : (cNot [(cOr  z (cIf[x (cNot[%]) y]))])
@R cOr  (cNot[z]) (cIf[x %@L (cNot[y])]) : (cNot [(cAnd z (cIf[x (cNot[%]) y]))])

# From logic, follows that...
#   (a==b) & (b==c) & (a==c) -- one of these is redundant
cAnd (cEqual[x y]) (cEqual[y z]) (cEqual[x z])  : (cEqual[x y]) (cEqual[y z])
# Note: ^ Replacement function refers to y twice

# !x = abs(x) < 0.5
# Thus, !(x*2) = abs(x) < 0.5/2
# Note: Due to range-based optimizations, % can never be 0 here. These are safe.
@R @F cGreater  [% (cAbs[x])] -> cNot[(cMul x 0.5 /%)]      # TEST 20/absnzlt
@R @F cLessOrEq [% (cAbs[x])] -> cNotNot[(cMul x 0.5 /%)]   # TEST 20/absnzge

# abs(x) > 0  -->  abs(x) != 0  -->  x != 0
@R cEqual    [0 (cAbs[x])] : x 0              # TEST 20/abseq0
@R cNEqual   [0 (cAbs[x])] : x 0              # TEST 20/absneq0

@I cEqual    [0 x]      -> cNot [x]        # TEST 20/eq0
@I cNEqual   [0 x]      -> cNotNot [x]     # TEST 20/neq0
@I cEqual    [1 x@L]    -> x               # TEST 20/eq1
@I cNEqual   [1 x@L]  	-> cNot [x]        # TEST 20/neq1
@I cNot    [(cAdd % <1>)] -> cEqual  -% (cAdd <1>)  # TEST 20/xaddnot
@I cNotNot [(cAdd % <1>)] -> cNEqual -% (cAdd <1>)  # TEST 20/xaddnotnot
@R @I cLess        [0 (cAbs[x])] -> cNotNot [x]     # TEST 20/gt0_abs
@R @I cLessOrEq    [1 (cAbs[x])] -> cNotNot [x]     # TEST 20/ge1_abs
@R @I cGreater     [1 (cAbs[x])] -> cNot [x]        # TEST 20/gt1_abs
@R @I cGreaterOrEq [0 (cAbs[x])] -> cNot [x]        # TEST 20/ge0_abs

cIf [x 1 0] -> cNotNot [x]         # TEST 20/if10 (factor 1)
cIf [x 0 1] -> cNot [x]            # TEST 20/if10 (factor 10)
cAbsIf [x 1 0] -> cAbsNotNot [x]   # TEST 20/if10 (factor 100)
cAbsIf [x 0 1] -> cAbsNot [x]      # TEST 20/if10 (factor 1000)

# In logical contexts:
@R @L cMul %@N            : -%   # TEST 20/l_mulneg
@R @L cMul (cAbs[x])      : x    # TEST 20/l_mulabs
@R @L cNotNot [x]         -> x   # TEST 20/l_notnot
@R @L cAbs [x]            -> x   # TEST 20/l_abs

#@R @F cAnd    (cLess[% x]) (cAbsNot[x])           : (cNot (cMul /+(0.5 -%) (cAdd x *(+(% 0.5) -0.5))))
#@R @F cAnd    (cLess[% x]) (cGreater[& x])        : (cNot (cMul /+(& -%) (cAdd x *(+(% &) -0.5))))
#@R @F cAbsAnd (cLess[% x]) (cGreater[& x])        : (cNot (cMul /+(& -%) (cAdd x *(+(% &) -0.5))))
#@R @F cAbsAnd (cLess[% x]) (cAbsNot[x])           : (cNot (cMul /+(0.5 -%) (cAdd x *(+(% 0.5) -0.5))))
#@R @F cOr    (cGreaterOrEq[% x]) (cLessOrEq[& x]) : (cNotNot (cMul /+(& -%) (cAdd x *(+(% &) -0.5))))
#@R @F cOr    (cGreaterOrEq[% x]) (cAbsNotNot[x])  : (cNotNot (cMul /+(0.5 -%) (cAdd x *(+(% 0.5) -0.5))))
#@R @F cAbsOr (cGreaterOrEq[% x]) (cLessOrEq[& x]) : (cNotNot (cMul /+(& -%) (cAdd x *(+(% &) -0.5))))
#@R @F cAbsOr (cGreaterOrEq[% x]) (cAbsNotNot[x])  : (cNotNot (cMul /+(0.5 -%) (cAdd x *(+(% 0.5) -0.5))))
# ^ these rules only work if & > %, and currently there's no way to verify it

#@R cOr    (cAbsNot[x]) (cAbsNot[(cMul{x -1})])  : (cNot[x])
#@R cAbsOr (cAbsNot[x]) (cAbsNot[(cMul{x -1})])  : (cNot[x])
#@R cOr    (cAbsNotNot[x]) (cAbsNotNot[(cMul{x -1})])  : (cNotNot[x])
#@R cAbsOr (cAbsNotNot[x]) (cAbsNotNot[(cMul{x -1})])  : (cNotNot[x])

@R @F cAbsNotNot (cMul %@P <1>) -> (cGreaterOrEq[(cMul <1>) *(0.5 /%)])
@R @F cAbsNotNot (cMul %@N <1>) -> (cLessOrEq[(cMul <1>)    *(0.5 /%)])

# min(x, max(x, ...)) = x
# max(x, min(x, ...)) = x
cMin x (cMax x <1>)  : x    # TEST 20/mixedminmax
cMax x (cMin x <1>)  : x    # TEST 20/mixedminmax

[SIMPLIFY_EQUATION]

@R cLess        [(cAdd % <1>) &]  : (cAdd <1>) SUB(& %) # TEST 20/cmp*_add_imm
@R cLessOrEq    [(cAdd % <1>) &]  : (cAdd <1>) SUB(& %) # TEST 20/cmp*_add_imm
@R cGreater     [(cAdd % <1>) &]  : (cAdd <1>) SUB(& %) # TEST 20/cmp*_add_imm
@R cGreaterOrEq [(cAdd % <1>) &]  : (cAdd <1>) SUB(& %) # TEST 20/cmp*_add_imm
@R cEqual       [(cAdd % <1>) &]  : (cAdd <1>) SUB(& %) # TEST 20/cmp*_add_imm
@R cNEqual      [(cAdd % <1>) &]  : (cAdd <1>) SUB(& %) # TEST 20/cmp*_add_imm

@R cLess        [(cAdd % <1>) (cAdd & <2>)] : (cAdd <1>)  (cAdd <2> & -%) # TEST 20/cmp*_add_imm
@R cLessOrEq    [(cAdd % <1>) (cAdd & <2>)] : (cAdd <1>)  (cAdd <2> & -%) # TEST 20/cmp*_add_imm
@R cGreater     [(cAdd % <1>) (cAdd & <2>)] : (cAdd <1>)  (cAdd <2> & -%) # TEST 20/cmp*_add_imm
@R cGreaterOrEq [(cAdd % <1>) (cAdd & <2>)] : (cAdd <1>)  (cAdd <2> & -%) # TEST 20/cmp*_add_imm
@R cEqual       [(cAdd % <1>) (cAdd & <2>)] : (cAdd <1>)  (cAdd <2> & -%) # TEST 20/cmp*_add_imm
@R cNEqual      [(cAdd % <1>) (cAdd & <2>)] : (cAdd <1>)  (cAdd <2> & -%) # TEST 20/cmp*_add_imm

@R cLess        [(cAdd x <1>) (cAdd x <2>)] : (cAdd <1>) (cAdd <2>) # TEST 20/cmp*_add_reduce
@R cLessOrEq    [(cAdd x <1>) (cAdd x <2>)] : (cAdd <1>) (cAdd <2>) # TEST 20/cmp*_add_reduce
@R cGreater     [(cAdd x <1>) (cAdd x <2>)] : (cAdd <1>) (cAdd <2>) # TEST 20/cmp*_add_reduce
@R cGreaterOrEq [(cAdd x <1>) (cAdd x <2>)] : (cAdd <1>) (cAdd <2>) # TEST 20/cmp*_add_reduce
@R cEqual       [(cAdd x <1>) (cAdd x <2>)] : (cAdd <1>) (cAdd <2>) # TEST 20/cmp*_add_reduce
@R cNEqual      [(cAdd x <1>) (cAdd x <2>)] : (cAdd <1>) (cAdd <2>) # TEST 20/cmp*_add_reduce

@R @F cLess        [(cMul %@P <1>) &]  : (cMul <1>) DIV(& %) # TEST 20/cmp*_mul_imm_pos
@R @F cLessOrEq    [(cMul %@P <1>) &]  : (cMul <1>) DIV(& %) # TEST 20/cmp*_mul_imm_pos
@R @F cGreater     [(cMul %@P <1>) &]  : (cMul <1>) DIV(& %) # TEST 20/cmp*_mul_imm_pos
@R @F cGreaterOrEq [(cMul %@P <1>) &]  : (cMul <1>) DIV(& %) # TEST 20/cmp*_mul_imm_pos
@R @F cLess        [(cMul %@N <1>) &]  : DIV(& %) (cMul <1>) # TEST 20/cmp*_mul_imm_neg
@R @F cLessOrEq    [(cMul %@N <1>) &]  : DIV(& %) (cMul <1>) # TEST 20/cmp*_mul_imm_neg
@R @F cGreater     [(cMul %@N <1>) &]  : DIV(& %) (cMul <1>) # TEST 20/cmp*_mul_imm_neg
@R @F cGreaterOrEq [(cMul %@N <1>) &]  : DIV(& %) (cMul <1>) # TEST 20/cmp*_mul_imm_neg
@R @F cEqual       [(cMul % <1>) &]  : (cMul <1>) DIV(& %)   # TEST 20/cmp*_mul_imm_pos
@R @F cNEqual      [(cMul % <1>) &]  : (cMul <1>) DIV(& %)   # TEST 20/cmp*_mul_imm_pos

@R @F cLess        [(cMul %@P <1>) (cMul & <2>)] : (cMul <1>)  (cMul <2> DIV(& %)) # TEST 20/cmp*_mul_imm_pos
@R @F cLessOrEq    [(cMul %@P <1>) (cMul & <2>)] : (cMul <1>)  (cMul <2> DIV(& %)) # TEST 20/cmp*_mul_imm_pos
@R @F cGreater     [(cMul %@P <1>) (cMul & <2>)] : (cMul <1>)  (cMul <2> DIV(& %)) # TEST 20/cmp*_mul_imm_pos
@R @F cGreaterOrEq [(cMul %@P <1>) (cMul & <2>)] : (cMul <1>)  (cMul <2> DIV(& %)) # TEST 20/cmp*_mul_imm_pos
@R @F cLess        [(cMul %@N <1>) (cMul & <2>)] :  (cMul <2> DIV(& %)) (cMul <1>) # TEST 20/cmp*_mul_imm_neg
@R @F cLessOrEq    [(cMul %@N <1>) (cMul & <2>)] :  (cMul <2> DIV(& %)) (cMul <1>) # TEST 20/cmp*_mul_imm_neg
@R @F cGreater     [(cMul %@N <1>) (cMul & <2>)] :  (cMul <2> DIV(& %)) (cMul <1>) # TEST 20/cmp*_mul_imm_neg
@R @F cGreaterOrEq [(cMul %@N <1>) (cMul & <2>)] :  (cMul <2> DIV(& %)) (cMul <1>) # TEST 20/cmp*_mul_imm_neg
@R @F cEqual       [(cMul % <1>) (cMul & <2>)] : (cMul <1>)  (cMul <2> DIV(& %)) # TEST 20/cmp*_mul_imm_pos
@R @F cNEqual      [(cMul % <1>) (cMul & <2>)] : (cMul <1>)  (cMul <2> DIV(& %)) # TEST 20/cmp*_mul_imm_pos

#cLess        [(cMul x <1>) (cMul x <2>)] : (cMul <1>) (cMul <2>)
#cLessOrEq    [(cMul x <1>) (cMul x <2>)] : (cMul <1>) (cMul <2>)
#cGreater     [(cMul x <1>) (cMul x <2>)] : (cMul <1>) (cMul <2>)
#cGreaterOrEq [(cMul x <1>) (cMul x <2>)] : (cMul <1>) (cMul <2>)
#cEqual       [(cMul x <1>) (cMul x <2>)] : (cMul <1>) (cMul <2>)
#cNEqual      [(cMul x <1>) (cMul x <2>)] : (cMul <1>) (cMul <2>)
# ^ Note: This fails when x=0

# Instead of x, generate (x^%)^(1/%) to further
# delegate the possible responsibility of adding an abs() call.
@R @F cLess        [(cPow [x %@P]) &]  : (cPow [(cPow [x %]) /%]) POW(& /%) # TEST 20/cmp*_pow_imm_*
@R @F cLessOrEq    [(cPow [x %@P]) &]  : (cPow [(cPow [x %]) /%]) POW(& /%) # TEST 20/cmp*_pow_imm_*
@R @F cGreater     [(cPow [x %@P]) &]  : (cPow [(cPow [x %]) /%]) POW(& /%) # TEST 20/cmp*_pow_imm_*
@R @F cGreaterOrEq [(cPow [x %@P]) &]  : (cPow [(cPow [x %]) /%]) POW(& /%) # TEST 20/cmp*_pow_imm_*
@R @F cEqual       [(cPow [x %@P]) &]  : (cPow [(cPow [x %]) /%]) POW(& /%) # TEST 20/cmp*_pow_imm_*
@R @F cNEqual      [(cPow [x %@P]) &]  : (cPow [(cPow [x %]) /%]) POW(& /%) # TEST 20/cmp*_pow_imm_*

#@R @F cLess        [(cPow [x %@P]) (cPow [y &@P])]  : (cPow [(cPow [x %]) /MIN(% &)]) (cPow [(cPow [y &]) /MIN(% &)]) # TEST 20/cmp*_powpow_imm_pospos
#@R @F cLessOrEq    [(cPow [x %@P]) (cPow [y &@P])]  : (cPow [(cPow [x %]) /MIN(% &)]) (cPow [(cPow [y &]) /MIN(% &)]) # TEST 20/cmp*_powpow_imm_pospos
#@R @F cGreater     [(cPow [x %@P]) (cPow [y &@P])]  : (cPow [(cPow [x %]) /MIN(% &)]) (cPow [(cPow [y &]) /MIN(% &)]) # TEST 20/cmp*_powpow_imm_pospos
#@R @F cGreaterOrEq [(cPow [x %@P]) (cPow [y &@P])]  : (cPow [(cPow [x %]) /MIN(% &)]) (cPow [(cPow [y &]) /MIN(% &)]) # TEST 20/cmp*_powpow_imm_pospos
#@R @F cEqual       [(cPow [x %@P]) (cPow [y &@P])]  : (cPow [(cPow [x %]) /MIN(% &)]) (cPow [(cPow [y &]) /MIN(% &)]) # TEST 20/cmp*_powpow_imm_pospos
#@R @F cNEqual      [(cPow [x %@P]) (cPow [y &@P])]  : (cPow [(cPow [x %]) /MIN(% &)]) (cPow [(cPow [y &]) /MIN(% &)]) # TEST 20/cmp*_powpow_imm_pospos
# ^ Note: This fails in "pow(x,2) op pow(y,3)" when x=-5, y=-6"
#         TODO: Figure out how to workaround

@R @F cLess        [(cPow [% x]) (cPow [% y])] : x y # TEST 20/cmp*_powpow_imm_base
@R @F cLessOrEq    [(cPow [% x]) (cPow [% y])] : x y # TEST 20/cmp*_powpow_imm_base
@R @F cGreater     [(cPow [% x]) (cPow [% y])] : x y # TEST 20/cmp*_powpow_imm_base
@R @F cGreaterOrEq [(cPow [% x]) (cPow [% y])] : x y # TEST 20/cmp*_powpow_imm_base
@R @F cEqual       [(cPow [% x]) (cPow [% y])] : x y # TEST 20/cmp*_powpow_imm_base
@R @F cNEqual      [(cPow [% x]) (cPow [% y])] : x y # TEST 20/cmp*_powpow_imm_base
#  ^Note: This fails on exp(x)=exp(y) because of epsilon

@R @F cLess        [&@P (cPow [%@P x])] : DIV(LOG(&) LOG(%)) x # TEST 20/cmp*_pow_imm_pospos_base
@R @F cLessOrEq    [&@P (cPow [%@P x])] : DIV(LOG(&) LOG(%)) x # TEST 20/cmp*_pow_imm_pospos_base
@R @F cGreater     [&@P (cPow [%@P x])] : DIV(LOG(&) LOG(%)) x # TEST 20/cmp*_pow_imm_pospos_base
@R @F cGreaterOrEq [&@P (cPow [%@P x])] : DIV(LOG(&) LOG(%)) x # TEST 20/cmp*_pow_imm_pospos_base
@R @F cEqual       [&@P (cPow [%@P x])] : DIV(LOG(&) LOG(%)) x # TEST 20/cmp*_pow_imm_pospos_base
@R @F cNEqual      [&@P (cPow [%@P x])] : DIV(LOG(&) LOG(%)) x # TEST 20/cmp*_pow_imm_pospos_base

[REMOVE_REDUNDANT]

@R cMul (cAbs[x]) (cAbs[y]) : (cAbs[(cMul x y)])  # TEST 20/mergemultiabs

[EXTRACT1]

# ceil(-x) = -floor(x); floor(-x) = -ceil(x)
@R @F cFloor[(cMul -1 <1>)] -> cMul -1 (cCeil[(cMul <1>)])  # TEST 20/negfloor
@R @F cCeil[(cMul -1 <1>)] -> cMul -1 (cFloor[(cMul <1>)])  # TEST 20/negceil

[LOGARITHM]

#### Logarithm optimizations
# log(x^y) = y*log(x)
#@F cLog [(cPow [x y])] -> cMul y (cLog[(cPow [(cPow [x y]) (cPow [y -1])])])
# ^makes an infinite loop
#@F cLog [(cPow [x@P y])] -> cMul y (cLog[x])
#@F cLog [(cPow [x y@E])] -> cMul y (cLog [(cAbs [x])])
# ^ Done in ConstantFolding()

# CONSTANT_E^log(x) = x
# CONSTANT_E^(log(x)*y) = x^y
# Generalized as:  p^ log(x)    = x^ log(p)
#                  p^(log(x)*y) = x^(log(p)*y)
#
# Warning: This loses the information that x > 0,
#          that could be utilized in further optimizations.
#
@F cPow [%       (cLog[x])     ]   :     x        LOG(%)      # TEST 20/powimmlog
@F cPow [% (cMul (cLog[x]) <1>)]   :     x  (cMul LOG(%) <1>) # TEST 20/powimmlog

# Because log(exp(6)*x) = log(x)+6, we can also do this:
#                  y^(log(x)+z)
#                = y^(log(x*exp(z)))
#                = (x*exp(z))^log(y)
#                = x^log(y) * y^z
#cPow [y (cAdd {(cLog[x]) &})] -> cMul (cPow [y &]) (cPow [x (cLog [y])])
#
# Probably beneficial to do it only when y is const,
# though. Otherwise we only trade + for *, which is bad.
# Also z should be const, otherwise we get two pows instead of one.
@F cPow [% (cAdd {(cLog[x]) &})] -> cMul POW(% &) (cPow [x LOG(%)]) # TEST 20/powimmaddimmlog

# x^(y*z) = (x*y)^z - done by ConstantFolding

# z^(log(x)/log(z)*y) = x^y
# Note: This rule fails when z=0, because log(0)=-inf and 0^x = 1
@F cPow [z (cMul (cPow [(cLog[z])  -1]) (cLog[x])  <1>)] : x (cMul <1>)
@F cPow [% (cMul /LOG(%)                (cLog[x])  <1>)] : x (cMul <1>)

# log(x) + log(y) = log(x*y)
@F cAdd (cLog[x])  (cLog[y])  : (cLog  (cMul [x y]))   # TEST 20/addlog

# When x is const, the reverse is more beneficial
#  i.e.  log(2*x) = log(x) + log(2)
@F cLog  [(cMul %@P <1>)] -> cAdd (cLog  [(cMul <1>)]) LOG(%) # TEST 20/mulimmlog

# log(x * z^y) = (log(x) / log(z) + y) * log(z)
#              = log(x) + log(z)*y
# Only worthwhile when z is an immed, otherwise we trade cPow for cLog
# Note that when z = CONSTANT_E, this reduces rather nicely into log(x) + y
@F cLog  [(cMul (cPow [% y]) <1>)]  -> cAdd (cMul [LOG(%) y]) (cLog [(cMul <1>)])

#cLog  [(cMul (cPow [% y]) <1>)] -> cMul LOG(%) (cAdd [y (cMul (cLog [(cMul <1>)]) /LOG(%))])
# When y=1, the reverse is more useful:
@F cMul {% (cAdd {1 (cMul {(cLog  [x]) /%})})} -> cAdd (cLog  [x]) %


[POW_TRICKS]

###### Note: Before adding new rules (especially those which handle constant values),
######       verify that it is not already done in ConstantFolding().

# (x*5) ^ 2 = x^2 * (5^2)
# (x*5)^-1  = 0.2/x , shrug
cPow [(cMul %@P <1>) &]    -> cMul POW(% &)   (cPow [(cMul <1>) &]) # TEST 20/powmulimm_*
# ^Limited to positive values so that (-4*x)^3.3 won't be changed into nan*x^3.3

cPow [(cMul %@N <1>) &@E]  -> cMul POW(% &)   (cPow [(cMul <1>) &]) # TEST 20/powmulimm_*
# ^This changes (-5*x)^2 into x^2 * (-5)^2 = x^2 * 25, but only when & is an even integer.

# z^(x+y/log(z)) = z^x * exp(y)
# Note: This rule fails when z=0, because log(0)=-inf and 0^z = 1
@F cPow [z (cAdd <1> (cMul <2> (cPow [(cLog [z]) -1])))] -> cMul (cPow [z (cAdd <1>)]) (cPow [CONSTANT_E (cMul <2>)])
#@F cPow [% (cAdd <1> (cMul <2> /LOG(%)))]    -> cMul (cPow [% (cAdd <1>)]) (cPow [CONSTANT_E (cMul <2>)])
@F cPow [z (cAdd <1> (cPow [(cLog [z]) -1]))] -> cMul CONSTANT_E (cPow [z (cAdd <1>)])
cPow [% (cAdd <1> &@M)]                    -> cMul POW(% &)   (cPow [% (cAdd <1>)])

# x*y / (x*z) = y/z
cMul (cPow [(cMul x <2>) -1]) x : (cPow [(cMul <2>) -1])

# (x^y)^z        -> x^(y*z)
#  safe when y is odd or float, or z is an integer, or x is not negative
cPow [ (cPow[x   y@O])  z ]       : x (cMul [y z])
cPow [ (cPow[x   y@F])  z ]       : x (cMul [y z])
cPow [ (cPow[x   y])  z@I ]       : x (cMul [y z])
cPow [ (cPow[x@P y])    z ]       : x (cMul [y z])

# (x^y)^z where (y*z) makes an even integer could also be changed safely
#cPow [(cPow [x y@I]) z@E]        : x (cMul [y z])

# If pow() makes a signless value into a positive value, guard that fact with abs()
cPow [ (cPow[x@Q y])@P z ]     : (cAbs [x]) (cMul [y z])

# abs(x)^e -> x^e when e=even integer
# This removes the abs() generated by the above rule when needless
cPow [(cAbs[x]) y@E]            : x y
cPow [(cMul (cAbs[x]) <1>) y@E] : (cMul  x <1>) y
#cPow [(cMul %@N      <1>) y@E] : (cMul -% <1>) y
# ^ already done by constantfolding

# x^y *  (n + x^z) = n*x^y + x^(y+z)
cMul (cPow [x y]) (cAdd {%@1 (cPow [x z])}) : (cAdd (cMul (cPow[x y]) %) (cPow[x (cAdd y z)]))
# x^y *  (n + a^z) = n*x^y + x^(y+z*log(a)/log(x))
cMul (cPow [& y]) (cAdd { 1 (cPow [x@P z])}) : (cAdd       (cPow[& y])     (cPow[& (cAdd y (cMul z (cLog[x]) /LOG(&)))]))
cMul (cPow [& y]) (cAdd {-1 (cPow [x@P z])}) : (cAdd (cMul (cPow[& y]) -1) (cPow[& (cAdd y (cMul z (cLog[x]) /LOG(&)))]))
# exp(-x)*(exp(2*n)+1)*4
#   becomes
# exp(1) ^ (-x) * (exp(2) ^ n * 4 + 4)
#   so we detect that here as well.
cMul (cPow [& y]) (cAdd {(cMul {% (cPow [x@P z])})  %}) : % (cAdd       (cPow[& y])     (cPow[& (cAdd y (cMul z (cLog[x]) /LOG(&)))]))
cMul (cPow [& y]) (cAdd {(cMul {% (cPow [x@P z])}) -%}) : % (cAdd (cMul (cPow[& y]) -1) (cPow[& (cAdd y (cMul z (cLog[x]) /LOG(&)))]))

# exp(2*y) - 2*exp(y) = (exp(x)-1)^2 - 1
# exp(2*y) - 6*exp(y) = (exp(x)-3)^2 - 9
# exp(2*y) + 6*exp(y) = (exp(x)+3)^2 - 9
# note: x^(2*y) = (x^2)^y      (especially: exp(2*y) = exp(2)^y)
cAdd (cMul {% (cPow[x          y  ])}) (cPow[x (cMul {    2  y})]) : (cPow[(cAdd (cPow[x       y   ]) *(% 0.5)) 2]) -POW(*(% 0.5) 2)
cAdd (cMul {% (cPow[x (cMul {& y})])}) (cPow[x (cMul {*(& 2) y})]) : (cPow[(cAdd (cPow[x (cMul y &)]) *(% 0.5)) 2]) -POW(*(% 0.5) 2)
cAdd (cMul {% (cPow[&          y  ])}) (cPow[POW(& 2)        y  ]) : (cPow[(cAdd (cPow[&       y   ]) *(% 0.5)) 2]) -POW(*(% 0.5) 2)

[BINOMIAL]

# Opcodes we will NOT find in the intermediate stage:
#  Done by bytecode parser:
#   Meta opcodes: cDup, cNop, cFetch, cPopNMov, cJump
#   Meta opcodes: cVar, cImmed
#   Implemented through cMul: cDiv, cRDiv, cInv, cSqr
#   Implemented through cAdd: cSub, cRSub, cNeg
#   Implemented through constant-multiplying: cDeg, cRad
#   Implemented through cSin, cCos: cCot, cCsc, cSec, cTan
#   Implemented through cPow: cSqrt, cExp
#   Implemented through cLog: cLog2, cLog10
#  Done by entry rules:
#   Extracted: cAsinh, cAcosh, cAtanh
#   Extracted: cSinh, cCosh, cTanh

#### CONTINUED: Flattening the topology of add/mul/min/max/and/or groups

# a^2 + a*b*X/Z + b^2 = (a+b)^2 + (X/Z-2)*(a*b)
#cAdd (cPow[x 2]) (cPow[y 2]) (cMul x y <1>) : (cPow [(cAdd [x y]) 2]) (cMul [x y (cAdd [(cMul <1>) -2])])
# For optimizing x^2+2*x*y+y^2:
#  With this rule,    eval=0.287154 us, optimized = 0.0758879 us
#  Without this rule, eval=0.314538 us, optimized = 0.0831386 us
# For optimizing x^2+3*x*y+y^2:
#  With this rule,    eval=0.295956 us, optimized = 0.0781288 us
#  Without this rule, eval=0.300723 us, optimized = 0.075689 us
# The benchmark results seem too varying, so it is hard to tell
# whether this rule had some advantage. It _looks_ like it did
# though, so better keep it, I suppose. -Bisqwit
#
# How about this?
# (a+b+c)^2 = c^2 + 2*b*c + 2*a*c + b^2 + 2*a*b + a^2
# Seems that it becomes:
# a^2 + b^2 + c^2 + 2*((a+b)*c + a*b)
# Is it worth adding rule for making that into (a+b+c)^2?
# Too specific, I suppose.

# These are the same as above, but work also if pow() is expanded
# Note: It would work even with y and z instead of % and &, but we
# limit into numeric literals for simplicity.
cAdd (cMul (cPow[x %@P@I]) <1>)  (cMul (cPow[x &@I]) <2>) : (cMul (cPow[x MIN(% &)]) (cAdd (cMul <1> (cPow[x (cAdd % -MIN(% &))]))  (cMul <2> (cPow[x (cAdd & -MIN(% &))]))))

# Note:
#   x^4*a + b*x^9  -> (x^5 * b + a)*x^4:  Eval time goes 0.046 -> 0.056
#   x^5*a + b*x^11 -> (x^6 * b + a)*x^5:  Eval time goes 0.060 -> 0.049
#     srsly, what?

# x^2 + N*y - y^2 = x^2 - (y + N* 0.5)^2 + (N/2)^2
# x^2 + N*y + y^2 = x^2 + (y + N*-0.5)^2 - (N/2)^2
@F cAdd (cMul {-1 (cPow[x 2])}) (cMul{% x}) : (cMul {-1 (cPow[(cAdd x *(% -0.5)) 2])})  POW(*(% 0.5) 2)
@F cAdd           (cPow[x 2])   (cMul{% x}) :           (cPow[(cAdd x *(% 0.5)) 2])    -POW(*(% 0.5) 2)

#cAdd (cMul (cPow[x %@P@I]) <1>)  (cMul x             <2>) : (cMul (cPow[x MIN(% 1)]) (cAdd (cMul <1> (cPow[x (cAdd % -MIN(% 1))]))  (cMul <2> (cPow[x (cAdd 1 -MIN(% 1))]))))


# N*x^2 + M*x^2 = (x*sqrt(N) + y*sqrt(M))^2 - (2*sqrt(N*M))*x*y
# N*x^2 + M*x*y = (x*sqrt(N) + y*0.5*M/sqrt(N))^2 - 0.25*M^2/N*y^2
cAdd (cMul {%@P (cPow[x 2])}) (cMul {& x y}) : (cPow[(cAdd (cMul x SQRT(%)) (cMul y *(0.5 *(& /SQRT(%)))) ) 2]) (cMul (cPow[y 2]) *(*(-0.25 /%) POW(& 2)))

# N*(x^2 + y^2) + M*x*y = N*(x+y)^2 + (2*N-M)*x*y
cAdd (cMul {%@P (cAdd {(cPow[x 2]) (cPow[y 2])})}) (cMul {&@P x y}) : (cMul % (cPow[(cAdd x          y ) 2])) (cMul +(& *(-2 %)) x y)
cAdd (cMul {%@P (cAdd {(cPow[x 2]) (cPow[y 2])})}) (cMul {&@N x y}) : (cMul % (cPow[(cAdd x (cMul -1 y)) 2])) (cMul +(& *( 2 %)) x y)

# The replacement expanded below:
#  (cMul (cPow[x MIN(% 1)])
#        (cAdd (cMul <1> (cPow[x (cAdd % -MIN(% 1))]))
#              (cMul <2> (cPow[x (cAdd 1 -MIN(% 1))]))))
#
# Example: x^2*y  + x*z -> x^1  * (y*x^1 + z*x^0)
# Example: x^6*y  + x*z -> x^1  * (y*x^5 + z*x^0)
# Example: x^-6*y + x*z -> x^-6 * (y*x^0 + z*x^7) -- not good, so restricted with @P
#
# Example: x*z + 2*x^0.7 -> x^0.7 * (x^0.3 * z+2) -- not good, so also restricted with @I
#

# Note: These two rules should be done in constantfolding, but it's complicated.
# 5*x - 5*y = 5*(x-y)
cAdd (cMul %@P <1>) (cMul -% <2>) : (cMul % (cAdd (cMul <1>) (cMul -1 <2>))) # TEST 20/addnegmulpos
# 5 - 5*x   = -5*(x-1)
#cAdd %@M            (cMul -% <2>) : (cMul -% (cAdd (cMul <2>) -1))
cAdd %@M            (cMul -% <2>) : (cMul % (cAdd 1 (cMul <2> -1)))   # TEST 20/addnegmulneg

#    (5.1*x +      4.1*y      + z+w)*2
# -> (5.1*2*x + 2*(4.1*y      + z+w))
# -> (5.1*2*x +   (4.1*2*y + 2*(z+w)))
cMul (cAdd (cMul %@M <1>) <2>) &  :  (cAdd (cMul % & <1>) (cMul & (cAdd <2>))) # TEST 20/addmulconstmul

#    (2+x+y)*4 = 2*4 + 4*(x+y)
cMul (cAdd %@M <1>) &  : (cAdd *(% &) (cMul & (cAdd <1>)))     # TEST 20/addconstmul


[TRIGONOMETRIC]

# sin(-x) = -sin(x)
@F cSin [(cMul -1 <1>)] -> cMul -1 (cSin [(cMul <1>)])   # TEST 20/negsin
# However,  -sin(5*x) better expressed as sin(-5*x)
@F cMul -1 (cSin [(cMul %@N <1>)]) : (cSin [(cMul -% <1>)])
# cos(-x) = cos(x)
@F cCos [(cMul -1 <1>)] : (cMul <1>)                     # TEST 20/negcos
@R @F cCos [(cAbs [x])] : x                                 # TEST 20/abscos

# cos(pi/2 - x) = sin(x)
@F cCos [(cAdd {CONSTANT_PIHALF@R (cMul %@N <1>)})] -> cSin[(cMul -% <1>)]         # TEST 20/trig_modulo
# sin(pi/2 - x) = cos(x)
@F cSin [(cAdd {CONSTANT_PIHALF@R (cMul %@N <1>)})] -> cCos[(cMul -% <1>)]         # TEST 20/trig_modulo
# cos(x - pi/2) = cos(pi/2 - x) = sin(x)
@F cCos [(cAdd -CONSTANT_PIHALF@R <1>)]            -> cSin[(cAdd <1>)]             # TEST 20/trig_modulo
# sin(x - pi/2) = -sin(pi/2 - x) = -cos(x)
@F cSin [(cAdd -CONSTANT_PIHALF@R <1>)]            -> cMul -1 (cCos[(cAdd <1>)])   # TEST 20/trig_modulo
# sin(x + pi/2) = cos(x)
@F cSin [(cAdd  CONSTANT_PIHALF@R <1>)]            -> cCos[(cAdd <1>)]             # TEST 20/trig_modulo
# cos(x + pi/2) = sin(-x)
@F cCos [(cAdd  CONSTANT_PIHALF@R <1>)]            -> cSin[(cMul -1 (cAdd <1>))]   # TEST 20/trig_modulo
# sin(x + pi) = -sin(x)
@F cSin [(cAdd  CONSTANT_PI@R <1>)]                -> cMul -1 (cSin[(cAdd <1>)])   # TEST 20/trig_modulo
# cos(x + pi) = -cos(x)
@F cCos [(cAdd  CONSTANT_PI@R    <1>)]             -> cMul -1 (cCos[(cAdd <1>)])   # TEST 20/trig_modulo
#
@F cCos [(cAdd 0@R <1>)]             -> cCos[(cAdd <1>)]
@F cSin [(cAdd 0@R <1>)]             -> cSin[(cAdd <1>)]


# sin(x)^2 + cos(x)^2 = 1
@F cAdd  (cPow[ (cSin[x]) 2]) (cPow [(cCos[x]) 2]) : 1  # TEST 20/addsin2cos2
# y-sin(x)^2 = cos(x)^2+(y-1)
# y-cos(x)^2 = sin(x)^2+(y-1)
@F cAdd 1 (cMul { -1 (cPow[ (cSin[x]) 2]) }) : (cPow [(cCos[x]) 2])  # TEST 20/sub1sin2
@F cAdd 1 (cMul { -1 (cPow[ (cCos[x]) 2]) }) : (cPow [(cSin[x]) 2])  # TEST 20/sub1cos2

# sin(x)*cos(y) + cos(x)*sin(y) = sin(x+y)
# sin(x)*cos(y) - cos(x)*sin(y) = sin(x-y)
# cos(x)*cos(y) + sin(x)*sin(y) = cos(x+y)
# cos(x)*cos(y) - sin(x)*sin(y) = cos(x-y)

@F cAdd  (cMul {(cSin[x]) (cCos[y])}) (cMul {(cCos[x]) (cSin[y])   }) :  (cSin [(cAdd[x           y]  )])
@F cAdd  (cMul {(cSin[x]) (cCos[y])}) (cMul {(cCos[x]) (cSin[y]) -1}) :  (cSin [(cAdd[x (cMul [-1 y])])])
@F cAdd  (cMul {(cCos[x]) (cCos[y])}) (cMul {(cSin[x]) (cSin[y])   }) :  (cCos [(cAdd[x           y]  )])
@F cAdd  (cMul {(cCos[x]) (cCos[y])}) (cMul {(cSin[x]) (cSin[y]) -1}) :  (cCos [(cAdd[x (cMul [-1 y])])])

#@F cAdd  (cMul {(cSin[x]) (cCos[y]) -1}) (cMul {(cCos[x]) (cSin[y]) -1}) : (cMul [-1 (cSin [(cAdd[x           y]  )]) ])
#@F cAdd  (cMul {(cCos[x]) (cCos[y]) -1}) (cMul {(cSin[x]) (cSin[y]) -1}) : (cMul [-1 (cCos [(cAdd[x           y]  )]) ])
# ^This one is redundant, subexpression grouping already catches it
@F cAdd  (cMul {(cCos[x]) (cCos[y]) -1}) (cMul {(cSin[x]) (cSin[y])   }) : (cMul [-1 (cCos [(cAdd[x (cMul [-1 y])])]) ])
#@F cAdd (cMul {(cSin[x]) (cCos[y]) -1}) (cMul {(cCos[x]) (cSin[y])   }) : (cMul [-1 (cSin [(cAdd[x (cMul [-1 y])])]) ])
# ^This one is redudant: It just reaffirms that sin(x) = -sin(-x).

# sin(asin(x)) = x
@F cSin [(cAsin [x])] -> x  # TEST 20/asinsin

# cos(acos(x)) = x
@F cCos [(cAcos [x])] -> x  # TEST 20/acoscos

# Note: asin(sin(x)) must not be converted, because
# even though asin(sin(1.1)) = 1.1, asin(sin(1500)) != 1500.

# atan(x/y) = atan2(x,y) -- do this only when we don't know whether y is zero.
#                           If we know that y is nonzero, ConstantFolding
#                           will revert this optimization.
@R @F cAtan [(cMul {x (cPow [y@Q %@N])})] -> cAtan2 [x (cPow [y -%])]

@R @F cAtan2 [(cMul  x@P   <1>) (cMul  x@P   <2>)]   : (cMul    <1>) (cMul    <2>)
@R @F cAtan2 [(cMul  x@N@V <1>) (cMul  x@N@V <2>)]   : (cMul -1 <1>) (cMul -1 <2>)

#        asin(x): atan2(x, (1-x*x)^0.5)
#        asin(x): atan(x * (1-x*x)^-0.5) - automatically converted to the above.
@R @F cAtan2 [x (cPow [(cAdd {(cMul {(cPow [x 2]) -1}) 1}) 0.5])] -> cAsin[x]

#        acos(x): atan2((1-x*x)^0.5, x)
#        acos(x): atan((1-x*x)^0.5 * x^-1) - automatically converted to the above.
@R @F cAtan2 [(cPow [(cAdd {(cMul {(cPow [x 2]) -1}) 1}) 0.5]) x] -> cAcos[x]


[REGENERATE_TAN]

# sin(x)/cos(x) = tan(x)
@F cMul        (cSin[x])     (cPow [(cCos[x]) -1]) :        (cTan[x])
@F cMul (cPow [(cSin[x]) -1])       (cCos[x])      : (cPow [(cTan[x]) -1])
# tan(x)*cos(x) = sin(x)
@F cMul        (cTan[x])            (cCos[x])      :        (cSin[x])
# sin(x)/tan(x) = cos(x)
@F cMul (cPow [(cTan[x]) -1])       (cSin[x])      :        (cCos[x])
@F cMul        (cTan[x])     (cPow [(cSin[x]) -1]) : (cPow [(cCos[x]) -1])

# cos(x)^(-2) * sin(x) = tan(x)/cos(x)
# sin(x)^2    / cos(x) = tan(x)*sin(x)

# sin(-5*x) / cos(5*x) = tan(-5*x)
@F cMul (cSin  [(cMul % <1>)]) (cPow [(cCos  [(cMul -% <1>)]) -1]) : (cTan  [(cMul % <1>)])

# tan(-x) = -tan(x)
@F cTan [(cMul -1 <1>)] -> cMul [-1 (cTan [(cMul <1>)])]

# However,  -tan(5*x) better expressed as tan(-5*x)
@F cMul -1 (cTan [(cMul %@N <1>)]) : (cTan [(cMul -% <1>)])

# asin(tan(x)) = x / (1-x^2)^0.5
#@F cAsin [(cTan [x])] -> cMul x (cPow [(cAdd (cMul (cPow [x 2]) -1) 1) -0.5])
#
# ^Disabled: Incorrectly produces error when x = 1

# acos(tan(x)) = (1-x^2)^0.5 / x
#@F cAcos [(cTan [x])] -> cMul (cPow [x -1]) (cPow [(cAdd (cMul (cPow [x 2]) -1) 1) 0.5])
#
# ^Disabled: Incorrectly produces error when x = 0
#            Incorrectly produces negative numbers when acos does no such thing

# cot(pi/2 - x) = 1/tan(pi/2 - x) = tan(x)
#                   tan(pi/2 - x) = 1/tan(x)
#                      reverse is probably better
#                      but cot() isn't exactly bad, so keep it
#cPow [(cTan[x]) -1] -> cTan [(cAdd [CONSTANT_PIHALF@R (cMul [-1 x])])]

@F cMul (cTan [(cAdd {CONSTANT_PIHALF@R (cMul {-1 x})})]) (cTan [x]) : 1
@F cMul (cTan [(cAdd {CONSTANT_PIHALF@R (cMul -1 <1>)})]) (cTan [(cMul <1>)]) : 1

# tan(atan(x)) = x
@F cTan [(cAtan [x])] -> x

@F cTan [(cAtan2 [x y])] -> cMul x (cPow [y -1])


[REGENERATE_TANH]

# sinh(x)/cosh(x) = tanh(x)
@F cMul        (cSinh[x])     (cPow [(cCosh[x]) -1]) :        (cTanh[x])
@F cMul (cPow [(cSinh[x]) -1])       (cCosh[x])      : (cPow [(cTanh[x]) -1])
# tanh(x)*cosh(x) = sinh(x)
@F cMul        (cTanh[x])            (cCosh[x])      :        (cSinh[x])
# sinh(x)/tanh(x) = cosh(x)
@F cMul (cPow [(cTanh[x]) -1])       (cSinh[x])      :        (cCosh[x])
@F cMul        (cTanh[x])     (cPow [(cSinh[x]) -1]) : (cPow [(cCosh[x]) -1])

# sinh(-5*x) / cosh(5*x) = tanh(-5*x)
@F cMul (cSinh [(cMul {% x})]) (cPow [(cCosh [(cMul {-% x})]) -1]) : (cTanh [(cMul % x)])
@F cMul (cSin  [(cMul {% x})]) (cPow [(cCos  [(cMul {-% x})]) -1]) : (cTan  [(cMul % x)])
#^ Note: Should use (cMul % <1>) instead of (cMul {% x}),
#        but cannot, due to repeated restholders

# tanh(-x) = -tanh(x)
@F cTanh [(cMul -1 <1>)] -> cMul [-1 (cTanh [(cMul <1>)])]

# However,  -tanh(5*x) better expressed as tanh(-5*x)
@F cMul -1 (cTanh [(cMul %@N <1>)]) : (cTanh [(cMul -% <1>)])


#        tanh(x) = (exp(2*x)-1) / (exp(2*x)+1)
#      1/tanh(x) = (exp(2*x)+1) / (exp(2*x)-1)
#            exp(2*x) = exp(2)^x
#            y^x = exp(log(y)*x)
#        tanh(x*log(y)/2) = (y^x-1) / (y^x+1)
@F cMul (cAdd {-1 (cPow [% x])}) (cPow [(cAdd { 1 (cPow [% x])}) -1]) : (cTanh [(cMul x LOG(%) 0.5)])
@F cMul (cAdd { 1 (cPow [% x])}) (cPow [(cAdd {-1 (cPow [% x])}) -1]) : (cPow [(cTanh [(cMul x LOG(%) 0.5)]) -1])


[SINH_COSH_EXP_TRANSFORMATIONS]

# sinh(-x) = -sinh(x)
@F cSinh [(cMul -1 <1>)] -> cMul [-1 (cSinh [(cMul <1>)])] # TEST 20/negsinh
# However,  -sinh(5*x) better expressed as sinh(-5*x)
@F cMul -1 (cSinh [(cMul %@N <1>)]) : (cSinh [(cMul -% <1>)])
# cosh(-x) = cosh(x)
@F cCosh [(cMul -1 <1>)] : (cMul <1>)                    # TEST 20/negcosh
@R @F cCosh [(cAbs [x])] : x                             # TEST 20/abscosh

# x - 1/x = sinh(log(x))*2. However, this alone is a pessimal conversion.
#@F cAdd  x  (cMul {-1 (cPow [       x   -1])})  : (cMul (cSinh [(cLog [x])]) 2)
#@F cAdd <1> (cMul {-1 (cPow [(cAdd <1>) -1])})  : (cMul (cSinh [(cLog [(cAdd <1>)])]) 2)
# So we add the requirement of cPow to it.
# cLog(cPow()) reduces into optimal opcodes.
#
# sinh(x)*2 = (exp(x)-exp(-x))    -- note: exp(-x) = 1/exp(x)
# cosh(x)*2 = (exp(x)+exp(-x))	
@F cAdd (cPow [& x]) (cMul { -1 (cPow [/& x]) }) : (cMul (cSinh [(cLog [(cPow [& x])])]) 2)
@F cAdd (cPow [& x])            (cPow [/& x])    : (cMul (cCosh [(cLog [(cPow [& x])])]) 2)
#@F cAdd (cPow [y x]) (cMul { -1 (cPow [y (cMul {x -1})]) }) : (cMul (cSinh [(cLog [(cPow [y x])])]) 2)
#@F cAdd (cPow [y x])            (cPow [y (cMul {x -1})])    : (cMul (cCosh [(cLog [(cPow [y x])])]) 2)
#@F cAdd (cPow [y %]) (cMul { -1 (cPow [y -%]) }) : (cMul (cSinh [(cLog [(cPow [y %])])]) 2)
#@F cAdd (cPow [y %])            (cPow [y -%])    : (cMul (cCosh [(cLog [(cPow [y %])])]) 2)

# Because sinh(-x) = -sinh(x),
# sinh(x)*-2 = (exp(-x)-exp(x))
@F cAdd (cMul {-1 (cPow [& x])})            (cPow [/& x])   : (cMul (cSinh [(cMul x LOG(&))]) -2)
@F cAdd (cMul {% (cPow [& x])})  (cMul { -% (cPow [/& x])}) : (cMul (cSinh [(cMul x LOG(&))]) 2 %)
@F cAdd (cMul {% (cPow [& x])})  (cMul {  % (cPow [/& x])}) : (cMul (cCosh [(cMul x LOG(&))]) 2 %)


# exp(x)  = cosh(x)+sinh(x)
@F cAdd        (cCosh [x])             (cSinh [x])      :        (cPow [CONSTANT_E  x])
# -cosh(x) = sinh(x)-exp(x)
#  cosh(x) = exp(x)-sinh(x)
# -sinh(x) = cosh(x)-exp(x)
#  sinh(x) = exp(x)-cosh(x)
@F cAdd        (cSinh [x])      (cMul {(cPow [CONSTANT_E  x]) -1}) : (cMul -1 (cCosh [x]))
@F cAdd (cMul {(cSinh [x]) -1})        (cPow [CONSTANT_E  x])      :          (cCosh [x])
@F cAdd        (cCosh [x])      (cMul {(cPow [CONSTANT_E  x]) -1}) : (cMul -1 (cSinh [x]))
@F cAdd (cMul {(cCosh [x]) -1})        (cPow [CONSTANT_E  x])      :          (cSinh [x])
# exp(-x) = cosh(x)-sinh(x)
# -exp(-x) = sinh(x)-cosh(x)
@F cAdd        (cCosh [x])      (cMul {(cSinh [x]) -1}) :        (cPow [CONSTANT_EI x])
@F cAdd (cMul {(cCosh [x]) -1})        (cSinh [x])      : (cMul {(cPow [CONSTANT_EI x]) -1})
#  sinh(x) = cosh(x)-exp(-x)
# -sinh(x) = exp(-x)-cosh(x)
#  cosh(x) = exp(-x)+sinh(x)
@F cAdd        (cCosh [x])      (cMul {(cPow [CONSTANT_EI x]) -1}) :          (cSinh [x])
@F cAdd (cMul {(cCosh [x]) -1})        (cPow [CONSTANT_EI x])      : (cMul -1 (cSinh [x]))
@F cAdd        (cSinh [x])             (cPow [CONSTANT_EI x])      :          (cCosh [x])


# sinh(x)   = ((((E^2) ^ x) + -1) * ((E^-1) ^ x) * 0.5)
# sinh(3*x) = ((((E^6) ^ x) + -1) * ((E^-3) ^ x) * 0.5)

# sinh(3*x)*2              = (((E^6) ^ x) + -1) * ((E^-3) ^ x)
# sinh(3*x)*2 / (E^-3) ^x = (((E^6) ^ x) + -1)
# sinh(3*x)*2 * (E^ 3) ^x = (((E^6) ^ x) + -1)

#@F cAdd {-1 (cPow [% x])}  : (cMul (cSinh [(cMul x LOG(%) 0.5)]) 2 (cPow [% (cMul x 0.5)]))
#@F cAdd { 1 (cPow [% x])}  : (cMul (cCosh [(cMul x LOG(%) 0.5)]) 2 (cPow [% (cMul x 0.5)]))

#@F cMul (cAdd {-1 (cPow [% x])}) (cPow [POW(% -0.5) x]) : (cSinh [(cMul x LOG(%) 0.5)]) 2
#@F cMul (cPow [% x]) (cAdd {-1 (cPow [POW(% -2) x])})   : (cSinh [(cMul x LOG(%) 0.5)]) 2

#   tanh(x) / cosh(x)
# = sinh(x) / cosh(x)^2
@F cMul (cSinh[x]) (cPow[(cCosh[x]) %]) : (cTanh[x]) (cPow[(cCosh[x]) +(% 1)])

# sinh(log(x)) = 0.5*(x - 1/x)   (valid only for x>0)
#@F cSinh [(cLog [x])] -> cMul 0.5 (cAdd x (cMul -1 (cPow [x -1])))


[ASINH_ACOSH_ATANH_TRANSFORMATIONS]

# sinh(acosh(x)) = sqrt(x^2 - 1)  (not a typo)
# cosh(asinh(x)) = sqrt(x^2 + 1)  (not a typo)
#  Not sure whether these are faster. They are more opcodes, but
#  simpler. The rationale is in allowing for further optimizations.
@F cSinh [(cAcosh [x])] -> cPow [(cAdd [(cPow [x 2]) -1]) 0.5] # TEST 20/acoshsinh
@F cCosh [(cAsinh [x])] -> cPow [(cAdd [(cPow [x 2])  1]) 0.5] # TEST 20/asinhcosh

#        asinh: log(x + sqrt(x*x + 1))
#        exp(asinh): x + sqrt(x*x + 1)#
# Disabled: On x86_64, "asinh(x)" is slower than "log(sqrt(x^2+1)+x)"
@F cAdd (cPow [(cAdd {1 (cPow [         x 2])})  0.5]) x   :  (cPow [CONSTANT_E (cAsinh [x])])
@F cAdd (cPow [(cAdd {1 (cPow [(cAdd <1>) 2])})  0.5]) <1> -> (cPow [CONSTANT_E (cAsinh [(cAdd <1>)])])
@F cAdd (cPow [(cAdd {1 (cPow [         x 2])}) -0.5]) x   :  (cPow [CONSTANT_EI (cAsinh [x])])
@F cAdd (cPow [(cAdd {1 (cPow [(cAdd <1>) 2])}) -0.5]) <1> -> (cPow [CONSTANT_EI (cAsinh [(cAdd <1>)])])


#        acosh: log(x + sqrt(x*x - 1))
#        exp(acosh): x + sqrt(x*x - 1)
# Disabled: On x86_64, "acosh(x)" is slower than "log(sqrt(x^2-1)+x)"
@F cLog  [(cAdd {(cPow [(cAdd {-1 (cPow [x 2])}) 0.5]) x})] -> cAcosh [x]
#cAdd {(cPow [(cAdd {(cPow [x 2]) -1}) 0.5]) x} -> cPow [CONSTANT_E (cAcosh [x])]

#        atanh(x):   log( (1+x) / (1-x)) / 2
#        2*atanh(x): log( (1+x) / (1-x))
@F cLog  [(cMul {(cAdd {1 x}) (cPow [(cAdd {1 (cMul {-1 x})}) -1])})] -> cMul [(cAtanh [x]) 2]

#        atanh(y*x):   log( (1+y*x) / (1+(-1*y*x))) / 2
#        2*atanh(y*x): log( (1+y*x) / (1+(-1*y*x)))

#        atanh(5*x):   log( (1+5*x) / (1+(-5*x))) / 2
#        2*atanh(5*x): log( (1+5*x) / (1+(-5*x)))

#        atanh(y+x):   log( (1+y+x) / (1+(-1*(y+x)))) / 2
#        2*atanh(y+x): log( (1+y+x) / (1+(-1*(y+x))))

#@F cLog [(cMul {(cAdd {1 (cMul {% x})}) (cPow [(cAdd {1 (cMul {-% x})}) -1])})] -> cMul [(cAtanh [(cMul % x)]) 2]

# atanh(x)              = log2( ((x*-2)+1) / ((x*2)-1) ) * log(2)/2
# atanh(x)*2/log(2)     = log2( ((x*-2)+1) / ((x*2)-1) )
# y^(atanh(x)*2/log(y)) = ((x*-y)+1) / ((x*y)-1)

#@F cMul (cAdd {1 (cMul {x %})}) (cPow [(cAdd {-1 (cMul {x -%})}) -1]) : (cPow [% (cMul (cAtanh[x]) 2 /LOG(%))])
#@F cMul (cPow [(cAdd {(cMul {x %}) &}) -1]) (cAdd {(cMul {x -%}) 2 -&}) : (cPow [-% (cMul (cAtanh[(cAdd (cMul -% x) & -1)]) 2 /LOG(-%))])



[REGENERATE_HIGHLEVEL_OPCODES]

# x * CONSTANT_RD = cDeg(x)
@F cMul  CONSTANT_RD <1> -> cDeg [(cMul <1>)]

# x * CONSTANT_DR = cRad(x)
@F cMul  CONSTANT_DR <1> -> cRad [(cMul <1>)]

@F cFloor [(cAdd 0.5 <1>)] -> cInt [(cAdd <1>)]

# log(x) / CONSTANT_L10  = log10(x)
@F cMul        (cLog [x])      CONSTANT_L10I  :        (cLog10 [x])
@F cMul (cPow [(cLog [x]) -1]) CONSTANT_L10   : (cPow [(cLog10 [x]) -1])

# log(x) / CONSTANT_L2 = log2(x)
@F cMul        (cLog [x])      CONSTANT_L2I  :        (cLog2 [x])
@F cMul (cPow [(cLog [x]) -1]) CONSTANT_L2   : (cPow [(cLog2 [x]) -1])

#@F cPow [ (cSin[x]) %@N ] : (cCsc[x]) -%
#@F cPow [ (cCos[x]) %@N ] : (cSec[x]) -%
#@F cPow [ (cTan[x]) %@N ] : (cCot[x]) -%
#  ^ DONE BY MAKEBYTECODE

@F cPow [ (cAdd [(           cPow [x %@E]  )  (           cPow [y &@E]  )] ) 0.5 ] -> (cHypot [(cPow [      x              *(% 0.5)]) (cPow [      y              *(& 0.5)])])
@F cPow [ (cAdd {(           cPow [x %@E]  )  (cMul {z@C (cPow [y &@E])})} ) 0.5 ] -> (cHypot [(cPow [      x              *(% 0.5)]) (cPow [(cMul y POW(z@C /&)) *(& 0.5)])])
@F cPow [ (cAdd {(cMul {a@C (cPow [x %@E])})  (cMul {z@C (cPow [y &@E])})} ) 0.5 ] -> (cHypot [(cPow [(cMul x POW(a@C /%)) *(% 0.5)]) (cPow [(cMul y POW(z@C /&)) *(& 0.5)])])

@F cMul (cExp[x]) (cExp[y])   : (cExp[(cAdd x y)])  # TEST 20/expexp_a 20/expexp_b 20/expexp_c
@F cMul (cExp2[x]) (cExp2[y]) : (cExp2[(cAdd x y)]) # TEST 20/expexp_a 20/expexp_b 20/expexp_c

[ABS_LOGICAL]

@R cNot    [x@P] -> cAbsNot [x]        # TEST 20/posnot
@R cNotNot [x@P] -> cAbsNotNot [x]     # TEST 20/posnotnot
@R cAnd x@P y@P   : (cAbsAnd x y)
@R cOr x@P y@P    : (cAbsOr  x y)
@R cIf [x@P y z]    -> cAbsIf x y z

#@R @L cAbsNotNot [x]   -> x
#@R @L cIf [x (cAbsNotNot[y]) z] : x y z
#@R @L cIf [x y (cAbsNotNot[z])] : x y z
# ^ These are mistakes; (x>=0.5 & y) is not same as (x & y)

@R cAbsIf [(cLessOrEq[x y]) z a] : (cLess[y x]) a z
@R cAbsIf [(cNotNot[x]) y z]     -> cIf x y z

@R @F cLess        [x 0.5] -> cAbsNot[x]     # TEST 20/lthalf
@R @F cGreaterOrEq [x 0.5] -> cAbsNotNot[x]  # TEST 20/gehalf

[NON_SHORTCUT_LOGICAL_EVALUATION]

@R cOr  x@L y@L          : (cNotNot (cAdd x y))
@R cOr  x@L (cAdd <1>)@P : (cNotNot (cAdd x <1>))
@R cAnd x@L <1>         -> (cNotNot (cMul x (cAnd <1>)))
# ^Conflicts with "cMul x@L y@L"

[SHORTCUT_LOGICAL_EVALUATION]

@R cMul x@L y@L : (cAnd x y) # TEST 20/muland2, muland2plus, muland3, mulnor2, mulnor2plus, mulnor3, mulandlt
# ^Conflicts with "cAnd x@L <1>"

# @L cAdd x@L@M <1> -> cOr x (cAdd <1>)
# cMul x@L   <1>    -> cAnd x (cMul <1>)

#cAdd x@L@M <1>    -> cAbsIf [x (cAdd <1> 1) (cAdd <1>)]
@R cMul x@L   <1>    -> cAbsIf [x (cMul <1>) 0]

cAnd x <1>      -> cIf [x   (cNotNot[(cAnd <1>)]) 0]
cOr  x <1>      -> cIf [x 1 (cNotNot[(cOr <1>)])   ]
cAbsAnd x <1>   -> cAbsIf [x   (cNotNot[(cAbsAnd <1>)]) 0]
cAbsOr  x <1>   -> cAbsIf [x 1 (cNotNot[(cAbsOr  <1>)])  ]

[IGNORE_IF_SIDEEFFECTS]

# These rules are the polar opposite of what
# is done in SHORTCUT_LOGICAL_EVALUATION.
# Do not include them in the same optimization set.

cIf [x y@L 0] -> cAnd x y
cIf [x 0 y@L] -> cAnd (cNot[x]) y
cIf [x y 0] -> cMul (cNotNot[x]) y
cIf [x 0 y] -> cMul (cNot[x])    y

cIf [x 1 y@L] -> cOr x y
cIf [x y@L 1] -> cOr (cNot[x]) y
cIf [x y 0] -> cMul (cNotNot[x]) y
cIf [x 0 y] -> cMul (cNot[x])    y

# These cannot be done because y may have side
# effects or just be computation-heavy.

[BASE2_EXPAND_COMPONENTS]

#@F cLog   [x] -> cMul (cLog2[x]) CONSTANT_L2
#@F cLog10 [x] -> cMul (cLog2[x]) CONSTANT_L10B
#@F cExp   [x] -> cExp2 [(cMul CONSTANT_L2I x)]
#@F cMul (cLog2by [x y]) <1>    ->  cLog2by [x (cMul y <1>)]
@F cAsin  [x] -> cAtan2 x (cSqrt (cSub 1 (cSqr x)))
@F cAcos  [x] -> cAtan2 (cSqrt (cSub 1 (cSqr x))) x
@F cSinh  [x] -> cMul 0.5 (cSub (cExp[x]) (cInv (cExp[x])))
@F cCosh  [x] -> cMul 0.5 (cSub (cExp[x]) (cInv (cExp[x])))
@F cTanh  [x] -> cDiv (cAdd (cExp [(cMul x 2)]) -1) (cAdd (cExp [(cMul x 2)]) 1)
@F cAtanh [x] -> cMul 0.5 (cLog (cDiv (cAdd 1 x) (cSub 1 x)))
@F cAsinh [x] -> cLog (cAdd x (cSqrt (cAdd  1 (cSqr x))))
@F cAcosh [x] -> cLog (cAdd x (cSqrt (cAdd -1 (cSqr x))))

#@F cLog2  [x] -> cLog2by x 1
#@F cMul (cPow[(cLog2[x])     %]) & : (cPow[(cLog2by[x POW(& /%)]) %])
@F cMul (cPow[(cLog2by[x 1]) %]) & : (cPow[(cLog2by[x POW(& /%)]) %])

##### Now construct the rounds of optimization:

$optimize_round1:
LOGICAL
REMOVE_REDUNDANT
LOGARITHM
POW_TRICKS
BINOMIAL
TRIGONOMETRIC
EXTRACT1

$optimize_round2:
LOGICAL
REMOVE_REDUNDANT
POW_TRICKS
SINH_COSH_EXP_TRANSFORMATIONS
ASINH_ACOSH_ATANH_TRANSFORMATIONS

$optimize_round3:
SIMPLIFY_EQUATION
REGENERATE_TAN
REGENERATE_TANH

$optimize_round4:
REGENERATE_HIGHLEVEL_OPCODES

$optimize_recreate:
REGENERATE_HIGHLEVEL_OPCODES
BINOMIAL

$optimize_ignore_if_sideeffects
IGNORE_IF_SIDEEFFECTS
LOGICAL

$optimize_shortcut_logical_evaluation
#SHORTCUT_LOGICAL_EVALUATION
LOGICAL

$optimize_nonshortcut_logical_evaluation
NON_SHORTCUT_LOGICAL_EVALUATION
LOGICAL

$optimize_abslogical
ABS_LOGICAL

#$optimize_base2_expand
#BASE2_EXPAND_COMPONENTS
#BINOMIAL
#POW_TRICKS