1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
|
# This datafile documents all the possible optimizations that the optimizer can/should do.
# It is parsed by the parser described in fpoptimizer_grammar_gen.y, which
# is compiled into C++ code in fpoptimizer_grammar_gen.cc. The parser produces
# a C++ file, fpoptimizer_grammar.cc , which lists the grammar rules in tabular
# format. The grammar rules are utilized by fpoptimizer_optimize.cc , which
# matches the function trees into the rules and performing those replacements
# which can be performed.
#
# Copyright 2010 Joel Yliluoma, written specifically
# for Warp's Function Parser (fparser).
#
# asinh: log(x + sqrt(x*x + 1))
# acosh: log(x + sqrt(x*x - 1))
# atanh: log( (1+x) / (1-x)) / 2
# asin: atan2(x, sqrt(1-x*x)) Complex: -i*log(i*x + sqrt(1 - x*x))
# acos: atan2(sqrt(1-x*x), x) Complex: -i*log(x + i*sqrt(1 - x*x))
# atan: Complex: -0.5i * log( (1+i*x) / (1-i*x) )
# atan2: atan(y/x)
# = 2*atan(y/(sqrt(x^2+y^2) + x))
# sin: Complex: (exp(i*x) - exp(-i*x)) / (2i)
# cos: Complex: (exp(i*x) + exp(-i*x)) / (2)
# tan: sin/cos Complex: (i-i*exp(2i*x)) / (exp(2i*x)+1)
# sinh: (exp(x)-exp(-x)) / 2
# = exp(-x) * (exp(2*x)-1) / 2
# cosh: (exp(x)+exp(-x)) / 2
# = exp(-x) * (exp(2*x)+1) / 2
# tanh: sinh/cosh
# = (exp(2*x)-1) / (exp(2*x)+1)
# log10: log/CONSTANT_L10I
# log2: log/CONSTANT_L2I
# sqrt: pow(x, 0.5)
# exp: pow(CONSTANT_E, x)
# int: floor(x + 0.5)
# Substitution rule syntax:
#
# %token NUMERIC_CONSTANT # literals such as 0, 1, 1.5 or CONSTANT_DR, CONSTANT_L10I
# %token NAMEDHOLDER_TOKEN # placeholders such as x, y, a, b
# %token RESTHOLDER_TOKEN # placeholders such as <1>, <2>, <7>
# %token IMMEDHOLDER_TOKEN # placeholders % and &
# %token BUILTIN_FUNC_NAME # such as COS, CEIL, POW, +, *, MIN, MAX
# %token OPCODE_TOKEN # opcodes such as cCos, cMul
# %token UNARY_TRANSFORMATION # /, -, ! # inverts/negates/inverts the param
# %token PARAM_CONSTRAINT # parameter constraint specifier:
# @E = Even integer only
# @O = Odd integer only
# @I = Integer only
# @F = (Float) non-integer only
# @L = Logical operation (something that only yields 0 or 1)
# @P = Positive only (also zero)
# @N = Negative only
# @Q = Only those where positive/negative not known
# @1 = value evaluating to +1 or -1 only
# @M = (Multiple) value NOT evaluating to +1 or -1
# @C = Const (x@C is similar to % and &)
# @V = Explicitly non-const
# %token CONST_CONSTRAINT # constraint applicable to a numeric literal:
# @R = Radians: Constant is tested after normalizing to -pi/2..pi/2 range
# # they can be applied to IMMEDHOLDER_TOKENs and NAMEDHOLDER_TOKENs
# %token RULE_CONSTRAINT @L = Logical context only
# i.e. when the result of the tree will only
# only be evaluated using fabs(value) >= 0.5.
# @I = This rule applies for integer types only
# @F = This rule applies for non-integer types only
# @C = This rule applies to complex types only
# @R = This rule applies to real (non-complex) types only
# %token NEWLINE # newline
#
# %%
# grammar:
# grammar substitution
# | grammar rule_constraints substitution
# | grammar NEWLINE
# | /* empty */
# ;
#
# substitution:
# function '->' param NEWLINE
# /* Entire function is changed into the particular param */
#
# | function '->' function NEWLINE
# /* Entire function changes, the param_notinv_list is rewritten */
# /* NOTE: "p x -> o y" is a shortcut for "p x -> (o y)" */
#
# | function ':' paramlist NEWLINE
# /* The params provided are replaced with the new param_maybeinv_list */
# ;
#
# function:
# OPCODE_TOKEN '[' paramlist ']'
# /* Match a function with opcode=opcode,
# * and the exact parameter list as specified
# */
# OPCODE_TOKEN '{' paramlist '}'
# /* Match a function with opcode=opcode,
# * and the exact parameter list in any order
# */
# | OPCODE_TOKEN paramlist
# /* Match a function with opcode=opcode and the given way of matching params */
# /* There may be more parameters, don't care about them */
# ;
#
# paramlist: /* left-recursive list of 0-n params with no delimiter */
# | paramlist param /* param */
# | paramlist RESTHOLDER_TOKEN /* a placeholder for all remaining params */
# | /* empty */
# ;
#
# param:
# NUMERIC_CONSTANT const_constraints /* particular immed */
# | IMMEDHOLDER_TOKEN param_constraints /* a placeholder for some immed */
# | BUILTIN_FUNC_NAME '(' paramlist ')' /* literal logarithm/sin/etc. of the provided immed-type params -- also sum/product/minimum/maximum */
# | NAMEDHOLDER_TOKEN param_constraints /* any expression, indicated by "x", "a" etc. */
# | (' function ')' param_constraints /* a subtree */
# | UNARY_TRANSFORMATION param /* the negated/inverted literal value of the param */
# ;
#
# param_constraints: /* List of possible constraints to the given param, eg. odd,int,etc */
# param_constraints PARAM_CONSTRAINT
# | /* empty */
# ;
#
# rule_constraints: /* List of possible constraints to the given rule */
# rule_constraints RULE_CONSTRAINT
# | /* empty */
# ;
#
# const_constraints: /* List of possible constraints to the given numeric value */
# const_constraints CONST_CONSTRAINT
# | /* empty */
# ;
[LOGICAL]
# Change cLessOrEq into cLess for less rules to check
# This way, the only comparison opcodes appearing in cIf
# are cEqual,cNEqual,cLess.
# cNEqual could be changed to cEqual, but we see no need.
cIf [(cLessOrEq[x y]) z a] : (cLess[y x]) a z
cIf [(cGreaterOrEq[x y]) z a] : (cGreater[y x]) a z
#cIf [(cNEqual[x y]) z a] : (cEqual[y x]) a z
cIf [(cLess[x y]) x y] -> cMin x y # TEST 20/cmp*_minmax
cIf [(cLess[x y]) y x] -> cMax x y # TEST 20/cmp*_minmax
#cIf [(cLessOrEq[x y]) x y] -> cMin x y # TEST 20/cmp*_minmax
#cIf [(cLessOrEq[x y]) y x] -> cMax x y # TEST 20/cmp*_minmax
cIf [(cGreater[x y]) y x] -> cMin x y # TEST 20/cmp*_minmax
cIf [(cGreater[x y]) x y] -> cMax x y # TEST 20/cmp*_minmax
#cIf [(cGreaterOrEq[x y]) y x] -> cMin x y # TEST 20/cmp*_minmax
#cIf [(cGreaterOrEq[x y]) x y] -> cMax x y # TEST 20/cmp*_minmax
# abs(x) = (x<0 ? -x : x)
# abs(x) = x * (x<0 ? -1 : 1)
# x * (x<0 ? -5 : 5) = abs(x)*5
# x * ((x<0 ? -5 : 5) + y) = abs(x)*5 + x*y
#x<0 ? -x : x POS
#x>0 ? x : -x POS
#x<0 ? x : -x NEG
#x>0 ? -x : x NEG
@R cMul (cIf [(cLess[x 0]) % -%]) x : (cAbs[x]) -% # TEST 20/ifabs
@R cMul (cIf [(cGreater[x 0]) % -%]) x : (cAbs[x]) % # TEST 20/ifabs
@R cMul (cAdd (cIf [(cLess[x 0]) % -%]) <1>) x : (cAdd (cMul (cAbs[x]) -%) (cMul x (cAdd <1>))) # TEST 20/ifabs
@R cMul (cAdd (cIf [(cGreater[x 0]) % -%]) <1>) x : (cAdd (cMul (cAbs[x]) %) (cMul x (cAdd <1>))) # TEST 20/ifabs
cMul % (cIf [x & z@C]) : (cIf [x *(% &) *(% z@C)]) # TEST 20/if_join_mul2, ifabs
cAdd % (cIf [x & z@C]) : (cIf [x +(% &) +(% z@C)]) # TEST 20/if_join_add2
@R cIf [(cGreater[x 0]) (cFloor[x]) (cCeil[x])] -> cTrunc x # TEST 20/trunc_from_if
#@R cIf [(cGreaterOrEq[x 0]) (cFloor[x]) (cCeil[x])] -> cTrunc x # TEST 20/trunc_from_if
@R cIf [(cLess[x 0]) (cCeil[x]) (cFloor[x])] -> cTrunc x # TEST 20/trunc_from_if
#@R cIf [(cLessOrEq[x 0]) (cCeil[x]) (cFloor[x])] -> cTrunc x # TEST 20/trunc_from_if
cAdd (cIf[x y z]) (cIf[x a b]) : (cIf [x (cAdd y a) (cAdd z b)]) # TEST 20/if_join_add
cMul (cIf[x y z]) (cIf[x a b]) : (cIf [x (cMul y a) (cMul z b)]) # TEST 20/if_join_mul
cAnd (cIf[x y z]) (cIf[x a b]) : (cIf [x (cAnd y a) (cAnd z b)]) # TEST 20/if_join_and
cOr (cIf[x y z]) (cIf[x a b]) : (cIf [x (cOr y a) (cOr z b)]) # TEST 20/if_join_or
@R cMin (cIf[x y z]) (cIf[x a b]) : (cIf [x (cMin y a) (cMin z b)]) # TEST 20/if_join_min
@R cMax (cIf[x y z]) (cIf[x a b]) : (cIf [x (cMax y a) (cMax z b)]) # TEST 20/if_join_max
@R cAnd (cNot[x]) (cNot[y]) : (cNot [(cOr x y)]) # TEST 20/nor2, nor2plus, nor3
@R cOr (cNot[x]) (cNot[y]) : (cNot [(cAnd x y)]) # TEST 20/nand2, nand2plus, nand3
@R cAnd (cNot[z]) (cIf[x (cNot[y]) %@L]) : (cNot [(cOr z (cIf[x y (cNot[%])]))])
@R cOr (cNot[z]) (cIf[x (cNot[y]) %@L]) : (cNot [(cAnd z (cIf[x y (cNot[%])]))])
@R cAnd (cNot[z]) (cIf[x %@L (cNot[y])]) : (cNot [(cOr z (cIf[x (cNot[%]) y]))])
@R cOr (cNot[z]) (cIf[x %@L (cNot[y])]) : (cNot [(cAnd z (cIf[x (cNot[%]) y]))])
# From logic, follows that...
# (a==b) & (b==c) & (a==c) -- one of these is redundant
cAnd (cEqual[x y]) (cEqual[y z]) (cEqual[x z]) : (cEqual[x y]) (cEqual[y z])
# Note: ^ Replacement function refers to y twice
# !x = abs(x) < 0.5
# Thus, !(x*2) = abs(x) < 0.5/2
# Note: Due to range-based optimizations, % can never be 0 here. These are safe.
@R @F cGreater [% (cAbs[x])] -> cNot[(cMul x 0.5 /%)] # TEST 20/absnzlt
@R @F cLessOrEq [% (cAbs[x])] -> cNotNot[(cMul x 0.5 /%)] # TEST 20/absnzge
# abs(x) > 0 --> abs(x) != 0 --> x != 0
@R cEqual [0 (cAbs[x])] : x 0 # TEST 20/abseq0
@R cNEqual [0 (cAbs[x])] : x 0 # TEST 20/absneq0
@I cEqual [0 x] -> cNot [x] # TEST 20/eq0
@I cNEqual [0 x] -> cNotNot [x] # TEST 20/neq0
@I cEqual [1 x@L] -> x # TEST 20/eq1
@I cNEqual [1 x@L] -> cNot [x] # TEST 20/neq1
@I cNot [(cAdd % <1>)] -> cEqual -% (cAdd <1>) # TEST 20/xaddnot
@I cNotNot [(cAdd % <1>)] -> cNEqual -% (cAdd <1>) # TEST 20/xaddnotnot
@R @I cLess [0 (cAbs[x])] -> cNotNot [x] # TEST 20/gt0_abs
@R @I cLessOrEq [1 (cAbs[x])] -> cNotNot [x] # TEST 20/ge1_abs
@R @I cGreater [1 (cAbs[x])] -> cNot [x] # TEST 20/gt1_abs
@R @I cGreaterOrEq [0 (cAbs[x])] -> cNot [x] # TEST 20/ge0_abs
cIf [x 1 0] -> cNotNot [x] # TEST 20/if10 (factor 1)
cIf [x 0 1] -> cNot [x] # TEST 20/if10 (factor 10)
cAbsIf [x 1 0] -> cAbsNotNot [x] # TEST 20/if10 (factor 100)
cAbsIf [x 0 1] -> cAbsNot [x] # TEST 20/if10 (factor 1000)
# In logical contexts:
@R @L cMul %@N : -% # TEST 20/l_mulneg
@R @L cMul (cAbs[x]) : x # TEST 20/l_mulabs
@R @L cNotNot [x] -> x # TEST 20/l_notnot
@R @L cAbs [x] -> x # TEST 20/l_abs
#@R @F cAnd (cLess[% x]) (cAbsNot[x]) : (cNot (cMul /+(0.5 -%) (cAdd x *(+(% 0.5) -0.5))))
#@R @F cAnd (cLess[% x]) (cGreater[& x]) : (cNot (cMul /+(& -%) (cAdd x *(+(% &) -0.5))))
#@R @F cAbsAnd (cLess[% x]) (cGreater[& x]) : (cNot (cMul /+(& -%) (cAdd x *(+(% &) -0.5))))
#@R @F cAbsAnd (cLess[% x]) (cAbsNot[x]) : (cNot (cMul /+(0.5 -%) (cAdd x *(+(% 0.5) -0.5))))
#@R @F cOr (cGreaterOrEq[% x]) (cLessOrEq[& x]) : (cNotNot (cMul /+(& -%) (cAdd x *(+(% &) -0.5))))
#@R @F cOr (cGreaterOrEq[% x]) (cAbsNotNot[x]) : (cNotNot (cMul /+(0.5 -%) (cAdd x *(+(% 0.5) -0.5))))
#@R @F cAbsOr (cGreaterOrEq[% x]) (cLessOrEq[& x]) : (cNotNot (cMul /+(& -%) (cAdd x *(+(% &) -0.5))))
#@R @F cAbsOr (cGreaterOrEq[% x]) (cAbsNotNot[x]) : (cNotNot (cMul /+(0.5 -%) (cAdd x *(+(% 0.5) -0.5))))
# ^ these rules only work if & > %, and currently there's no way to verify it
#@R cOr (cAbsNot[x]) (cAbsNot[(cMul{x -1})]) : (cNot[x])
#@R cAbsOr (cAbsNot[x]) (cAbsNot[(cMul{x -1})]) : (cNot[x])
#@R cOr (cAbsNotNot[x]) (cAbsNotNot[(cMul{x -1})]) : (cNotNot[x])
#@R cAbsOr (cAbsNotNot[x]) (cAbsNotNot[(cMul{x -1})]) : (cNotNot[x])
@R @F cAbsNotNot (cMul %@P <1>) -> (cGreaterOrEq[(cMul <1>) *(0.5 /%)])
@R @F cAbsNotNot (cMul %@N <1>) -> (cLessOrEq[(cMul <1>) *(0.5 /%)])
# min(x, max(x, ...)) = x
# max(x, min(x, ...)) = x
cMin x (cMax x <1>) : x # TEST 20/mixedminmax
cMax x (cMin x <1>) : x # TEST 20/mixedminmax
[SIMPLIFY_EQUATION]
@R cLess [(cAdd % <1>) &] : (cAdd <1>) SUB(& %) # TEST 20/cmp*_add_imm
@R cLessOrEq [(cAdd % <1>) &] : (cAdd <1>) SUB(& %) # TEST 20/cmp*_add_imm
@R cGreater [(cAdd % <1>) &] : (cAdd <1>) SUB(& %) # TEST 20/cmp*_add_imm
@R cGreaterOrEq [(cAdd % <1>) &] : (cAdd <1>) SUB(& %) # TEST 20/cmp*_add_imm
@R cEqual [(cAdd % <1>) &] : (cAdd <1>) SUB(& %) # TEST 20/cmp*_add_imm
@R cNEqual [(cAdd % <1>) &] : (cAdd <1>) SUB(& %) # TEST 20/cmp*_add_imm
@R cLess [(cAdd % <1>) (cAdd & <2>)] : (cAdd <1>) (cAdd <2> & -%) # TEST 20/cmp*_add_imm
@R cLessOrEq [(cAdd % <1>) (cAdd & <2>)] : (cAdd <1>) (cAdd <2> & -%) # TEST 20/cmp*_add_imm
@R cGreater [(cAdd % <1>) (cAdd & <2>)] : (cAdd <1>) (cAdd <2> & -%) # TEST 20/cmp*_add_imm
@R cGreaterOrEq [(cAdd % <1>) (cAdd & <2>)] : (cAdd <1>) (cAdd <2> & -%) # TEST 20/cmp*_add_imm
@R cEqual [(cAdd % <1>) (cAdd & <2>)] : (cAdd <1>) (cAdd <2> & -%) # TEST 20/cmp*_add_imm
@R cNEqual [(cAdd % <1>) (cAdd & <2>)] : (cAdd <1>) (cAdd <2> & -%) # TEST 20/cmp*_add_imm
@R cLess [(cAdd x <1>) (cAdd x <2>)] : (cAdd <1>) (cAdd <2>) # TEST 20/cmp*_add_reduce
@R cLessOrEq [(cAdd x <1>) (cAdd x <2>)] : (cAdd <1>) (cAdd <2>) # TEST 20/cmp*_add_reduce
@R cGreater [(cAdd x <1>) (cAdd x <2>)] : (cAdd <1>) (cAdd <2>) # TEST 20/cmp*_add_reduce
@R cGreaterOrEq [(cAdd x <1>) (cAdd x <2>)] : (cAdd <1>) (cAdd <2>) # TEST 20/cmp*_add_reduce
@R cEqual [(cAdd x <1>) (cAdd x <2>)] : (cAdd <1>) (cAdd <2>) # TEST 20/cmp*_add_reduce
@R cNEqual [(cAdd x <1>) (cAdd x <2>)] : (cAdd <1>) (cAdd <2>) # TEST 20/cmp*_add_reduce
@R @F cLess [(cMul %@P <1>) &] : (cMul <1>) DIV(& %) # TEST 20/cmp*_mul_imm_pos
@R @F cLessOrEq [(cMul %@P <1>) &] : (cMul <1>) DIV(& %) # TEST 20/cmp*_mul_imm_pos
@R @F cGreater [(cMul %@P <1>) &] : (cMul <1>) DIV(& %) # TEST 20/cmp*_mul_imm_pos
@R @F cGreaterOrEq [(cMul %@P <1>) &] : (cMul <1>) DIV(& %) # TEST 20/cmp*_mul_imm_pos
@R @F cLess [(cMul %@N <1>) &] : DIV(& %) (cMul <1>) # TEST 20/cmp*_mul_imm_neg
@R @F cLessOrEq [(cMul %@N <1>) &] : DIV(& %) (cMul <1>) # TEST 20/cmp*_mul_imm_neg
@R @F cGreater [(cMul %@N <1>) &] : DIV(& %) (cMul <1>) # TEST 20/cmp*_mul_imm_neg
@R @F cGreaterOrEq [(cMul %@N <1>) &] : DIV(& %) (cMul <1>) # TEST 20/cmp*_mul_imm_neg
@R @F cEqual [(cMul % <1>) &] : (cMul <1>) DIV(& %) # TEST 20/cmp*_mul_imm_pos
@R @F cNEqual [(cMul % <1>) &] : (cMul <1>) DIV(& %) # TEST 20/cmp*_mul_imm_pos
@R @F cLess [(cMul %@P <1>) (cMul & <2>)] : (cMul <1>) (cMul <2> DIV(& %)) # TEST 20/cmp*_mul_imm_pos
@R @F cLessOrEq [(cMul %@P <1>) (cMul & <2>)] : (cMul <1>) (cMul <2> DIV(& %)) # TEST 20/cmp*_mul_imm_pos
@R @F cGreater [(cMul %@P <1>) (cMul & <2>)] : (cMul <1>) (cMul <2> DIV(& %)) # TEST 20/cmp*_mul_imm_pos
@R @F cGreaterOrEq [(cMul %@P <1>) (cMul & <2>)] : (cMul <1>) (cMul <2> DIV(& %)) # TEST 20/cmp*_mul_imm_pos
@R @F cLess [(cMul %@N <1>) (cMul & <2>)] : (cMul <2> DIV(& %)) (cMul <1>) # TEST 20/cmp*_mul_imm_neg
@R @F cLessOrEq [(cMul %@N <1>) (cMul & <2>)] : (cMul <2> DIV(& %)) (cMul <1>) # TEST 20/cmp*_mul_imm_neg
@R @F cGreater [(cMul %@N <1>) (cMul & <2>)] : (cMul <2> DIV(& %)) (cMul <1>) # TEST 20/cmp*_mul_imm_neg
@R @F cGreaterOrEq [(cMul %@N <1>) (cMul & <2>)] : (cMul <2> DIV(& %)) (cMul <1>) # TEST 20/cmp*_mul_imm_neg
@R @F cEqual [(cMul % <1>) (cMul & <2>)] : (cMul <1>) (cMul <2> DIV(& %)) # TEST 20/cmp*_mul_imm_pos
@R @F cNEqual [(cMul % <1>) (cMul & <2>)] : (cMul <1>) (cMul <2> DIV(& %)) # TEST 20/cmp*_mul_imm_pos
#cLess [(cMul x <1>) (cMul x <2>)] : (cMul <1>) (cMul <2>)
#cLessOrEq [(cMul x <1>) (cMul x <2>)] : (cMul <1>) (cMul <2>)
#cGreater [(cMul x <1>) (cMul x <2>)] : (cMul <1>) (cMul <2>)
#cGreaterOrEq [(cMul x <1>) (cMul x <2>)] : (cMul <1>) (cMul <2>)
#cEqual [(cMul x <1>) (cMul x <2>)] : (cMul <1>) (cMul <2>)
#cNEqual [(cMul x <1>) (cMul x <2>)] : (cMul <1>) (cMul <2>)
# ^ Note: This fails when x=0
# Instead of x, generate (x^%)^(1/%) to further
# delegate the possible responsibility of adding an abs() call.
@R @F cLess [(cPow [x %@P]) &] : (cPow [(cPow [x %]) /%]) POW(& /%) # TEST 20/cmp*_pow_imm_*
@R @F cLessOrEq [(cPow [x %@P]) &] : (cPow [(cPow [x %]) /%]) POW(& /%) # TEST 20/cmp*_pow_imm_*
@R @F cGreater [(cPow [x %@P]) &] : (cPow [(cPow [x %]) /%]) POW(& /%) # TEST 20/cmp*_pow_imm_*
@R @F cGreaterOrEq [(cPow [x %@P]) &] : (cPow [(cPow [x %]) /%]) POW(& /%) # TEST 20/cmp*_pow_imm_*
@R @F cEqual [(cPow [x %@P]) &] : (cPow [(cPow [x %]) /%]) POW(& /%) # TEST 20/cmp*_pow_imm_*
@R @F cNEqual [(cPow [x %@P]) &] : (cPow [(cPow [x %]) /%]) POW(& /%) # TEST 20/cmp*_pow_imm_*
#@R @F cLess [(cPow [x %@P]) (cPow [y &@P])] : (cPow [(cPow [x %]) /MIN(% &)]) (cPow [(cPow [y &]) /MIN(% &)]) # TEST 20/cmp*_powpow_imm_pospos
#@R @F cLessOrEq [(cPow [x %@P]) (cPow [y &@P])] : (cPow [(cPow [x %]) /MIN(% &)]) (cPow [(cPow [y &]) /MIN(% &)]) # TEST 20/cmp*_powpow_imm_pospos
#@R @F cGreater [(cPow [x %@P]) (cPow [y &@P])] : (cPow [(cPow [x %]) /MIN(% &)]) (cPow [(cPow [y &]) /MIN(% &)]) # TEST 20/cmp*_powpow_imm_pospos
#@R @F cGreaterOrEq [(cPow [x %@P]) (cPow [y &@P])] : (cPow [(cPow [x %]) /MIN(% &)]) (cPow [(cPow [y &]) /MIN(% &)]) # TEST 20/cmp*_powpow_imm_pospos
#@R @F cEqual [(cPow [x %@P]) (cPow [y &@P])] : (cPow [(cPow [x %]) /MIN(% &)]) (cPow [(cPow [y &]) /MIN(% &)]) # TEST 20/cmp*_powpow_imm_pospos
#@R @F cNEqual [(cPow [x %@P]) (cPow [y &@P])] : (cPow [(cPow [x %]) /MIN(% &)]) (cPow [(cPow [y &]) /MIN(% &)]) # TEST 20/cmp*_powpow_imm_pospos
# ^ Note: This fails in "pow(x,2) op pow(y,3)" when x=-5, y=-6"
# TODO: Figure out how to workaround
@R @F cLess [(cPow [% x]) (cPow [% y])] : x y # TEST 20/cmp*_powpow_imm_base
@R @F cLessOrEq [(cPow [% x]) (cPow [% y])] : x y # TEST 20/cmp*_powpow_imm_base
@R @F cGreater [(cPow [% x]) (cPow [% y])] : x y # TEST 20/cmp*_powpow_imm_base
@R @F cGreaterOrEq [(cPow [% x]) (cPow [% y])] : x y # TEST 20/cmp*_powpow_imm_base
@R @F cEqual [(cPow [% x]) (cPow [% y])] : x y # TEST 20/cmp*_powpow_imm_base
@R @F cNEqual [(cPow [% x]) (cPow [% y])] : x y # TEST 20/cmp*_powpow_imm_base
# ^Note: This fails on exp(x)=exp(y) because of epsilon
@R @F cLess [&@P (cPow [%@P x])] : DIV(LOG(&) LOG(%)) x # TEST 20/cmp*_pow_imm_pospos_base
@R @F cLessOrEq [&@P (cPow [%@P x])] : DIV(LOG(&) LOG(%)) x # TEST 20/cmp*_pow_imm_pospos_base
@R @F cGreater [&@P (cPow [%@P x])] : DIV(LOG(&) LOG(%)) x # TEST 20/cmp*_pow_imm_pospos_base
@R @F cGreaterOrEq [&@P (cPow [%@P x])] : DIV(LOG(&) LOG(%)) x # TEST 20/cmp*_pow_imm_pospos_base
@R @F cEqual [&@P (cPow [%@P x])] : DIV(LOG(&) LOG(%)) x # TEST 20/cmp*_pow_imm_pospos_base
@R @F cNEqual [&@P (cPow [%@P x])] : DIV(LOG(&) LOG(%)) x # TEST 20/cmp*_pow_imm_pospos_base
[REMOVE_REDUNDANT]
@R cMul (cAbs[x]) (cAbs[y]) : (cAbs[(cMul x y)]) # TEST 20/mergemultiabs
[EXTRACT1]
# ceil(-x) = -floor(x); floor(-x) = -ceil(x)
@R @F cFloor[(cMul -1 <1>)] -> cMul -1 (cCeil[(cMul <1>)]) # TEST 20/negfloor
@R @F cCeil[(cMul -1 <1>)] -> cMul -1 (cFloor[(cMul <1>)]) # TEST 20/negceil
[LOGARITHM]
#### Logarithm optimizations
# log(x^y) = y*log(x)
#@F cLog [(cPow [x y])] -> cMul y (cLog[(cPow [(cPow [x y]) (cPow [y -1])])])
# ^makes an infinite loop
#@F cLog [(cPow [x@P y])] -> cMul y (cLog[x])
#@F cLog [(cPow [x y@E])] -> cMul y (cLog [(cAbs [x])])
# ^ Done in ConstantFolding()
# CONSTANT_E^log(x) = x
# CONSTANT_E^(log(x)*y) = x^y
# Generalized as: p^ log(x) = x^ log(p)
# p^(log(x)*y) = x^(log(p)*y)
#
# Warning: This loses the information that x > 0,
# that could be utilized in further optimizations.
#
@F cPow [% (cLog[x]) ] : x LOG(%) # TEST 20/powimmlog
@F cPow [% (cMul (cLog[x]) <1>)] : x (cMul LOG(%) <1>) # TEST 20/powimmlog
# Because log(exp(6)*x) = log(x)+6, we can also do this:
# y^(log(x)+z)
# = y^(log(x*exp(z)))
# = (x*exp(z))^log(y)
# = x^log(y) * y^z
#cPow [y (cAdd {(cLog[x]) &})] -> cMul (cPow [y &]) (cPow [x (cLog [y])])
#
# Probably beneficial to do it only when y is const,
# though. Otherwise we only trade + for *, which is bad.
# Also z should be const, otherwise we get two pows instead of one.
@F cPow [% (cAdd {(cLog[x]) &})] -> cMul POW(% &) (cPow [x LOG(%)]) # TEST 20/powimmaddimmlog
# x^(y*z) = (x*y)^z - done by ConstantFolding
# z^(log(x)/log(z)*y) = x^y
# Note: This rule fails when z=0, because log(0)=-inf and 0^x = 1
@F cPow [z (cMul (cPow [(cLog[z]) -1]) (cLog[x]) <1>)] : x (cMul <1>)
@F cPow [% (cMul /LOG(%) (cLog[x]) <1>)] : x (cMul <1>)
# log(x) + log(y) = log(x*y)
@F cAdd (cLog[x]) (cLog[y]) : (cLog (cMul [x y])) # TEST 20/addlog
# When x is const, the reverse is more beneficial
# i.e. log(2*x) = log(x) + log(2)
@F cLog [(cMul %@P <1>)] -> cAdd (cLog [(cMul <1>)]) LOG(%) # TEST 20/mulimmlog
# log(x * z^y) = (log(x) / log(z) + y) * log(z)
# = log(x) + log(z)*y
# Only worthwhile when z is an immed, otherwise we trade cPow for cLog
# Note that when z = CONSTANT_E, this reduces rather nicely into log(x) + y
@F cLog [(cMul (cPow [% y]) <1>)] -> cAdd (cMul [LOG(%) y]) (cLog [(cMul <1>)])
#cLog [(cMul (cPow [% y]) <1>)] -> cMul LOG(%) (cAdd [y (cMul (cLog [(cMul <1>)]) /LOG(%))])
# When y=1, the reverse is more useful:
@F cMul {% (cAdd {1 (cMul {(cLog [x]) /%})})} -> cAdd (cLog [x]) %
[POW_TRICKS]
###### Note: Before adding new rules (especially those which handle constant values),
###### verify that it is not already done in ConstantFolding().
# (x*5) ^ 2 = x^2 * (5^2)
# (x*5)^-1 = 0.2/x , shrug
cPow [(cMul %@P <1>) &] -> cMul POW(% &) (cPow [(cMul <1>) &]) # TEST 20/powmulimm_*
# ^Limited to positive values so that (-4*x)^3.3 won't be changed into nan*x^3.3
cPow [(cMul %@N <1>) &@E] -> cMul POW(% &) (cPow [(cMul <1>) &]) # TEST 20/powmulimm_*
# ^This changes (-5*x)^2 into x^2 * (-5)^2 = x^2 * 25, but only when & is an even integer.
# z^(x+y/log(z)) = z^x * exp(y)
# Note: This rule fails when z=0, because log(0)=-inf and 0^z = 1
@F cPow [z (cAdd <1> (cMul <2> (cPow [(cLog [z]) -1])))] -> cMul (cPow [z (cAdd <1>)]) (cPow [CONSTANT_E (cMul <2>)])
#@F cPow [% (cAdd <1> (cMul <2> /LOG(%)))] -> cMul (cPow [% (cAdd <1>)]) (cPow [CONSTANT_E (cMul <2>)])
@F cPow [z (cAdd <1> (cPow [(cLog [z]) -1]))] -> cMul CONSTANT_E (cPow [z (cAdd <1>)])
cPow [% (cAdd <1> &@M)] -> cMul POW(% &) (cPow [% (cAdd <1>)])
# x*y / (x*z) = y/z
cMul (cPow [(cMul x <2>) -1]) x : (cPow [(cMul <2>) -1])
# (x^y)^z -> x^(y*z)
# safe when y is odd or float, or z is an integer, or x is not negative
cPow [ (cPow[x y@O]) z ] : x (cMul [y z])
cPow [ (cPow[x y@F]) z ] : x (cMul [y z])
cPow [ (cPow[x y]) z@I ] : x (cMul [y z])
cPow [ (cPow[x@P y]) z ] : x (cMul [y z])
# (x^y)^z where (y*z) makes an even integer could also be changed safely
#cPow [(cPow [x y@I]) z@E] : x (cMul [y z])
# If pow() makes a signless value into a positive value, guard that fact with abs()
cPow [ (cPow[x@Q y])@P z ] : (cAbs [x]) (cMul [y z])
# abs(x)^e -> x^e when e=even integer
# This removes the abs() generated by the above rule when needless
cPow [(cAbs[x]) y@E] : x y
cPow [(cMul (cAbs[x]) <1>) y@E] : (cMul x <1>) y
#cPow [(cMul %@N <1>) y@E] : (cMul -% <1>) y
# ^ already done by constantfolding
# x^y * (n + x^z) = n*x^y + x^(y+z)
cMul (cPow [x y]) (cAdd {%@1 (cPow [x z])}) : (cAdd (cMul (cPow[x y]) %) (cPow[x (cAdd y z)]))
# x^y * (n + a^z) = n*x^y + x^(y+z*log(a)/log(x))
cMul (cPow [& y]) (cAdd { 1 (cPow [x@P z])}) : (cAdd (cPow[& y]) (cPow[& (cAdd y (cMul z (cLog[x]) /LOG(&)))]))
cMul (cPow [& y]) (cAdd {-1 (cPow [x@P z])}) : (cAdd (cMul (cPow[& y]) -1) (cPow[& (cAdd y (cMul z (cLog[x]) /LOG(&)))]))
# exp(-x)*(exp(2*n)+1)*4
# becomes
# exp(1) ^ (-x) * (exp(2) ^ n * 4 + 4)
# so we detect that here as well.
cMul (cPow [& y]) (cAdd {(cMul {% (cPow [x@P z])}) %}) : % (cAdd (cPow[& y]) (cPow[& (cAdd y (cMul z (cLog[x]) /LOG(&)))]))
cMul (cPow [& y]) (cAdd {(cMul {% (cPow [x@P z])}) -%}) : % (cAdd (cMul (cPow[& y]) -1) (cPow[& (cAdd y (cMul z (cLog[x]) /LOG(&)))]))
# exp(2*y) - 2*exp(y) = (exp(x)-1)^2 - 1
# exp(2*y) - 6*exp(y) = (exp(x)-3)^2 - 9
# exp(2*y) + 6*exp(y) = (exp(x)+3)^2 - 9
# note: x^(2*y) = (x^2)^y (especially: exp(2*y) = exp(2)^y)
cAdd (cMul {% (cPow[x y ])}) (cPow[x (cMul { 2 y})]) : (cPow[(cAdd (cPow[x y ]) *(% 0.5)) 2]) -POW(*(% 0.5) 2)
cAdd (cMul {% (cPow[x (cMul {& y})])}) (cPow[x (cMul {*(& 2) y})]) : (cPow[(cAdd (cPow[x (cMul y &)]) *(% 0.5)) 2]) -POW(*(% 0.5) 2)
cAdd (cMul {% (cPow[& y ])}) (cPow[POW(& 2) y ]) : (cPow[(cAdd (cPow[& y ]) *(% 0.5)) 2]) -POW(*(% 0.5) 2)
[BINOMIAL]
# Opcodes we will NOT find in the intermediate stage:
# Done by bytecode parser:
# Meta opcodes: cDup, cNop, cFetch, cPopNMov, cJump
# Meta opcodes: cVar, cImmed
# Implemented through cMul: cDiv, cRDiv, cInv, cSqr
# Implemented through cAdd: cSub, cRSub, cNeg
# Implemented through constant-multiplying: cDeg, cRad
# Implemented through cSin, cCos: cCot, cCsc, cSec, cTan
# Implemented through cPow: cSqrt, cExp
# Implemented through cLog: cLog2, cLog10
# Done by entry rules:
# Extracted: cAsinh, cAcosh, cAtanh
# Extracted: cSinh, cCosh, cTanh
#### CONTINUED: Flattening the topology of add/mul/min/max/and/or groups
# a^2 + a*b*X/Z + b^2 = (a+b)^2 + (X/Z-2)*(a*b)
#cAdd (cPow[x 2]) (cPow[y 2]) (cMul x y <1>) : (cPow [(cAdd [x y]) 2]) (cMul [x y (cAdd [(cMul <1>) -2])])
# For optimizing x^2+2*x*y+y^2:
# With this rule, eval=0.287154 us, optimized = 0.0758879 us
# Without this rule, eval=0.314538 us, optimized = 0.0831386 us
# For optimizing x^2+3*x*y+y^2:
# With this rule, eval=0.295956 us, optimized = 0.0781288 us
# Without this rule, eval=0.300723 us, optimized = 0.075689 us
# The benchmark results seem too varying, so it is hard to tell
# whether this rule had some advantage. It _looks_ like it did
# though, so better keep it, I suppose. -Bisqwit
#
# How about this?
# (a+b+c)^2 = c^2 + 2*b*c + 2*a*c + b^2 + 2*a*b + a^2
# Seems that it becomes:
# a^2 + b^2 + c^2 + 2*((a+b)*c + a*b)
# Is it worth adding rule for making that into (a+b+c)^2?
# Too specific, I suppose.
# These are the same as above, but work also if pow() is expanded
# Note: It would work even with y and z instead of % and &, but we
# limit into numeric literals for simplicity.
cAdd (cMul (cPow[x %@P@I]) <1>) (cMul (cPow[x &@I]) <2>) : (cMul (cPow[x MIN(% &)]) (cAdd (cMul <1> (cPow[x (cAdd % -MIN(% &))])) (cMul <2> (cPow[x (cAdd & -MIN(% &))]))))
# Note:
# x^4*a + b*x^9 -> (x^5 * b + a)*x^4: Eval time goes 0.046 -> 0.056
# x^5*a + b*x^11 -> (x^6 * b + a)*x^5: Eval time goes 0.060 -> 0.049
# srsly, what?
# x^2 + N*y - y^2 = x^2 - (y + N* 0.5)^2 + (N/2)^2
# x^2 + N*y + y^2 = x^2 + (y + N*-0.5)^2 - (N/2)^2
@F cAdd (cMul {-1 (cPow[x 2])}) (cMul{% x}) : (cMul {-1 (cPow[(cAdd x *(% -0.5)) 2])}) POW(*(% 0.5) 2)
@F cAdd (cPow[x 2]) (cMul{% x}) : (cPow[(cAdd x *(% 0.5)) 2]) -POW(*(% 0.5) 2)
#cAdd (cMul (cPow[x %@P@I]) <1>) (cMul x <2>) : (cMul (cPow[x MIN(% 1)]) (cAdd (cMul <1> (cPow[x (cAdd % -MIN(% 1))])) (cMul <2> (cPow[x (cAdd 1 -MIN(% 1))]))))
# N*x^2 + M*x^2 = (x*sqrt(N) + y*sqrt(M))^2 - (2*sqrt(N*M))*x*y
# N*x^2 + M*x*y = (x*sqrt(N) + y*0.5*M/sqrt(N))^2 - 0.25*M^2/N*y^2
cAdd (cMul {%@P (cPow[x 2])}) (cMul {& x y}) : (cPow[(cAdd (cMul x SQRT(%)) (cMul y *(0.5 *(& /SQRT(%)))) ) 2]) (cMul (cPow[y 2]) *(*(-0.25 /%) POW(& 2)))
# N*(x^2 + y^2) + M*x*y = N*(x+y)^2 + (2*N-M)*x*y
cAdd (cMul {%@P (cAdd {(cPow[x 2]) (cPow[y 2])})}) (cMul {&@P x y}) : (cMul % (cPow[(cAdd x y ) 2])) (cMul +(& *(-2 %)) x y)
cAdd (cMul {%@P (cAdd {(cPow[x 2]) (cPow[y 2])})}) (cMul {&@N x y}) : (cMul % (cPow[(cAdd x (cMul -1 y)) 2])) (cMul +(& *( 2 %)) x y)
# The replacement expanded below:
# (cMul (cPow[x MIN(% 1)])
# (cAdd (cMul <1> (cPow[x (cAdd % -MIN(% 1))]))
# (cMul <2> (cPow[x (cAdd 1 -MIN(% 1))]))))
#
# Example: x^2*y + x*z -> x^1 * (y*x^1 + z*x^0)
# Example: x^6*y + x*z -> x^1 * (y*x^5 + z*x^0)
# Example: x^-6*y + x*z -> x^-6 * (y*x^0 + z*x^7) -- not good, so restricted with @P
#
# Example: x*z + 2*x^0.7 -> x^0.7 * (x^0.3 * z+2) -- not good, so also restricted with @I
#
# Note: These two rules should be done in constantfolding, but it's complicated.
# 5*x - 5*y = 5*(x-y)
cAdd (cMul %@P <1>) (cMul -% <2>) : (cMul % (cAdd (cMul <1>) (cMul -1 <2>))) # TEST 20/addnegmulpos
# 5 - 5*x = -5*(x-1)
#cAdd %@M (cMul -% <2>) : (cMul -% (cAdd (cMul <2>) -1))
cAdd %@M (cMul -% <2>) : (cMul % (cAdd 1 (cMul <2> -1))) # TEST 20/addnegmulneg
# (5.1*x + 4.1*y + z+w)*2
# -> (5.1*2*x + 2*(4.1*y + z+w))
# -> (5.1*2*x + (4.1*2*y + 2*(z+w)))
cMul (cAdd (cMul %@M <1>) <2>) & : (cAdd (cMul % & <1>) (cMul & (cAdd <2>))) # TEST 20/addmulconstmul
# (2+x+y)*4 = 2*4 + 4*(x+y)
cMul (cAdd %@M <1>) & : (cAdd *(% &) (cMul & (cAdd <1>))) # TEST 20/addconstmul
[TRIGONOMETRIC]
# sin(-x) = -sin(x)
@F cSin [(cMul -1 <1>)] -> cMul -1 (cSin [(cMul <1>)]) # TEST 20/negsin
# However, -sin(5*x) better expressed as sin(-5*x)
@F cMul -1 (cSin [(cMul %@N <1>)]) : (cSin [(cMul -% <1>)])
# cos(-x) = cos(x)
@F cCos [(cMul -1 <1>)] : (cMul <1>) # TEST 20/negcos
@R @F cCos [(cAbs [x])] : x # TEST 20/abscos
# cos(pi/2 - x) = sin(x)
@F cCos [(cAdd {CONSTANT_PIHALF@R (cMul %@N <1>)})] -> cSin[(cMul -% <1>)] # TEST 20/trig_modulo
# sin(pi/2 - x) = cos(x)
@F cSin [(cAdd {CONSTANT_PIHALF@R (cMul %@N <1>)})] -> cCos[(cMul -% <1>)] # TEST 20/trig_modulo
# cos(x - pi/2) = cos(pi/2 - x) = sin(x)
@F cCos [(cAdd -CONSTANT_PIHALF@R <1>)] -> cSin[(cAdd <1>)] # TEST 20/trig_modulo
# sin(x - pi/2) = -sin(pi/2 - x) = -cos(x)
@F cSin [(cAdd -CONSTANT_PIHALF@R <1>)] -> cMul -1 (cCos[(cAdd <1>)]) # TEST 20/trig_modulo
# sin(x + pi/2) = cos(x)
@F cSin [(cAdd CONSTANT_PIHALF@R <1>)] -> cCos[(cAdd <1>)] # TEST 20/trig_modulo
# cos(x + pi/2) = sin(-x)
@F cCos [(cAdd CONSTANT_PIHALF@R <1>)] -> cSin[(cMul -1 (cAdd <1>))] # TEST 20/trig_modulo
# sin(x + pi) = -sin(x)
@F cSin [(cAdd CONSTANT_PI@R <1>)] -> cMul -1 (cSin[(cAdd <1>)]) # TEST 20/trig_modulo
# cos(x + pi) = -cos(x)
@F cCos [(cAdd CONSTANT_PI@R <1>)] -> cMul -1 (cCos[(cAdd <1>)]) # TEST 20/trig_modulo
#
@F cCos [(cAdd 0@R <1>)] -> cCos[(cAdd <1>)]
@F cSin [(cAdd 0@R <1>)] -> cSin[(cAdd <1>)]
# sin(x)^2 + cos(x)^2 = 1
@F cAdd (cPow[ (cSin[x]) 2]) (cPow [(cCos[x]) 2]) : 1 # TEST 20/addsin2cos2
# y-sin(x)^2 = cos(x)^2+(y-1)
# y-cos(x)^2 = sin(x)^2+(y-1)
@F cAdd 1 (cMul { -1 (cPow[ (cSin[x]) 2]) }) : (cPow [(cCos[x]) 2]) # TEST 20/sub1sin2
@F cAdd 1 (cMul { -1 (cPow[ (cCos[x]) 2]) }) : (cPow [(cSin[x]) 2]) # TEST 20/sub1cos2
# sin(x)*cos(y) + cos(x)*sin(y) = sin(x+y)
# sin(x)*cos(y) - cos(x)*sin(y) = sin(x-y)
# cos(x)*cos(y) + sin(x)*sin(y) = cos(x+y)
# cos(x)*cos(y) - sin(x)*sin(y) = cos(x-y)
@F cAdd (cMul {(cSin[x]) (cCos[y])}) (cMul {(cCos[x]) (cSin[y]) }) : (cSin [(cAdd[x y] )])
@F cAdd (cMul {(cSin[x]) (cCos[y])}) (cMul {(cCos[x]) (cSin[y]) -1}) : (cSin [(cAdd[x (cMul [-1 y])])])
@F cAdd (cMul {(cCos[x]) (cCos[y])}) (cMul {(cSin[x]) (cSin[y]) }) : (cCos [(cAdd[x y] )])
@F cAdd (cMul {(cCos[x]) (cCos[y])}) (cMul {(cSin[x]) (cSin[y]) -1}) : (cCos [(cAdd[x (cMul [-1 y])])])
#@F cAdd (cMul {(cSin[x]) (cCos[y]) -1}) (cMul {(cCos[x]) (cSin[y]) -1}) : (cMul [-1 (cSin [(cAdd[x y] )]) ])
#@F cAdd (cMul {(cCos[x]) (cCos[y]) -1}) (cMul {(cSin[x]) (cSin[y]) -1}) : (cMul [-1 (cCos [(cAdd[x y] )]) ])
# ^This one is redundant, subexpression grouping already catches it
@F cAdd (cMul {(cCos[x]) (cCos[y]) -1}) (cMul {(cSin[x]) (cSin[y]) }) : (cMul [-1 (cCos [(cAdd[x (cMul [-1 y])])]) ])
#@F cAdd (cMul {(cSin[x]) (cCos[y]) -1}) (cMul {(cCos[x]) (cSin[y]) }) : (cMul [-1 (cSin [(cAdd[x (cMul [-1 y])])]) ])
# ^This one is redudant: It just reaffirms that sin(x) = -sin(-x).
# sin(asin(x)) = x
@F cSin [(cAsin [x])] -> x # TEST 20/asinsin
# cos(acos(x)) = x
@F cCos [(cAcos [x])] -> x # TEST 20/acoscos
# Note: asin(sin(x)) must not be converted, because
# even though asin(sin(1.1)) = 1.1, asin(sin(1500)) != 1500.
# atan(x/y) = atan2(x,y) -- do this only when we don't know whether y is zero.
# If we know that y is nonzero, ConstantFolding
# will revert this optimization.
@R @F cAtan [(cMul {x (cPow [y@Q %@N])})] -> cAtan2 [x (cPow [y -%])]
@R @F cAtan2 [(cMul x@P <1>) (cMul x@P <2>)] : (cMul <1>) (cMul <2>)
@R @F cAtan2 [(cMul x@N@V <1>) (cMul x@N@V <2>)] : (cMul -1 <1>) (cMul -1 <2>)
# asin(x): atan2(x, (1-x*x)^0.5)
# asin(x): atan(x * (1-x*x)^-0.5) - automatically converted to the above.
@R @F cAtan2 [x (cPow [(cAdd {(cMul {(cPow [x 2]) -1}) 1}) 0.5])] -> cAsin[x]
# acos(x): atan2((1-x*x)^0.5, x)
# acos(x): atan((1-x*x)^0.5 * x^-1) - automatically converted to the above.
@R @F cAtan2 [(cPow [(cAdd {(cMul {(cPow [x 2]) -1}) 1}) 0.5]) x] -> cAcos[x]
[REGENERATE_TAN]
# sin(x)/cos(x) = tan(x)
@F cMul (cSin[x]) (cPow [(cCos[x]) -1]) : (cTan[x])
@F cMul (cPow [(cSin[x]) -1]) (cCos[x]) : (cPow [(cTan[x]) -1])
# tan(x)*cos(x) = sin(x)
@F cMul (cTan[x]) (cCos[x]) : (cSin[x])
# sin(x)/tan(x) = cos(x)
@F cMul (cPow [(cTan[x]) -1]) (cSin[x]) : (cCos[x])
@F cMul (cTan[x]) (cPow [(cSin[x]) -1]) : (cPow [(cCos[x]) -1])
# cos(x)^(-2) * sin(x) = tan(x)/cos(x)
# sin(x)^2 / cos(x) = tan(x)*sin(x)
# sin(-5*x) / cos(5*x) = tan(-5*x)
@F cMul (cSin [(cMul % <1>)]) (cPow [(cCos [(cMul -% <1>)]) -1]) : (cTan [(cMul % <1>)])
# tan(-x) = -tan(x)
@F cTan [(cMul -1 <1>)] -> cMul [-1 (cTan [(cMul <1>)])]
# However, -tan(5*x) better expressed as tan(-5*x)
@F cMul -1 (cTan [(cMul %@N <1>)]) : (cTan [(cMul -% <1>)])
# asin(tan(x)) = x / (1-x^2)^0.5
#@F cAsin [(cTan [x])] -> cMul x (cPow [(cAdd (cMul (cPow [x 2]) -1) 1) -0.5])
#
# ^Disabled: Incorrectly produces error when x = 1
# acos(tan(x)) = (1-x^2)^0.5 / x
#@F cAcos [(cTan [x])] -> cMul (cPow [x -1]) (cPow [(cAdd (cMul (cPow [x 2]) -1) 1) 0.5])
#
# ^Disabled: Incorrectly produces error when x = 0
# Incorrectly produces negative numbers when acos does no such thing
# cot(pi/2 - x) = 1/tan(pi/2 - x) = tan(x)
# tan(pi/2 - x) = 1/tan(x)
# reverse is probably better
# but cot() isn't exactly bad, so keep it
#cPow [(cTan[x]) -1] -> cTan [(cAdd [CONSTANT_PIHALF@R (cMul [-1 x])])]
@F cMul (cTan [(cAdd {CONSTANT_PIHALF@R (cMul {-1 x})})]) (cTan [x]) : 1
@F cMul (cTan [(cAdd {CONSTANT_PIHALF@R (cMul -1 <1>)})]) (cTan [(cMul <1>)]) : 1
# tan(atan(x)) = x
@F cTan [(cAtan [x])] -> x
@F cTan [(cAtan2 [x y])] -> cMul x (cPow [y -1])
[REGENERATE_TANH]
# sinh(x)/cosh(x) = tanh(x)
@F cMul (cSinh[x]) (cPow [(cCosh[x]) -1]) : (cTanh[x])
@F cMul (cPow [(cSinh[x]) -1]) (cCosh[x]) : (cPow [(cTanh[x]) -1])
# tanh(x)*cosh(x) = sinh(x)
@F cMul (cTanh[x]) (cCosh[x]) : (cSinh[x])
# sinh(x)/tanh(x) = cosh(x)
@F cMul (cPow [(cTanh[x]) -1]) (cSinh[x]) : (cCosh[x])
@F cMul (cTanh[x]) (cPow [(cSinh[x]) -1]) : (cPow [(cCosh[x]) -1])
# sinh(-5*x) / cosh(5*x) = tanh(-5*x)
@F cMul (cSinh [(cMul {% x})]) (cPow [(cCosh [(cMul {-% x})]) -1]) : (cTanh [(cMul % x)])
@F cMul (cSin [(cMul {% x})]) (cPow [(cCos [(cMul {-% x})]) -1]) : (cTan [(cMul % x)])
#^ Note: Should use (cMul % <1>) instead of (cMul {% x}),
# but cannot, due to repeated restholders
# tanh(-x) = -tanh(x)
@F cTanh [(cMul -1 <1>)] -> cMul [-1 (cTanh [(cMul <1>)])]
# However, -tanh(5*x) better expressed as tanh(-5*x)
@F cMul -1 (cTanh [(cMul %@N <1>)]) : (cTanh [(cMul -% <1>)])
# tanh(x) = (exp(2*x)-1) / (exp(2*x)+1)
# 1/tanh(x) = (exp(2*x)+1) / (exp(2*x)-1)
# exp(2*x) = exp(2)^x
# y^x = exp(log(y)*x)
# tanh(x*log(y)/2) = (y^x-1) / (y^x+1)
@F cMul (cAdd {-1 (cPow [% x])}) (cPow [(cAdd { 1 (cPow [% x])}) -1]) : (cTanh [(cMul x LOG(%) 0.5)])
@F cMul (cAdd { 1 (cPow [% x])}) (cPow [(cAdd {-1 (cPow [% x])}) -1]) : (cPow [(cTanh [(cMul x LOG(%) 0.5)]) -1])
[SINH_COSH_EXP_TRANSFORMATIONS]
# sinh(-x) = -sinh(x)
@F cSinh [(cMul -1 <1>)] -> cMul [-1 (cSinh [(cMul <1>)])] # TEST 20/negsinh
# However, -sinh(5*x) better expressed as sinh(-5*x)
@F cMul -1 (cSinh [(cMul %@N <1>)]) : (cSinh [(cMul -% <1>)])
# cosh(-x) = cosh(x)
@F cCosh [(cMul -1 <1>)] : (cMul <1>) # TEST 20/negcosh
@R @F cCosh [(cAbs [x])] : x # TEST 20/abscosh
# x - 1/x = sinh(log(x))*2. However, this alone is a pessimal conversion.
#@F cAdd x (cMul {-1 (cPow [ x -1])}) : (cMul (cSinh [(cLog [x])]) 2)
#@F cAdd <1> (cMul {-1 (cPow [(cAdd <1>) -1])}) : (cMul (cSinh [(cLog [(cAdd <1>)])]) 2)
# So we add the requirement of cPow to it.
# cLog(cPow()) reduces into optimal opcodes.
#
# sinh(x)*2 = (exp(x)-exp(-x)) -- note: exp(-x) = 1/exp(x)
# cosh(x)*2 = (exp(x)+exp(-x))
@F cAdd (cPow [& x]) (cMul { -1 (cPow [/& x]) }) : (cMul (cSinh [(cLog [(cPow [& x])])]) 2)
@F cAdd (cPow [& x]) (cPow [/& x]) : (cMul (cCosh [(cLog [(cPow [& x])])]) 2)
#@F cAdd (cPow [y x]) (cMul { -1 (cPow [y (cMul {x -1})]) }) : (cMul (cSinh [(cLog [(cPow [y x])])]) 2)
#@F cAdd (cPow [y x]) (cPow [y (cMul {x -1})]) : (cMul (cCosh [(cLog [(cPow [y x])])]) 2)
#@F cAdd (cPow [y %]) (cMul { -1 (cPow [y -%]) }) : (cMul (cSinh [(cLog [(cPow [y %])])]) 2)
#@F cAdd (cPow [y %]) (cPow [y -%]) : (cMul (cCosh [(cLog [(cPow [y %])])]) 2)
# Because sinh(-x) = -sinh(x),
# sinh(x)*-2 = (exp(-x)-exp(x))
@F cAdd (cMul {-1 (cPow [& x])}) (cPow [/& x]) : (cMul (cSinh [(cMul x LOG(&))]) -2)
@F cAdd (cMul {% (cPow [& x])}) (cMul { -% (cPow [/& x])}) : (cMul (cSinh [(cMul x LOG(&))]) 2 %)
@F cAdd (cMul {% (cPow [& x])}) (cMul { % (cPow [/& x])}) : (cMul (cCosh [(cMul x LOG(&))]) 2 %)
# exp(x) = cosh(x)+sinh(x)
@F cAdd (cCosh [x]) (cSinh [x]) : (cPow [CONSTANT_E x])
# -cosh(x) = sinh(x)-exp(x)
# cosh(x) = exp(x)-sinh(x)
# -sinh(x) = cosh(x)-exp(x)
# sinh(x) = exp(x)-cosh(x)
@F cAdd (cSinh [x]) (cMul {(cPow [CONSTANT_E x]) -1}) : (cMul -1 (cCosh [x]))
@F cAdd (cMul {(cSinh [x]) -1}) (cPow [CONSTANT_E x]) : (cCosh [x])
@F cAdd (cCosh [x]) (cMul {(cPow [CONSTANT_E x]) -1}) : (cMul -1 (cSinh [x]))
@F cAdd (cMul {(cCosh [x]) -1}) (cPow [CONSTANT_E x]) : (cSinh [x])
# exp(-x) = cosh(x)-sinh(x)
# -exp(-x) = sinh(x)-cosh(x)
@F cAdd (cCosh [x]) (cMul {(cSinh [x]) -1}) : (cPow [CONSTANT_EI x])
@F cAdd (cMul {(cCosh [x]) -1}) (cSinh [x]) : (cMul {(cPow [CONSTANT_EI x]) -1})
# sinh(x) = cosh(x)-exp(-x)
# -sinh(x) = exp(-x)-cosh(x)
# cosh(x) = exp(-x)+sinh(x)
@F cAdd (cCosh [x]) (cMul {(cPow [CONSTANT_EI x]) -1}) : (cSinh [x])
@F cAdd (cMul {(cCosh [x]) -1}) (cPow [CONSTANT_EI x]) : (cMul -1 (cSinh [x]))
@F cAdd (cSinh [x]) (cPow [CONSTANT_EI x]) : (cCosh [x])
# sinh(x) = ((((E^2) ^ x) + -1) * ((E^-1) ^ x) * 0.5)
# sinh(3*x) = ((((E^6) ^ x) + -1) * ((E^-3) ^ x) * 0.5)
# sinh(3*x)*2 = (((E^6) ^ x) + -1) * ((E^-3) ^ x)
# sinh(3*x)*2 / (E^-3) ^x = (((E^6) ^ x) + -1)
# sinh(3*x)*2 * (E^ 3) ^x = (((E^6) ^ x) + -1)
#@F cAdd {-1 (cPow [% x])} : (cMul (cSinh [(cMul x LOG(%) 0.5)]) 2 (cPow [% (cMul x 0.5)]))
#@F cAdd { 1 (cPow [% x])} : (cMul (cCosh [(cMul x LOG(%) 0.5)]) 2 (cPow [% (cMul x 0.5)]))
#@F cMul (cAdd {-1 (cPow [% x])}) (cPow [POW(% -0.5) x]) : (cSinh [(cMul x LOG(%) 0.5)]) 2
#@F cMul (cPow [% x]) (cAdd {-1 (cPow [POW(% -2) x])}) : (cSinh [(cMul x LOG(%) 0.5)]) 2
# tanh(x) / cosh(x)
# = sinh(x) / cosh(x)^2
@F cMul (cSinh[x]) (cPow[(cCosh[x]) %]) : (cTanh[x]) (cPow[(cCosh[x]) +(% 1)])
# sinh(log(x)) = 0.5*(x - 1/x) (valid only for x>0)
#@F cSinh [(cLog [x])] -> cMul 0.5 (cAdd x (cMul -1 (cPow [x -1])))
[ASINH_ACOSH_ATANH_TRANSFORMATIONS]
# sinh(acosh(x)) = sqrt(x^2 - 1) (not a typo)
# cosh(asinh(x)) = sqrt(x^2 + 1) (not a typo)
# Not sure whether these are faster. They are more opcodes, but
# simpler. The rationale is in allowing for further optimizations.
@F cSinh [(cAcosh [x])] -> cPow [(cAdd [(cPow [x 2]) -1]) 0.5] # TEST 20/acoshsinh
@F cCosh [(cAsinh [x])] -> cPow [(cAdd [(cPow [x 2]) 1]) 0.5] # TEST 20/asinhcosh
# asinh: log(x + sqrt(x*x + 1))
# exp(asinh): x + sqrt(x*x + 1)#
# Disabled: On x86_64, "asinh(x)" is slower than "log(sqrt(x^2+1)+x)"
@F cAdd (cPow [(cAdd {1 (cPow [ x 2])}) 0.5]) x : (cPow [CONSTANT_E (cAsinh [x])])
@F cAdd (cPow [(cAdd {1 (cPow [(cAdd <1>) 2])}) 0.5]) <1> -> (cPow [CONSTANT_E (cAsinh [(cAdd <1>)])])
@F cAdd (cPow [(cAdd {1 (cPow [ x 2])}) -0.5]) x : (cPow [CONSTANT_EI (cAsinh [x])])
@F cAdd (cPow [(cAdd {1 (cPow [(cAdd <1>) 2])}) -0.5]) <1> -> (cPow [CONSTANT_EI (cAsinh [(cAdd <1>)])])
# acosh: log(x + sqrt(x*x - 1))
# exp(acosh): x + sqrt(x*x - 1)
# Disabled: On x86_64, "acosh(x)" is slower than "log(sqrt(x^2-1)+x)"
@F cLog [(cAdd {(cPow [(cAdd {-1 (cPow [x 2])}) 0.5]) x})] -> cAcosh [x]
#cAdd {(cPow [(cAdd {(cPow [x 2]) -1}) 0.5]) x} -> cPow [CONSTANT_E (cAcosh [x])]
# atanh(x): log( (1+x) / (1-x)) / 2
# 2*atanh(x): log( (1+x) / (1-x))
@F cLog [(cMul {(cAdd {1 x}) (cPow [(cAdd {1 (cMul {-1 x})}) -1])})] -> cMul [(cAtanh [x]) 2]
# atanh(y*x): log( (1+y*x) / (1+(-1*y*x))) / 2
# 2*atanh(y*x): log( (1+y*x) / (1+(-1*y*x)))
# atanh(5*x): log( (1+5*x) / (1+(-5*x))) / 2
# 2*atanh(5*x): log( (1+5*x) / (1+(-5*x)))
# atanh(y+x): log( (1+y+x) / (1+(-1*(y+x)))) / 2
# 2*atanh(y+x): log( (1+y+x) / (1+(-1*(y+x))))
#@F cLog [(cMul {(cAdd {1 (cMul {% x})}) (cPow [(cAdd {1 (cMul {-% x})}) -1])})] -> cMul [(cAtanh [(cMul % x)]) 2]
# atanh(x) = log2( ((x*-2)+1) / ((x*2)-1) ) * log(2)/2
# atanh(x)*2/log(2) = log2( ((x*-2)+1) / ((x*2)-1) )
# y^(atanh(x)*2/log(y)) = ((x*-y)+1) / ((x*y)-1)
#@F cMul (cAdd {1 (cMul {x %})}) (cPow [(cAdd {-1 (cMul {x -%})}) -1]) : (cPow [% (cMul (cAtanh[x]) 2 /LOG(%))])
#@F cMul (cPow [(cAdd {(cMul {x %}) &}) -1]) (cAdd {(cMul {x -%}) 2 -&}) : (cPow [-% (cMul (cAtanh[(cAdd (cMul -% x) & -1)]) 2 /LOG(-%))])
[REGENERATE_HIGHLEVEL_OPCODES]
# x * CONSTANT_RD = cDeg(x)
@F cMul CONSTANT_RD <1> -> cDeg [(cMul <1>)]
# x * CONSTANT_DR = cRad(x)
@F cMul CONSTANT_DR <1> -> cRad [(cMul <1>)]
@F cFloor [(cAdd 0.5 <1>)] -> cInt [(cAdd <1>)]
# log(x) / CONSTANT_L10 = log10(x)
@F cMul (cLog [x]) CONSTANT_L10I : (cLog10 [x])
@F cMul (cPow [(cLog [x]) -1]) CONSTANT_L10 : (cPow [(cLog10 [x]) -1])
# log(x) / CONSTANT_L2 = log2(x)
@F cMul (cLog [x]) CONSTANT_L2I : (cLog2 [x])
@F cMul (cPow [(cLog [x]) -1]) CONSTANT_L2 : (cPow [(cLog2 [x]) -1])
#@F cPow [ (cSin[x]) %@N ] : (cCsc[x]) -%
#@F cPow [ (cCos[x]) %@N ] : (cSec[x]) -%
#@F cPow [ (cTan[x]) %@N ] : (cCot[x]) -%
# ^ DONE BY MAKEBYTECODE
@F cPow [ (cAdd [( cPow [x %@E] ) ( cPow [y &@E] )] ) 0.5 ] -> (cHypot [(cPow [ x *(% 0.5)]) (cPow [ y *(& 0.5)])])
@F cPow [ (cAdd {( cPow [x %@E] ) (cMul {z@C (cPow [y &@E])})} ) 0.5 ] -> (cHypot [(cPow [ x *(% 0.5)]) (cPow [(cMul y POW(z@C /&)) *(& 0.5)])])
@F cPow [ (cAdd {(cMul {a@C (cPow [x %@E])}) (cMul {z@C (cPow [y &@E])})} ) 0.5 ] -> (cHypot [(cPow [(cMul x POW(a@C /%)) *(% 0.5)]) (cPow [(cMul y POW(z@C /&)) *(& 0.5)])])
@F cMul (cExp[x]) (cExp[y]) : (cExp[(cAdd x y)]) # TEST 20/expexp_a 20/expexp_b 20/expexp_c
@F cMul (cExp2[x]) (cExp2[y]) : (cExp2[(cAdd x y)]) # TEST 20/expexp_a 20/expexp_b 20/expexp_c
[ABS_LOGICAL]
@R cNot [x@P] -> cAbsNot [x] # TEST 20/posnot
@R cNotNot [x@P] -> cAbsNotNot [x] # TEST 20/posnotnot
@R cAnd x@P y@P : (cAbsAnd x y)
@R cOr x@P y@P : (cAbsOr x y)
@R cIf [x@P y z] -> cAbsIf x y z
#@R @L cAbsNotNot [x] -> x
#@R @L cIf [x (cAbsNotNot[y]) z] : x y z
#@R @L cIf [x y (cAbsNotNot[z])] : x y z
# ^ These are mistakes; (x>=0.5 & y) is not same as (x & y)
@R cAbsIf [(cLessOrEq[x y]) z a] : (cLess[y x]) a z
@R cAbsIf [(cNotNot[x]) y z] -> cIf x y z
@R @F cLess [x 0.5] -> cAbsNot[x] # TEST 20/lthalf
@R @F cGreaterOrEq [x 0.5] -> cAbsNotNot[x] # TEST 20/gehalf
[NON_SHORTCUT_LOGICAL_EVALUATION]
@R cOr x@L y@L : (cNotNot (cAdd x y))
@R cOr x@L (cAdd <1>)@P : (cNotNot (cAdd x <1>))
@R cAnd x@L <1> -> (cNotNot (cMul x (cAnd <1>)))
# ^Conflicts with "cMul x@L y@L"
[SHORTCUT_LOGICAL_EVALUATION]
@R cMul x@L y@L : (cAnd x y) # TEST 20/muland2, muland2plus, muland3, mulnor2, mulnor2plus, mulnor3, mulandlt
# ^Conflicts with "cAnd x@L <1>"
# @L cAdd x@L@M <1> -> cOr x (cAdd <1>)
# cMul x@L <1> -> cAnd x (cMul <1>)
#cAdd x@L@M <1> -> cAbsIf [x (cAdd <1> 1) (cAdd <1>)]
@R cMul x@L <1> -> cAbsIf [x (cMul <1>) 0]
cAnd x <1> -> cIf [x (cNotNot[(cAnd <1>)]) 0]
cOr x <1> -> cIf [x 1 (cNotNot[(cOr <1>)]) ]
cAbsAnd x <1> -> cAbsIf [x (cNotNot[(cAbsAnd <1>)]) 0]
cAbsOr x <1> -> cAbsIf [x 1 (cNotNot[(cAbsOr <1>)]) ]
[IGNORE_IF_SIDEEFFECTS]
# These rules are the polar opposite of what
# is done in SHORTCUT_LOGICAL_EVALUATION.
# Do not include them in the same optimization set.
cIf [x y@L 0] -> cAnd x y
cIf [x 0 y@L] -> cAnd (cNot[x]) y
cIf [x y 0] -> cMul (cNotNot[x]) y
cIf [x 0 y] -> cMul (cNot[x]) y
cIf [x 1 y@L] -> cOr x y
cIf [x y@L 1] -> cOr (cNot[x]) y
cIf [x y 0] -> cMul (cNotNot[x]) y
cIf [x 0 y] -> cMul (cNot[x]) y
# These cannot be done because y may have side
# effects or just be computation-heavy.
[BASE2_EXPAND_COMPONENTS]
#@F cLog [x] -> cMul (cLog2[x]) CONSTANT_L2
#@F cLog10 [x] -> cMul (cLog2[x]) CONSTANT_L10B
#@F cExp [x] -> cExp2 [(cMul CONSTANT_L2I x)]
#@F cMul (cLog2by [x y]) <1> -> cLog2by [x (cMul y <1>)]
@F cAsin [x] -> cAtan2 x (cSqrt (cSub 1 (cSqr x)))
@F cAcos [x] -> cAtan2 (cSqrt (cSub 1 (cSqr x))) x
@F cSinh [x] -> cMul 0.5 (cSub (cExp[x]) (cInv (cExp[x])))
@F cCosh [x] -> cMul 0.5 (cSub (cExp[x]) (cInv (cExp[x])))
@F cTanh [x] -> cDiv (cAdd (cExp [(cMul x 2)]) -1) (cAdd (cExp [(cMul x 2)]) 1)
@F cAtanh [x] -> cMul 0.5 (cLog (cDiv (cAdd 1 x) (cSub 1 x)))
@F cAsinh [x] -> cLog (cAdd x (cSqrt (cAdd 1 (cSqr x))))
@F cAcosh [x] -> cLog (cAdd x (cSqrt (cAdd -1 (cSqr x))))
#@F cLog2 [x] -> cLog2by x 1
#@F cMul (cPow[(cLog2[x]) %]) & : (cPow[(cLog2by[x POW(& /%)]) %])
@F cMul (cPow[(cLog2by[x 1]) %]) & : (cPow[(cLog2by[x POW(& /%)]) %])
##### Now construct the rounds of optimization:
$optimize_round1:
LOGICAL
REMOVE_REDUNDANT
LOGARITHM
POW_TRICKS
BINOMIAL
TRIGONOMETRIC
EXTRACT1
$optimize_round2:
LOGICAL
REMOVE_REDUNDANT
POW_TRICKS
SINH_COSH_EXP_TRANSFORMATIONS
ASINH_ACOSH_ATANH_TRANSFORMATIONS
$optimize_round3:
SIMPLIFY_EQUATION
REGENERATE_TAN
REGENERATE_TANH
$optimize_round4:
REGENERATE_HIGHLEVEL_OPCODES
$optimize_recreate:
REGENERATE_HIGHLEVEL_OPCODES
BINOMIAL
$optimize_ignore_if_sideeffects
IGNORE_IF_SIDEEFFECTS
LOGICAL
$optimize_shortcut_logical_evaluation
#SHORTCUT_LOGICAL_EVALUATION
LOGICAL
$optimize_nonshortcut_logical_evaluation
NON_SHORTCUT_LOGICAL_EVALUATION
LOGICAL
$optimize_abslogical
ABS_LOGICAL
#$optimize_base2_expand
#BASE2_EXPAND_COMPONENTS
#BINOMIAL
#POW_TRICKS
|