1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
|
\documentclass[10pt]{article}
\usepackage{a4}
\usepackage{epsfig}
\usepackage{listings}
\usepackage{tabularx}
\lstset{language=Delphi}%
\lstset{basicstyle=\sffamily\small}%
\lstset{commentstyle=\itshape}%
\lstset{keywordstyle=\bfseries}%
%\lstset{blankstring=true}%
\newcommand{\file}[1]{\textsf{#1}}
\newcommand{\var}[1]{\texttt{#1}}
\usepackage[pdftex]{hyperref}
\newif\ifpdf
\ifx\pdfoutput\undefined
\pdffalse
\else
\pdfoutput=1
\pdftrue
\fi
\begin{document}
\title{Programming GTK in Free Pascal: Using GDK}
\author{Florian Kl\"ampfl\\and\\Micha\"el Van Canneyt}
\date{July 2001}
\maketitle
\section{Introduction}
In this article, some of the graphics primitives from the gdk toolkit will
be demonstrated in a small game - breakout.
The GTK toolkit widgets are built upon the GDK: Graphics Drawing Kit.
The GDK does not know anything about buttons, menus checkboxes and so on.
Instead, it knows how to create windows, draw on them, handle mouse clicks
and keypresses. This functionality is used by the GTK widget set to create
usable widgets.
Sometimes, the widgets offered by GTK are not enough, and one has to fall
back on the graphics functionality of the GDK to be able to do what is
needed for a program.
Fortunately, it is not necessary to create a GTK window and handle all
GDK events to be able to use the GDK functions. The GTK widget set has a
special widget, which can be used to draw upon. This widget is the
\var{TGtkDrawingArea} widget. The use of the \var{TGtkDrawingArea} is what
will be explained below.
The GDK graphics functions will be explained using a simple arcade game,
to demonstrate that the speed of the GDK is sufficient for the creation of
simple games. The breakout game is chosen because it is conceptually simple,
requires moving graphics and can be extended in many ways.
\section{The drawing area widget}
The drawing area widget (\var{TGTKDrawingArea}) is a simple widget which
just provides a drawing window. It responds to all widget events, and adds
additionally the 'configure\_event', which is called when the widget is
realized (i.e. when the window handle is created.)
The widget has only 1 method: \var{gtk\_drawing\_area\_size}, which sets
the size of the drawing area. It is defined as follows:
\begin{lstlisting}{}
procedure gtk_drawing_area_size(Area:PGtkDrawingArea;
width,height:gint)
\end{lstlisting}{}
The arguments to this function are self-explaining.
To use the drawing area widget, one should respond to the 'expose\_event'.
This event is triggered whenever a part of the window that was invisible,
becomes visible. The event handler gets an \var{PGDKEventExpose} parameter,
which describes which area was exposed. This can be used for optimization
purposes.
To draw in the drawing area widget, the \var{Window} field of the
\var{TGTKWidget} parent can be used. This is of type \var{TGDKWindow}.
All drawing functions require a parameter of type \var{TGdkDrawable}
which can be one of the \var{TGdkWindow} or \var{TGdkPixMap} types.
\section{Graphics contexts}
Most drawing functions do not only require a drawable to draw on, they also
require a {\em Graphics Context}. A graphics context is a series of
parameters that determine how lines are drawn, what colors and font are
used etc.
The Graphics Context is an opaque record, and its members cannot be
accessed. The relevant parameters are set in a \var{TGdkGCValues} record,
which is defined as follows:
\begin{lstlisting}{}
foreground : TGdkColor;
background : TGdkColor;
font : PGdkFont;
thefunction : TGdkfunction;
fill : TGdkFill;
tile : PGdkPixmap;
stipple : PGdkPixmap;
clip_mask : PGdkPixmap;
subwindow_mode : TGdkSubwindowMode;
ts_x_origin : gint;
ts_y_origin : gint;
clip_x_origin : gint;
clip_y_origin : gint;
graphics_exposures : gint;
line_width : gint;
line_style : TGdkLineStyle;
cap_style : TGdkCapStyle;
join_style : TGdkJoinStyle;
\end{lstlisting}{}
The \var{ForeGround} and \var{Background} parameters determine the foreground
and background colors. \var{Font} is the default font. The \var{Fill} field
describes how areas are filled. It can be one of the following:
\begin{description}
\item[GDK\_SOLID] fill with the foreground color.
\item[GDK\_TILED] Use the pixmap specified in \var{Tile} to fill the area.
\item[GDK\_STIPPLED] Use the pixmap specified in \var{Stipple} to draw
pixels that are in the bitmap in the foreground color. Other bits are not
drawn.
\item[GDK\_OPAQUE\_STIPPLED] Same as \var{GDK\_STIPPLED} except that bits
not in the pixmap will be drawn in the background color.
\end{description}
The \var{clip\_bitmap} is used to define a clip area. The
\var{ts\_x\_origin} and \var{ts\_y\_origin} define the stipple or tile
origin. The \var{clip\_x\_origin} and \var{clip\_y\_origin} fields define
the origin of the clipping region.
\var{LineWidth} is the linewidth used when drawing lines. \var{Line\_Style}
determines how dashed lines are drawn. It can have one of the following
values:
\begin{description}
\item[GDK\_LINE\_SOLID] Lines are drawn solid.
\item[GDK\_LINE\_ON\_OFF\_DASH] Even segments are drawn, odd segments are
not.
\item[GDK\_LINE\_DOUBLE\_DASH] Even segments are drawn, Odd segments are
drawn in the background color if the fill style is \var{GDK\_SOLID}.
\end{description}
\var{cap\_style} determines how line ends are drawn. The following values are
defined:
\begin{description}
\item[GDK\_CAP\_BUTT] The lines are drawn with square ends.
\item[GDK\_CAP\_NOT\_LAST] Idem as \var{GDK\_CAP\_BUTT}, only for zero-width
lines, the last dot is not drawn.
\item[GDK\_CAP\_ROUND] The end of the line is a semicircle. The circle has
diameter equal to the linewidth, and the center is the endpoint of the line.
\item[GDK\_CAP\_PROJECTING] Idem as [GDK\_CAP\_BUTT], only the line extends
half the linewidth outside the endpoint.
\end{description}
The effect of these elements will be shown in the next section.
To set a color, a \var{TGDkColor} record must be allocated. Colors are
specified using a RGB value. Unfortunately, not all graphics cards can
show all colors. In order to find out which screen color corresponds
to the RGB-specified color, the GDK uses a colormap, and allocates a
color that matches the closest to the specified color values.
When allocating a new color, the colormap should be specified.
A colormap can be obtained from a \var{TGTKWidget} descdendant using the GTK function
\var{gtk\_widget\_get\_colormap}; A color can then be allocated
using the following \var{gdk\_colormap\_alloc\_color} function:
\begin{lstlisting}{}
function gdk_colormap_alloc_color(colormap:PGdkColormap;
color:PGdkColor;
writeable:gboolean;
best_match:gboolean):gboolean;
\end{lstlisting}{}
The \var{writeable} parameter specifies whether changes to
\var{color} using \var{gdk\_color\_change} are allowed.
\var{best\_match} specifies whether a best match should be attempted
on existing colors or an exact value is required.
The function returns \var{True} if the allocation succeeded,
\var{False} otherwise.
\section{Drawing primitives}
Using the properties introduced in the previous section, drawing can be
attempted using the drawing primitives offered by GDK. GDK offers drawing
functions for points, lines, segments, rectangles, polygons, circles, text
and bitmaps.
All functions accept as the first two parameters a \var{PGDKdrawable}, which
can be a pointer to a \var{TGDKWindow} or a \var{TGDkPixmap}, and a
\var{PGdkGC}, a pointer to a graphics context.
These parameters are omitted from the following declarations:
\begin{lstlisting}{}
procedure gdk_draw_point(x,y:gint);
procedure gdk_draw_line(x1,y1,x2,y2:gint);
procedure gdk_draw_rectangle(filled,x,y,width,height:gint);
\end{lstlisting}{}
The above functions draw respectively a dot, a line and a rectangle.
The meaning of the parameters for these functions is obvious.
For the rectangle, care must be taken. If the parameter \var{Filled} is
False (-1) then the drawn rectangle has actually a width and height of
\var{Width+1}, \var{Height+1}. If it is filled, then the width and
height are as specified in the call to \var{gdk\_draw\_rectangle}.
The following procedures can be used to draw a series of lines:
\begin{lstlisting}{}
procedure gdk_draw_polygon(filled:gint;points:PGdkPoint; npoints:gint);
procedure gdk_draw_lines(points:PGdkPoint; npoints:gint);
procedure gdk_draw_segments(segs:PGdkSegment; nsegs:gint);
\end{lstlisting}{}
The \var{gdk\_draw\_polygon} polygon takes a series of dots and connects
them using lines, optionally filling them. The points are specified by a
pointer to an array of \var{TGDKPoint} records (there should be \var{npoint}
such records in the array).
A \var{TGDKPoint} record contains 2 fields: \var{X,Y} which specify the
location of a point.
If needed, the first and last points are also connected using a line.
The \var{gdk\_draw\_lines} does the same, only it cannot be filled, and it
will not connect the first and last points.
The \var{gdk\_draw\_segments} requires a series of \var{TGDKSegment}
records. These consist of 4 fields: \var{x1,y1,x2,y2}, each describing
the start and end point of a line segment. The segments will not be
connected.
The \var{gdk\_draw\_arc} can be used to draw a circle or a segment of
the circle, or an ellipse.
\begin{lstlisting}{}
procedure gdk_draw_arc(filled,x,y,width,height,
angle1,angle2 : gint);
\end{lstlisting}{}
The \var{x,y, width} and \var{height} parameters describe a bounding
rectangle for the circle. The angles describe the start and extending
angle of the segment to be drawn: The circle segment starts at angle
\var{angle1} and ends at \var{angle1+angle2}. These angles are specified
in 1/64ths of a degree and are measured counterclockwise, starting at
the 3 o'clock direction. A circle segment drawn from 90 to 270 degrees
should therefore have as angles 90*64=5760 and 270*64=17280.
If filled is \var{True} (-1), then the segment will be connected to
the circle centre, and filled, in effect drawing a pie-slice.
Finally, for the \var{gdk\_draw\_string} function, the graphics context comes
before the graphics context:
\begin{lstlisting}{}
procedure gdk_draw_string(drawable:PGdkDrawable; font:PGdkFont;
gc:PGdkGC; x,y:gint; thestring:Pgchar);
\end{lstlisting}{}
The meaning of the parameters for this functions should be obvious.
The font for the \var{gdk\_draw\_string} can be obtained using the
\var{gdk\_font\_load} function:
\begin{lstlisting}{}
function gdk_font_load(font_name:Pgchar):PGdkFont;
\end{lstlisting}{}
The font name should be specified as an X font path.
All this is demonstrated in the following program:
\begin{lstlisting}{}
program graphics;
{$mode objfpc}
{$h+}
uses glib,gdk,gtk,sysutils;
var
window,
area : PGtkWidget;
Function CloseApp(widget : PGtkWidget ;
event : PGdkEvent;
data : gpointer) : boolean; cdecl;
Begin
gtk_main_quit();
close_application := false;
End;
Function AllocateColor(R,G,B : Integer;
Widget : PGtkWidget) : PGdkColor;
begin
Result:=New(PgdkColor);
With Result^ do
begin
Pixel:=0;
Red:=R;
Blue:=B;
Green:=G;
end;
gdk_colormap_alloc_color(gtk_widget_get_colormap(Widget),
Result,true,False);
end;
function Exposed(Widget: PGtkWidget;
event : PGdkEventExpose;
Data : gpointer) : Integer; cdecl;
Const
Triangle : Array[1..4] of TgdkPoint =
((X:10;Y:195),
(X:110;Y:195),
(X:55;Y:145),
(X:10;Y:195));
LineStyles : Array[1..5] of TgdkLineStyle =
(GDK_LINE_SOLID, GDK_LINE_ON_OFF_DASH,
GDK_LINE_DOUBLE_DASH, GDK_LINE_ON_OFF_DASH,
GDK_LINE_SOLID);
capstyles : Array[1..5] of TgdkCapStyle =
(GDK_CAP_ROUND,GDK_CAP_NOT_LAST, GDK_CAP_BUTT,
GDK_CAP_PROJECTING, GDK_CAP_NOT_LAST);
FontName : Pchar =
'-*-helvetica-bold-r-normal--*-120-*-*-*-*-iso8859-1';
Var
SegTriangle : Array[1..3] of TgdkSegment;
Win : pgdkWindow;
gc : PgdkGC;
i,seg : Integer;
font : PgdkFont;
Angle1,Angle2 : Longint;
begin
gc:=gdk_gc_new(widget^.Window);
Win:=widget^.window;
With Event^.area do
gdk_window_clear_area (win,x,y,width,height);
gdk_gc_set_foreground(gc,allocatecolor(0,0,0,Widget));
gdk_draw_rectangle(win,gc,0,5,5,590,390);
gdk_gc_set_foreground(gc,allocatecolor(0,0,$ffff,Widget));
for I:=10 to 50 do
gdk_draw_point(win,gc,I*10,100);
gdk_gc_set_foreground(gc,allocatecolor($ffff,0,0,Widget));
for I:=10 to 50 do
begin
gdk_gc_set_line_attributes(gc,6,LineStyles[i div 10],
CapStyles[i div 10],GDK_JOIN_MITER);
gdk_draw_line(win,gc,I*10,20,I*10,90)
end;
gdk_gc_set_line_attributes(gc,1,GDK_LINE_SOLID,
GDK_CAP_BUTT,GDK_JOIN_MITER);
gdk_gc_set_foreground(gc,allocatecolor($ffff,0,$ffff,Widget));
seg:=(360 div 20) * 64;
For I:=1 to 20 do
gdk_draw_arc(win,gc,0,220-I*4,200-i*4,8*i,8*i,i*seg,seg*19);
For I:=1 to 20 do
gdk_draw_arc(win,gc,-1,380-I*4,200-i*4,8*i,8*i,(i-1)*seg,seg);
gdk_gc_set_foreground(gc,allocatecolor(0,$ffff,$ffff,Widget));
gdk_draw_polygon(win,gc,0,@triangle[1],4);
For I:=1 to 4 do
Triangle[i].Y:=400-Triangle[i].y;
gdk_draw_polygon(win,gc,-1,@triangle[1],4);
gdk_gc_set_foreground(gc,allocatecolor(0,$ffff,0,Widget));
For I:=1 to 4 do
Triangle[i].X:=600-Triangle[i].x;
gdk_draw_lines(win,gc,@triangle[1],4);
For I:=1 to 3 do
begin
SegTriangle[i].X1:=Triangle[i].X;
SegTriangle[i].Y1:=400-Triangle[i].Y;
SegTriangle[i].X2:=Triangle[i+1].X;
SegTriangle[i].Y2:=400-Triangle[i+1].Y;
end;
gdk_draw_segments(win,gc,@segtriangle[1],3);
font:=gdk_font_load(FontName);
gdk_gc_set_foreground(gc,allocatecolor($ffff,$ffff,0,Widget));
For I:=1 to 4 do
gdk_draw_string(win,font,gc,I*100,300,
Pchar(format('String %d',[i])));
result:=0;
end;
Begin
// Initialize GTK and create the main window
gtk_init( @argc, @argv );
window := gtk_window_new( GTK_WINDOW_TOPLEVEL );
gtk_window_set_policy(PgtkWindow(Window),0,0,1);
gtk_signal_connect (GTK_OBJECT (window), 'delete_event',
GTK_SIGNAL_FUNC( @CloseApp ), NIL);
gtk_container_set_border_width (GTK_CONTAINER (window), 10);
area := gtk_drawing_area_new();
gtk_container_add( GTK_CONTAINER(window), Area);
gtk_signal_connect (GTK_OBJECT (area),'expose_event',
GTK_SIGNAL_FUNC(@Exposed),Nil);
gtk_drawing_area_size (PGTKDRAWINGAREA(area),600,400);
gtk_widget_show_all( window );
gtk_main();
end.
\end{lstlisting}
The main program starts by creating a main window,
and adding a \var{TGTKDrawingArea} to it. It then connects 2 event handlers,
one to stop the application if the window is closed (\var{CloseApp}),
the other to draw the \var{TGTKDrawingArea} when it is exposed
(\var{Exposed}). This latter contains the actual drawing routines, and is
pretty self-explaining. It simply demonstrates the use of the drawing
primitives explained above.
Note that the allocated colors are not freed again, so this program does
contain a memory leak.
The result of the program is shown in figure \ref{fig:screenshot1}.
\begin{figure}[ht]
\caption{The graphics program in action.}\label{fig:screenshot1}
\epsfig{file=gtk5ex/graphics.png,width=\textwidth}
\end{figure}
\section{Animation}
The GDK drawing functions can be used to draw directly on a window visible
on the screen. This is OK for normal applications, but applications that
have a lot of (changing) graphics will soon see a flickering screen.
Luckily, GDK provides a means to cope with this: Instead of drawing directly
on the screen, one can draw on a bitmap which exists in memory, and copy
parts of the bitmap to the screen on an as-need basis.
This is the reason why the GDK drawing functions generally accept a
\var{PGDKdrawable} parameter: This can be of the type \var{PgdkWindow} or
\var{PGDKPixmap}: The \var{TGDKPixmap} can be used to do the drawing in the
background, and then copy the pixmap to the actual window.
This technique, known as double buffering, will be demonstrated in a small
arcade game: BreakOut. The game is quite simple: at the top of the screen,
there are a series of bricks. At the bottom of the screen is a small pad,
which can be move left or right using the cursor keys. A ball bounces on the
screen. When the ball hits a brick, the brick dissappears. When the ball
hits the bottom of the window, the ball is lost. The pad can be used to
prevent the ball from hitting the bottom window.
When the pad hits the ball, the ball is accellerated in the direction the
pad was moving at the moment of impact. Also, an idea of 'slope' is
introduced: If the ball hits the pad at some distance from the pad's center,
the ball's trajectory is slightly disturbed, as if the pad has a slope.
After 5 balls were lost, the game is over. If all bricks have been
destroyed, a next level is started.
As stated above, the game will be implemented using double buffering.
The ball and pad themselves will be implemented as pixmaps; the bricks
will be drawn as simple rectangles.
These three objects will be implemented using a series of classes:
\var{TGraphicalObject}, which introduces a position and size. This class
will have 2 descendents: \var{TBlock}, which will draw a block on the
screen and \var{TSprite}, which contains all functionality to draw a moving
pixmap on the screen. From \var{TSprite}, \var{TBall} and \var{TPad} will be
derived. These two objects introduce the behaviour specific to the ball and
pad in the game.
The blocks will be managed by a \var{TBlockList} class, which is a
descendent of the standard \var{TList} class.
All these objects are managed by a \var{TBreakOut} class, which contains the
game logic. The class structure could be improved a bit, but the idea is
more to separate the logic of the different objects.
The \var{TGraphicalObject} class is a simple object which introduces some
easy access properties to get the position and size of the object:
\begin{lstlisting}{}
TGraphicalObject = Class(TObject)
FRect : TGdkRectangle;
Public
Function Contains(X,Y : Integer) : Boolean;
Property Left : SmallInt Read FRect.x Write Frect.x;
Property Top : SmallInt Read FRect.y Write Frect.y;
Property Width : Word Read Frect.Width Write Frect.Width;
Property Height : Word Read Frect.Height Write Frect.Height;
end;
\end{lstlisting}{}
The \var{TBlock} object is a simple descendent of the var{TGraphicalObject}
class:
\begin{lstlisting}{}
TBlock = Class(TGraphicalObject)
Private
FMaxHits : Integer;
FBlockList : TBlockList;
FGC : PGDKGC;
FColor : PGDKColor;
FNeedRedraw : Boolean;
Procedure CreateGC;
Function DrawingArea : PGtkWidget;
Function PixMap : PgdkPixMap;
Public
Procedure Draw;
Function Hit : Boolean;
Constructor Create (ABlockList : TBlockList);
Property Color : PGDKColor Read FColor Write FColor;
end;
\end{lstlisting}{}
The \var{FMaxHits} field determines how many times the ball must hit the
brick before it dissappears. With each hit, the field is decremented by 1.
The \var{FBlockList} refers to the blocklist object that will manage the
block. The needed drawing widget and the pixmap on which the block must be
drawn are obtained from the blockmanager using the \var{DrawingArea} and
\var{Pixmap} functions.
The \var{Draw} procedure will draw the block at it's position on the pixmap.
The \var{Color} property determines the color in which the block will be
drawn.
The implementation of the \var{TBlock} methods are quite simple. The first
methods don't need any explanation.
\begin{lstlisting}{}
Constructor TBlock.Create (ABlockList : TBlockList);
begin
Inherited Create;
FBlockList:=ABlockList;
FMaxHits:=1;
end;
Function TBlock.DrawingArea : PGtkWidget;
begin
Result:=FBlockList.FBreakout.FDrawingArea;
end;
Function TBlock.PixMap : PgdkPixMap;
begin
Result:=FBlockList.PixMap;
end;
\end{lstlisting}{}
The first interesting method is the \var{CreateGC} method:
\begin{lstlisting}{}
Procedure TBlock.CreateGC;
begin
FGC:=gdk_gc_new(DrawingArea^.Window);
gdk_gc_set_foreground(FGC,FColor);
gdk_gc_set_fill(FGC,GDK_SOLID);
FNeedRedraw:=True;
end;
\end{lstlisting}{}
The method is called the first time the block must be drawn. It allocates a
new graphics context using the \var{gdk\_gc\_new} function. This function
accepts a pointer to a \var{TGTKWidget} as a parameter and returns a new
graphics context. After the graphics context is created, the foreground
color and fill style are set. (it is assumed that \var{FColor} points
to a valid color)
The \var{Draw} procedure actually draws the block on the pixmap, using
the graphics context created in the previous method:
\begin{lstlisting}{}
Procedure TBlock.Draw;
begin
if FGC=Nil then
CreateGC;
if FNeedRedraw Then
begin
gdk_draw_rectangle(PGDKDrawable(Pixmap),FGC,-1,Left,Top,Width,Height);
FNeedRedraw:=False;
end;
end;
\end{lstlisting}{}
The \var{FNeedRedraw} procedure is used for optimization.
Finally, the \var{Hit} method is called when the block is hit by the ball.
It will decrease the \var{FMaxHits} field, and if it reaches zero, the
place occupied by the block is redrawn in the background color. After that,
it removes itself from the blocklist and frees itself.
\begin{lstlisting}{}
Function TBlock.Hit : Boolean;
begin
Dec(FMaxHits);
Result:=FMaxHits=0;
If Result then
begin
FBlockList.FBreakOut.DrawBackground(FRect);
FBlockList.Remove(Self);
Free;
end;
end;
\end{lstlisting}{}
The \var{TSprite} object is a little more involved. The declaration is
as follows:
\begin{lstlisting}{}
TSprite = Class(TGraphicalObject)
FPreviousTop,
FPreviousLeft : Integer;
FDrawingArea : PGtkWidget;
FDrawPixMap : PgdkPixmap;
FPixMap : PgdkPixMap;
FBitMap : PGdkBitMap;
Protected
Procedure CreateSpriteFromData(SpriteData : PPGchar);
Procedure CreatePixMap; Virtual; Abstract;
Procedure SavePosition;
Public
Constructor Create(DrawingArea: PGtkWidget);
Procedure Draw;
Function GetChangeRect (Var Rect : TGDkRectAngle) : Boolean;
Property PixMap : PgdkPixMap Read FPixMap;
Property BitMap : PGdkBitMap Read FBitMap;
end;
\end{lstlisting}{}
The important property is the \var{PixMap} property; this contains the
pixmap with the sprite's image. The \var{BitMap} property contains the
bitmap associated with the pixmap. The second important method is the
\var{GetChangeRect} method; it returns the rectangle occupied by the
sprite at its previous position. This will be used to 'move' the sprite:
When moving the sprite, the current position is saved (using
\var{SavePosition}), and the new position is set. After that, the old
position is cleared, and the sprite is drawn at the new position.
All this drawing is done on the background pixmap, to avoid flickering
when drawing: The result of the two drawing steps is shown at once.
The implementation of the \var{Draw} method is quite straightforward:
\begin{lstlisting}{}
Procedure TSprite.Draw;
Var
gc : PGDKGc;
begin
if FPixMap=Nil then
CreatePixMap;
gc:=gtk_widget_get_style(FDrawingArea)^.fg_gc[GTK_STATE_NORMAL];
gdk_gc_set_clip_origin(gc,Left,Top);
gdk_gc_set_clip_mask(gc,FBitmap);
gdk_draw_pixmap(FDrawPixMap,gc,FPixMap,0,0,Left,Top,Width,Height)
gdk_gc_set_clip_mask(gc,Nil);
end;
\end{lstlisting}{}
After the pixmap has been created (a method which must be implemented by
descendent objects), the graphics context of the drawing area is retrieved
to do the drawing.
The bitmap is drawn using the clipping functionality of the GDK toolkit:
To this end, the clip origin is set to the position of the sprite, and
the clip bitmask is set from the \var{FBitmap}, which is created when the
sprite's pixmap is created. When drawing the pixmap, only the bits in the
bitmap will be drawn, other bits are left untouched.
The pixmap is drawn using the \var{gdk\_draw\_pixmap} function. This
function copies a region from one \var{TGDKDrawable} to another.
It is defined as follows:
\begin{lstlisting}{}
procedure gdk_draw_pixmap(drawable:PGdkDrawable; gc:PGdkGC;
src:PGdkDrawable;
xsrc,ysrc,xdest,ydest,width,height:gint);
\end{lstlisting}{}
The function, as all GDK drawing functions, takes a \var{PGDKDrawable}
pointer and a graphics contexts as its first two arguments. The third
argument is the \var{TGDKDrawable} which should be copied. The
\var{xsrc,ysrc} parameters indicate the position of the region that should
be copied in the source \var{TGDKDrawable}; the \var{xdest,ydest} indicate
the position in the target \var{TGDKDrawable} where the bitmap should be
drawn.
In the case of \var{TSprite}, the function is used to copy the sprite's
bitmap onto the memory pixmap with the game image. After the bitmap was
copied, the clip mask is removed again.
The creation of the pixmap happens when the sprite is drawn for the first
time; The \var{CreateSpriteFromData} method accepts a pointer to an XPM
pixmap, and uses the \var{gdk\_pixmap\_create\_from\_xpm\_d} function
(explained in the previous article) to create the actual pixmap and the
corresponding bitmap.
\begin{lstlisting}{}
Procedure TSprite.CreateSpriteFromData(SpriteData : PPGChar);
begin
FPixMap:=gdk_pixmap_create_from_xpm_d(FDrawingArea^.Window,
@FBitmap,
Nil,
SpriteData);
end;
\end{lstlisting}{}
This method can be used by the descendent object's \var{CreatePixmap}
procedure.
The \var{SavePosition} and \var{GetChangeRect} methods are very
straightforward:
\begin{lstlisting}{}
Function TSprite.GetChangeRect (Var Rect : TGDkRectAngle) : Boolean;
begin
Result:=(FPreviousLeft<>Left) or (FPreviousTop<>Top);
If Result then
With Rect do
begin
x:=FPreviousLeft;
y:=FPreviousTop;
Width:=Abs(Left-FPreviousLeft)+self.Width;
height:=Abs(Top-FPreviousTop)+self.Height;
end;
end;
Procedure TSprite.SavePosition;
begin
FPreviousLeft:=Left;
FPreviousTop:=Top;
end;
\end{lstlisting}{}
Note that the \var{GetChangeRect} procedure returns false if the position
of the sprite didn't change. This is used for optimization purposes.
The pad is the simplest of the two \var{TSprite} descendents. It only adds a
horizontal movement to the sprite:
\begin{lstlisting}{}
TPad = Class (TSprite)
Private
FSlope,
FSpeed,FCurrentSpeed : Integer;
Protected
Procedure CreatePixMap; override;
Procedure InitialPosition;
Public
Constructor Create(DrawingArea: PGtkWidget);
Procedure Step;
Procedure GoLeft;
Procedure GoRight;
Procedure Stop;
Property CurrentSpeed : Integer Read FCurrentSpeed;
Property Speed : Integer Read FSpeed Write FSpeed;
Property Slope : Integer Read FSlope Write FSlope;
end;
\end{lstlisting}{}
The procedures \var{GoLeft}, \var{GoRight} and \var{Stop} can be used to
control the movement of the pad. The method \var{Step} will be called at
regular intervals to actually move the pad. The \var{InitialPosition}
sets the pad at its initial position on the screen. The \var{Speed} and
\var{Slope} properties can be used to set the speed and slope of the pad.
The \var{Speed} is a number of pixels the pad will move per time unit.
The 'Slope' is a positive number.
The implementation is quite straightforward:
\begin{lstlisting}{}
Constructor TPad.Create(DrawingArea: PGtkWidget);
begin
Inherited Create(DrawingArea);
FSpeed:=6;
FSlope:=50;
end;
Procedure TPad.InitialPosition;
begin
Left:=(FDrawingArea^.Allocation.Width-Width) div 2;
Top:=FDrawingArea^.Allocation.Height-(2*Height);
FCurrentSpeed:=0;
end;
\end{lstlisting}{}
The \var{InitialPosition} is used to reset the pad to its initial position
when the game starts, after a ball is lost or when a new level starts.
The various moving procedures do nothing except manipulate the current speed.
The handling here is quite simple, more complex handling (accelleration and
so on) coul be handled.
\begin{lstlisting}{}
Procedure TPad.GoLeft;
begin
FCurrentSpeed:=-FSpeed;
end;
Procedure TPad.GoRight;
begin
FCurrentSpeed:=FSpeed;
end;
Procedure TPad.Stop;
begin
FCurrentSpeed:=0;
end;
\end{lstlisting}{}
The pixmap for the pad is defined in a global constant \var{PadBitmap}. It is
an array of \var{PCHar} which make up a XPM pixmap. The height and width of
the bitmap are defined in global constants \var{PadHeight} and \var{PadWidth}
\begin{lstlisting}{}
Procedure TPad.CreatePixMap;
begin
CreateSpriteFromData(@PadBitmap[1]);
Width:=PadWidth;
Height:=PadHeight;
InitialPosition;
end;
\end{lstlisting}{}
The \var{Step} method does the actual moving of the pad. It is called at regular intervals
by a timer. It saves the current position, and calculates the new position. A check is
done for the boundaries of the game.
\begin{lstlisting}{}
Procedure TPad.Step;
begin
SavePosition;
Left:=Left+FCurrentSpeed;
if Left<=0 then
begin
FCurrentSpeed:=-FCurrentSpeed;
Left:=0;
end
else if Left+Width>=FDrawingArea^.allocation.width then
begin
FCurrentSpeed:=-FCurrentSpeed;
Left:=FDrawingArea^.allocation.width-Width;
end;
end;
\end{lstlisting}{}
The implementation of the \var{Tball} class is similar to the one of the \var{TPad},
only it introduces also a vertical speed. The speed of the ball is determined by 3
numbers:
\begin{enumerate}
\item A horizontal speed.
\item A vertical speed.
\item A speed factor. (a number between 0 and 100)
\end{enumerate}
The sum of the absolute values of the vertical and horizontal speeds is always 100.
To change the speed direction, the horizontal speed can be set to a value between 0
and 90. This means that the ball can never fly horizontally. The actual speed is
determined by multiplying the horizontal speed and vertical speed with a speed
factor. The 2 values that are obtained like that are the actual horizontal and
vertical speed of the ball.
All this is implemented in the following class:
\begin{lstlisting}{}
TBall = Class (TSprite)
Private
FBreakOut : TBreakOut;
FCurrentSpeedX,
FCurrentSpeedY : Integer;
FSpeedfactor : Integer;
Protected
Procedure CreatePixMap; override;
Procedure SetSpeed(Value : Integer);
Public
Constructor Create(BreakOut : TBreakOut);
Procedure Step;
Procedure IncSpeed (Value: Integer);
Procedure FlipSpeed (FlipX,FlipY : Boolean);
Property CurrentSpeedX : Integer Read FCurrentSpeedX Write SetSpeed;
Property CurrentSpeedY : Integer Read FCurrentSpeedY;
Property SpeedFactor : Integer Read FSpeedFactor Write FSpeedFactor;
end;
\end{lstlisting}{}
The \var{FlipSpeed} method is used to change the ball's direction when it hits a brick
or one of the borders of the game. The \var{IncSpeed} method increases the speed of the
ball.
As usual, the implementation of these methods is quite straightforward;
\begin{lstlisting}{}
Constructor TBall.Create(BreakOut : TBreakOut);
begin
Inherited Create(BreakOut.FDrawingArea);
FBreakOut:=breakout;
FCurrentSpeedY:=-100;
FCurrentSpeedX:=0;
FSpeedFactor:=10;
end;
\end{lstlisting}
The CreatePixmap uses the global constant \var{BallPixmap} to
create the pixmap. The with and height are stored in the \var{BallWidth}
and \var{BallHeight} constants.
\begin{lstlisting}{}
Procedure TBall.CreatePixMap;
begin
CreateSpriteFromData(@BallBitmap[1]);
Width:=BallWidth;
Height:=BallHeight;
end;
\end{lstlisting}
The SetSpeed value is the write handler for the \var{CurrentSpeedX} property.
It makes sure that the value stays within certain bounds, and that the sum
of the horizontal and vertical speeds remains 100.
\begin{lstlisting}{}
Procedure TBall.SetSpeed(Value : Integer);
begin
If Value<-FMaxXspeed then
Value:=-FMaxXSpeed
else if Value>FMaxXspeed then
Value:=FMaxXspeed;
FCurrentSpeedX:=Value;
If FCurrentSpeedY>0 then
FCurrentSpeedY:=100-Abs(FCurrentSpeedX)
else
FCurrentSpeedY:=-100+Abs(FCurrentSpeedX);
end;
\end{lstlisting}
The \var{IncSpeed} procedure increases or decreases the speed of the ball,
making sure it doesn't get smaller as 10.
\begin{lstlisting}{}
Procedure TBall.IncSpeed (Value: Integer);
begin
FSpeedFactor:=FSpeedFactor+Value;
If FSpeedFactor<10 then
FSpeedFactor:=10;
end;
Procedure TBall.FlipSpeed (FlipX,FlipY : Boolean);
begin
If FlipX then
FCurrentSpeedX:=-FCurrentSpeedX;
If FlipY then
FCurrentSpeedY:=-FCurrentSpeedY;
end;
\end{lstlisting}
The last method of \var{TBall} is the \var{Step} method,
which moves the ball on the screen. It adjusts the speed when the ball hits the
border of the game area, and calls the \var{TBreakOut.LostBall} method
when the ball hits the bottom of the game area.
\begin{lstlisting}{}
Procedure TBall.Step;
begin
SavePosition;
Left :=Left + Round((FCurrentSpeedX*FSpeedFactor/100));
Top :=Top + Round((FCurrentSpeedY*FSpeedFactor/100));
if Left<=1 then
begin
FlipSpeed(True,False);
Left:=1;
end
else if Left+Width>=FDrawingArea^.allocation.width then
begin
FlipSpeed(True,False);
Left:=FDrawingArea^.allocation.width-Width-1;
end;
if Top<=1 then
begin
FlipSpeed(False,True);
Top:=1;
end
else if Top+Height>=FDrawingArea^.allocation.Height then
FBreakOut.LostBall
end;
\end{lstlisting}
\section{Game logic}
The previous objects were concerned with the grapical representation of the
game. The logic of the game is concentrated in 2 other objects: \var{TBlockList},
which manages the blocks in the game, and \var{TBreakOut}, which implements the
game logic.
The \var{TBlockList} class is a simple descendent of \var{TList}:
\begin{lstlisting}{}
TBlockList = Class (TList)
FTotalRows,FTotalColums,FStartRow,FBlockRows,FSpacing : Byte;
FBreakOut : TBreakOut;
FColor : PGDKColor;
Function DRawingArea : PGTKWidget;
FPixMap : PGDKPixmap;
Public
Constructor Create(BreakOut : TBreakOut);
Destructor Destroy; override;
Procedure CheckCollision (Ball: TBall);
Procedure DrawBlocks;
Procedure DrawBlocks(Const Area : TGdkRectangle);
Procedure CreateBlocks;
Procedure FreeBlocks;
Property TotalRows : Byte Read FTotalRows Write FTotalRows;
Property TotalColumns : Byte Read FTotalColums Write FTotalColums;
Property StartRow : Byte Read FStartRow Write FStartRow;
Property BlockRows : Byte Read FBlockRows Write FBlockRows;
Property BlockSpacing : Byte Read FSpacing Write FSpacing;
Property PixMap : PGDKPixMap Read FPixMap Write FPixMap;
end;
\end{lstlisting}
It introduces some properties which control the look of the game:
\var{TotalRows}, \var{TotalColumns} is the total number of columns
and rows in which blocks can be placed. \var{StartRow} and \var{BlockRows}
determines how many blocks are actually placed. \var{BlockSpacing} determines
the amount of space between the blocks. The \var{CheckCollision} determines
whether a ball has hit one of the blocks. The \var{DrawBlocks} draws only the blocks
that intersect with the rectangle defined in the \var{Area} parameter.
The other methods are self explaining.
The implementation of the \var{TBlockList} class is -as usual- quite simple:
\begin{lstlisting}{}
Constructor TBlockList.Create(BreakOut : TBreakOut);
begin
FBreakOut:=BreakOut;
end;
Function TBlockList.DrawingArea : PGtkWidget;
begin
Result:=FBreakOut.FDrawingArea;
end;
Destructor TBlockList.Destroy;
begin
If FColor<>Nil then
FreeMem(FColor);
FreeBlocks;
end;
Procedure TBlockList.DrawBlocks;
Var
I : Longint;
begin
If Count=0 then
CreateBlocks;
For I:=0 to Count-1 do
TBlock(Items[i]).draw;
end;
Procedure TBlockList.DrawBlocks (Const Area : TGdkRectangle);
Var
i : longint;
inters : TgdkRectangle;
begin
For I:=0 to Count-1 do
With TBlock(Items[i]) do
FNeedRedraw:=gdk_rectangle_intersect(@area,@Frect,@inters)<>0;
DrawBlocks;
end;
\end{lstlisting}
The \var{gdk\_rectangle\_interset} returns 0 if 2 rectangles do not intersect,
and returns a nonzero constant if they do. If they do, the last parameter
is filled with the position and size of the intersecting rectangle.
\begin{lstlisting}{}
Procedure TBlockList.FreeBlocks;
Var
I : longint;
begin
For I:=Count-1 downto 0 do
begin
TBlock(Items[i]).Free;
Delete(i);
end;
end;
\end{lstlisting}
The \var{CreateBlocks} method creates the blocks and draws them on the screen.
It is called when the blocklist is drawn and there are no blocks.
The algoritthm to color and place the blocks is quite simple, but a more
complex algorithm that implements patterns of blocks depending on the
level, and different colors for blocks could be implemented.
\begin{lstlisting}{}
Procedure TBlockList.CreateBlocks;
Var
TotalHeight,TotalWidth,
Cellheight,CellWidth,
I,J : Integer;
Block : TBlock;
Min : Byte;
begin
FColor:=AllocateColor(0,0,$ffff,DrawingArea);
Min:=FSpacing div 2;
If Min<1 then
Min:=1;
TotalWidth:=Drawingarea^.Allocation.Width;
TotalHeight:=DrawingArea^.Allocation.Height;
Cellheight:=TotalHeight Div TotalRows;
CellWidth:=TotalWidth div TotalColumns;
For I:=StartRow to StartRow+BlockRows-1 do
For J:=0 to TotalColumns-1 do
begin
Block:=TBlock.Create(Self);
With Block do
begin
Top:=TotalHeight-(CellHeight*I)+Min;
Left:=(CellWidth*J)+min;
Width:=CellWidth-2*min;
Height:=CellHeight-2*min;
Color:=Self.FColor;
FNeedRedraw:=True;
end;
add(Block);
end;
end;
\end{lstlisting}
The checkcollision function checks all blocks to see whether it collides with the ball.
If so, it flips the speed of the ball and calls the balls \var{Hit} function. This will
remove the ball from the list if it is destroyed.
Note that the flipping of the speed of the ball checks where the ball came from, i.e.
looks at the previous position of the ball.
\begin{lstlisting}{}
Procedure TBlockList.CheckCollision (Ball: TBall);
var
brect,ints : tgdkrectangle;
B : TBlock;
i : integer;
flipx,flipy : Boolean;
begin
For I:=Count-1 downto 0 do
begin
B:=TBlock(Items[i]);
BRect:=B.FRect;
if gdk_rectangle_intersect(@Ball.Frect,@BRect,@ints)<>0 then
begin
FlipY:=((Ball.FpreviousTop>=(B.Top+B.Height)) and
(Ball.CurrentSpeedY<0)) or
((Ball.FpreviousTop+Ball.Height<=B.Top) and
(Ball.CurrentSpeedY>0));
FlipX:=Not FlipY;
If FlipX then
FlipX:=((Ball.FPreviousLeft>=(B.Left+B.Width)) and
(Ball.CurrentSpeedX<0)) or
(((Ball.FPreviousLeft+Ball.Width)<=B.Left) and
(Ball.CurrentSpeedX>0));
Ball.FlipSpeed(FlipX,Flipy);
if B.Hit and not (Count=0) then
gtk_widget_draw(DrawingArea,@BRect);
Break;
end;
end;
end;
\end{lstlisting}
Finally, the \var{TBreakOut} class encapsulates the rest of the game logic. Its declaration
is as follows:
\begin{lstlisting}{}
TBreakOut = Class(TObject)
Private
FLevel : Integer;
FBalls : Integer;
FBGGC : PGDKGC;
FBackGroundColor : PGDKColor;
FPad : TPad;
FBall : TBall;
FBlockList : TBlockList;
FDrawingArea : PGTKWidget;
FPixMap : PGDKPixMap;
Procedure DrawBackGround (Area : TGdkrectAngle);
Procedure DrawBoard(Exposed : PGdkEventExpose);
Procedure CreateGC;
Procedure CreatePixMap;
Procedure CopyPixMap(Area : TGdkRectangle);
Procedure CheckCollision;
Procedure FreeBall;
Procedure NextLevel;
Procedure NextBall;
Procedure GameOver;
Procedure LostBall;
Procedure Redrawgame;
Public
Constructor Create (DrawingArea : PGtkWidget);
Procedure Draw(Exposed : PGDKEventExpose);
Procedure Step;
Property BlockList : TBlockList Read FBlockList;
Property Pad : TPad Read FPad;
Property Level : Integer Read Flevel;
Property Balls : Integer Read FBalls Write FBalls;
end;
\end{lstlisting}
The purpose of most of the methods of \var{TBreakOut} is self-evident. The \var{Draw}
method will be called when the drawing area on which the game is drawn is exposed.
The \var{Step} method will be called by a timer routine, and this will move all pieces
in the game, creating the illusion of movement. These are the only 2 public routines
of the component.
The constructor simply initializes the Ball and blocklist components. It does not
create a ball, this will be created when the ball enters the game.
\begin{lstlisting}{}
Constructor TBreakOut.Create (DrawingArea : PGtkWidget);
begin
FDrawingArea:=DrawingArea;
FBlockList:=TBlockList.Create (Self);
FPad:=TPad.Create(FDrawingArea);
FBalls:=5;
end;
\end{lstlisting}
The following routines are mainly concerned with the drawing of the various parts of the game.
\begin{lstlisting}{}
Procedure TBreakOut.DrawBoard(Exposed : PGdkEventExpose);
begin
If FBGGC=Nil then
CreateGC;
DrawBackGround(Exposed^.Area);
end;
Procedure TBreakOut.CreateGC;
begin
FBGGC:=gdk_gc_new(FDrawingArea^.Window);
FBackGroundColor:=AllocateColor(0,0,0,FDrawingArea);
gdk_gc_set_foreground(FBGGC,FBackGroundColor);
gdk_gc_set_fill(FBGGC,GDK_SOLID);
end;
\end{lstlisting}
The graphics context is needed for the drawing of the background of the game;
it sets the drawing color to black and the fill style to solid. The graphics
context is then used in the \var{DrawBackground} method to draw the background
on the pixmap with the game image:
\begin{lstlisting}{}
Procedure TBreakOut.DrawBackGround (Area : TGdkrectAngle);
begin
With Area do
gdk_draw_rectangle(PGDKDrawable(FPixMap),FBGGC,-1,x,y,Width+1,Height+1);
end;
\end{lstlisting}
The pixmap that contains the game image is created the first time the breakout
game is drawn. It is created using the \var{gdk\_pixmap\_new} function, which
needs a \var{PGDKwindow} as the first parameter; from this window certain
device properties are copied.
After the pixmap is created, it is assigned to the pad and blocklist objects.
\begin{lstlisting}{}
Procedure TBreakOut.CreatePixMap;
begin
If FPixMap<>Nil then
GDK_pixmap_unref(FPixMap);
With FDrawingArea^ do
FPixMap:=gdk_pixmap_new(Window,Allocation.Width,Allocation.Height,-1);
FBlockList.PixMap:=FPixMap;
FPad.FDrawPixMap:=FPixMap;
If Assigned(FBall) then
FBall.FDrawPixMap:=FPixMap;
end;
\end{lstlisting}
The following routine does the actual drawing of the screen:
It copies the pixmap with the game image to the actual window.
Not the whole pixmap is drawn (this would be very inefficient),
but just the part indicated by the \var\var{Area} parameter.
\begin{lstlisting}{}
Procedure TBreakOut.CopyPixMap(Area : TGdkRectangle);
begin
gdk_draw_pixmap(FDrawingArea^.Window,
gtk_widget_get_style(FDrawingArea)^.fg_gc[GTK_WIDGET_STATE(FDrawingArea)],
FPixMap,
area.x,area.y,
area.x,area.y,
area.width,area.height);
end;
\end{lstlisting}
The \var{CopyPixmap} method is called as much as needed
by the \var{Draw} method. This method tries to determine
the minimum amount of drawing needed to restore the game image on the screen.
It will draw the board, the exposed blocks, the previous position of
the ball and pad on the pixmap. After that the changed portions of
the pixmap are copied to the screen.
\begin{lstlisting}{}
Procedure TBreakOut.Draw(Exposed : PGDKEventExpose);
Var
Rect : TGdkRectangle;
begin
if FPixMap=Nil then
CreatePixMap;
if Exposed<>Nil then
begin
DrawBoard(Exposed);
FBlockList.DrawBlocks(exposed^.area)
end
else
begin
If Assigned(FBall) then
if FBall.GetChangeRect(Rect) then
begin
DrawBackground(Rect);
FBLockList.drawBlocks(Rect);
end;
if FPad.GetChangeRect(Rect) then
DrawBackground(Rect)
end;
FPad.Draw;
if Assigned(FBall) Then
FBall.draw;
If Exposed<>Nil then
CopyPixMap(Exposed^.Area);
If assigned(FBall) then
if FBall.GetChangeRect(Rect) then
CopyPixMap(Rect);
if FPad.GetChangeRect(Rect) then
CopyPixMap(Rect);
IF Assigned(FBall) then
CopyPixMap(FBall.FRect);
CopyPixMap(FPad.FRect);
end;
\end{lstlisting}
The \var{RedrawGame} forces a redraw of the whole game, by forcing an expose event on the
drawing area:
\begin{lstlisting}{}
Procedure TBreakout.Redrawgame;
Var
Rect : TgdkRectangle;
begin
Rect.X:=FDrawingArea^.allocation.x;
Rect.Y:=FDrawingArea^.allocation.y;
Rect.Width:=FDrawingArea^.allocation.Width;
Rect.Height:=FDrawingArea^.allocation.Height;
gtk_Widget_draw(FDrawingArea,@rect)
end;
\end{lstlisting}
The \var{Step} procedure is the central part of the game logic: it moves
the various components on the screen, and checks for collisions between
the ball and the pad or the blocks. If a 'game over' or 'end of level'
condition is detected, the appropriate methods are called to handle
these situations.
\begin{lstlisting}{}
Procedure TBreakOut.Step;
begin
FPad.Step;
If Assigned(FBall) then
FBall.Step;
CheckCollision;
If FBlockList.Count=0 then
NextLevel;
if Not Assigned(FBall) and (FBalls=0) then
GameOver;
end;
\end{lstlisting}
The \var{CheckCollision} method checks for collisions of the ball with the pad
or with a block. The blocklist handles the collisions with a block, the collision
between the ball and the pad is handled here, in much the same was as it was handled
by the blocklist for the blocks. The only difference is that the speed of the ball
is altered, depending on the speed of the pad:
\begin{enumerate}
\item If the pad was moving at the moment of impact, then the speedfactor of
the ball is increased or decreased, depending on whether the ball and pad
were moving in the same direction, or in opposite directions.
\item The angle of the ball is altered using the \var{Slope} of the pad. The horizontal
component of the speed is increased (or decreased) with a factor that depends on
the place where the ball hits the pad. If the pad is hit in the middle, no change takes
place. If it is not hit in the middle, the alteration is proportional to the distance
between the middle of the pad and the point of impact.
\end{enumerate}
\begin{lstlisting}{}
Procedure TBreakOut.CheckCollision;
Var
Inters :TGdkrectangle;
begin
If Assigned(FBall) then
begin
if gdk_rectangle_intersect(@FBall.FRect,@FPad.Frect,@inters)<>0 then
If (FBall.FPreviousTop<FPad.Top) and (FBall.FCurrentSpeedY>0) then
begin
FBall.FlipSpeed(False,True);
If (FPad.CurrentSpeed<>0) then
if (FBall.FCurrentSpeedX*FPad.CurrentSpeed)>0 then
FBall.IncSpeed(HitAccelleration)
else
FBall.IncSpeed(-HitAccelleration);
FBall.CurrentSpeedX:=FBall.CurrentSpeedX+
(Round(((FBall.Left+(FBall.Width div 2)) -
(FPad.left+Fpad.Width div 2))
* (FPad.Slope / 100)));
end;
FBlockList.CheckCollision(FBall);
end;
end;
\end{lstlisting}
The following methods control the logic of the game. They are kept as simple
as possible, but they can be altered to make the game more interesting or
visually attractive.
\begin{lstlisting}{}
Procedure TBreakOut.FreeBall;
begin
FBall.Free;
FBall:=Nil;
end;
Procedure TbreakOut.NextBall;
begin
If FBall=Nil then
begin
FBall:=TBall.Create(Self);
FBall.Top:=FPad.Top-1;
FBall.Left:=FPad.Left + (FPad.Width div 2);
FBall.CurrentSpeedX:=FPad.CurrentSpeed*5;
FBall.FPreviousTop:=FBall.Top;
FBall.FPreviousLeft:=FBall.Left;
FBall.FDrawPixMap:=Self.FPixMap;
FBall.Draw;
end;
end;
Procedure TBreakOut.NextLevel;
Var
Area : TGdkRectangle;
begin
If Assigned(FBall) then
FreeBall;
FPad.FSpeed:=FPad.Speed+LevelAccelleration;
FPad.InitialPosition;
RedrawGame;
end;
Procedure TBreakout.LostBall;
begin
Dec(FBalls);
If FBalls=0 then
GameOver;
FreeBall;
Fpad.InitialPosition;
RedrawGame;
end;
Procedure TBreakout.GameOver;
begin
end;
\end{lstlisting}
All the code for these three objects is collected in the unit \file{blocks}.
The main program uses the \var{TBreakOut} object to draw the game on a screen:
A simple, non-sizable window is created, and a \var{TGTKDrawingArea} widget is
dropped on it. A signal handler for the expose event of the widget is installed
(the \var{Exposed} function), as well as a timeout which will step the game
every 50 milliseconds (the \var{Step} function). After that, event handlers
are installed for the keyboard, to the user can move the pad
(the \var{KeyPress} function). The 'delete' event is also handled, to destroy the
window (the \var{Close} function).
The only logic in these functions consists of communicating the events to the
\var{TBreakout} object, and to set the movement of the Pad based on the key
that was hit. The program listing is presented without further comment.
\begin{lstlisting}{}
program breakout;
{$mode objfpc}
uses glib,gdk,gtk,blocks;
Type
TBreakOutWindow = Class(TObject)
Public
window,
area : PGtkWidget;
BreakOut : TBreakOut;
end;
Var
GameWindow : TBreakOutWindow;
Function Close( widget : PGtkWidget ;
event : PGdkEvent;
data : gpointer) : boolean; cdecl;
Begin
gtk_main_quit();
Close := false;
End;
function Exposed(Widget: PGtkWidget;
event : PGdkEventExpose;
Data : gpointer) : Integer; cdecl;
begin
TBreakOutWindow(Data).BreakOut.Draw(Event);
result:=0;
end;
function KeyPress (Widget: PGtkWidget;
event : PGdkEventKey;
Data : gpointer) : Integer; cdecl;
begin
with TBreakOutWindow(Data).BreakOut do
Case event^.keyval of
gdk_left : Pad.Goleft;
gdk_right : Pad.GoRight;
gdk_down : Pad.Stop;
Ord(' ') : NextBall;
end;
Result:=0;
end;
function Step (data : Gpointer): integer;cdecl;
Var
Rect : TGdkRectangle;
begin
With TBreakOutWindow(Data) do
begin
With Breakout do
begin
Step;
Draw(Nil);
end;
end;
Result:=integer(True);
end;
Begin
gtk_init( @argc, @argv );
GameWindow:=TBreakOutWindow.Create;
With GameWindow do
begin
window := gtk_window_new( GTK_WINDOW_TOPLEVEL );
gtk_window_set_policy(PgtkWindow(Window),0,0,1);
gtk_signal_connect(PGTK_OBJECT (window),'delete_event',
GTK_SIGNAL_FUNC(@Close),Nil);
gtk_container_set_border_width (GTK_CONTAINER (window), 10);
area := gtk_drawing_area_new();
gtk_container_add( GTK_CONTAINER(window), Area);
BreakOut:=TBreakOut.Create(area);
With BreakOut.BlockList do
begin
TotalRows:=20;
TotalColumns:=10;
StartRow:=15;
BlockRows:=5;
BlockSpacing:=2;
end;
gtk_signal_connect (GTK_OBJECT (area),'expose_event',
GTK_SIGNAL_FUNC(@Exposed),GameWindow);
gtk_drawing_area_size (PGTKDRAWINGAREA(area),600,400);
gtk_widget_set_events(window,GDK_KEY_RELEASE_MASK);
gtk_signal_connect(PGTKObject(Window),'key_press_event',
GTK_SIGNAL_FUNC(@KeyPress),GameWindow);
gtk_timeout_add(50,@Step,GameWindow);
gtk_widget_show_all(window);
gtk_main();
end;
End.
end.
\end{lstlisting}
The result of the program can be seen in figure \ref{fig:breakout}.
\begin{figure}[ht]
\caption{The breakout program in action.}\label{fig:breakout}
\epsfig{file=gtk5ex/breakout.png,width=\textwidth}
\end{figure}
The program can be enhanced in many ways:
\begin{enumerate}
\item More different colors for the blocks.
\item Different patterns of blocks when going to new levels.
\item Add some messages at the end of a level, or at game over.
\item Add a pause mode.
\item Add a menu to start/stop the game, and with some preferences
(game size, player level)
\item add a score based on the time it takes to finish a level.
\end{enumerate}
And many more things can probably be done. The program as it is now is playable, and
fulfills it purpose: to demonstrate that simple game programming using the drawing
facilities offered by GTK/GDK toolkit is possible and can be quite easy.
\end{document}
|