File: math.tex

package info (click to toggle)
fpc 1.9.4-5
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 63,532 kB
  • ctags: 93,677
  • sloc: pascal: 675,850; makefile: 219,089; xml: 9,242; perl: 7,703; yacc: 3,074; ansic: 2,275; lex: 711; sh: 406; asm: 71; csh: 34; sed: 33; cpp: 26; tcl: 7
file content (1006 lines) | stat: -rw-r--r-- 26,475 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
%
%   $Id: math.tex,v 1.3 2003/02/24 23:37:53 michael Exp $
%   This file is part of the FPC documentation.
%   Copyright (C) 2000 by Florian Klaempfl
%
%   The FPC documentation is free text; you can redistribute it and/or
%   modify it under the terms of the GNU Library General Public License as
%   published by the Free Software Foundation; either version 2 of the
%   License, or (at your option) any later version.
%
%   The FPC Documentation is distributed in the hope that it will be useful,
%   but WITHOUT ANY WARRANTY; without even the implied warranty of
%   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
%   Library General Public License for more details.
%
%   You should have received a copy of the GNU Library General Public
%   License along with the FPC documentation; see the file COPYING.LIB.  If not,
%   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
%   Boston, MA 02111-1307, USA.
%
\chapter{The MATH unit}
\FPCexampledir{mathex}

This chapter describes the \file{math} unit. The \var{math} unit
was initially written by Florian Kl\"ampfl. It provides mathematical
functions which aren't covered by the system unit.

This chapter starts out with a definition of all types and constants
that are defined, after which an overview is presented of the available 
functions, grouped by category, and the last part contains a 
complete explanation of each function.

The following things must be taken into account when using this unit:
\begin{enumerate}
\item This unit is compiled in Object Pascal mode so all
\var{integers} are 32 bit.
\item Some overloaded functions exist for data arrays of integers and
floats. When using the address operator (\var{@}) to pass an array of 
data to such a function, make sure the address is typecasted to the 
right type, or turn on the 'typed address operator' feature. failing to
do so, will cause the compiler not be able to decide which function you 
want to call.
\end{enumerate}

\section{Constants and types}

The following types are defined in the \file{math} unit:
\begin{verbatim}
Type
  Float = Extended;
  PFloat = ^FLoat
\end{verbatim}
All calculations are done with the Float type. This allows to
recompile the unit with a different float type to obtain a
desired precision. The pointer type is used in functions that accept
an array of values of arbitrary length.
\begin{verbatim}
Type
   TPaymentTime = (PTEndOfPeriod,PTStartOfPeriod);
\end{verbatim}
\var{TPaymentTime} is used in the financial calculations.
\begin{verbatim}
Type
   EInvalidArgument = Class(EMathError);
\end{verbatim}
The \var{EInvalidArgument} exception is used to report invalid arguments.

\section{Function list by category}
What follows is a listing of the available functions, grouped by category.
For each function there is a reference to the page where you can find the
function.
\subsection{Min/max determination}
Functions to determine the minimum or maximum of numbers:
\begin{funclist}
\funcref{max}{Maximum of 2 values}
\funcref{maxIntValue}{Maximum of an array of integer values}
\funcref{maxvalue}{Maximum of an array of values}
\funcref{min}{Minimum of 2 values}
\funcref{minIntValue}{Minimum of an array of integer values}
\funcref{minvalue}{Minimum of an array of values}
\end{funclist}
\subsection{Angle conversion}
\begin{funclist}
\funcref{cycletorad}{convert cycles to radians}
\funcref{degtograd}{convert degrees to grads}
\funcref{degtorad}{convert degrees to radians}
\funcref{gradtodeg}{convert grads to degrees}
\funcref{gradtorad}{convert grads to radians}
\funcref{radtocycle}{convert radians to cycles}
\funcref{radtodeg}{convert radians to degrees}
\funcref{radtograd}{convert radians to grads}
\end{funclist}
\subsection{Trigoniometric functions}
\begin{funclist}
\funcref{arccos}{calculate reverse cosine}
\funcref{arcsin}{calculate reverse sine}
\funcref{arctan2}{calculate reverse tangent}
\funcref{cotan}{calculate cotangent}
\procref{sincos}{calculate sine and cosine}
\funcref{tan}{calculate tangent}
\end{funclist}
\subsection{Hyperbolic functions}
\begin{funclist}
\funcref{arcosh}{caculate reverse hyperbolic cosine}
\funcref{arsinh}{caculate reverse hyperbolic sine}
\funcref{artanh}{caculate reverse hyperbolic tangent}
\funcref{cosh}{calculate hyperbolic cosine}
\funcref{sinh}{calculate hyperbolic sine}
\funcref{tanh}{calculate hyperbolic tangent}
\end{funclist}
\subsection{Exponential and logarithmic functions}
\begin{funclist}
\funcref{intpower}{Raise float to integer power}
\funcref{ldexp}{Calculate $2^p x$}
\funcref{lnxp1}{calculate \var{log(x+1)}}
\funcref{log10}{calculate 10-base log}
\funcref{log2}{calculate 2-base log}
\funcref{logn}{calculate N-base log}
\funcref{power}{raise float to arbitrary power}
\end{funclist}
\subsection{Number converting}
\begin{funclist}
\funcref{ceil}{Round to infinity}
\funcref{floor}{Round to minus infinity}
\procref{frexp}{Return mantissa and exponent}
\end{funclist}
\subsection{Statistical functions}
\begin{funclist}
\funcref{mean}{Mean of values}
\procref{meanandstddev}{Mean and standard deviation of values}
\procref{momentskewkurtosis}{Moments, skew and kurtosis}
\funcref{popnstddev}{Population standarddeviation }
\funcref{popnvariance}{Population variance}
\funcref{randg}{Gaussian distributed randum value}
\funcref{stddev}{Standard deviation}
\funcref{sum}{Sum of values}
\funcref{sumofsquares}{Sum of squared values}
\procref{sumsandsquares}{Sum of values and squared values}
\funcref{totalvariance}{Total variance of values}
\funcref{variance}{variance of values}
\end{funclist}
\subsection{Geometrical functions}
\begin{funclist}
\funcref{hypot}{Hypotenuse of triangle}
\funcref{norm}{Euclidian norm}
\end{funclist}

\section{Functions and Procedures}

\begin{function}{arccos}
\Declaration
Function arccos(x : float) : float;
\Description
\var{Arccos} returns the inverse cosine of its argument \var{x}. The
argument \var{x} should lie between -1 and 1 (borders included). 
\Errors
If the argument \var{x} is not in the allowed range, an
\var{EInvalidArgument} exception is raised.
\SeeAlso
\seef{arcsin}, \seef{arcosh}, \seef{arsinh}, \seef{artanh}
\end{function}

\FPCexample{ex1}

\begin{function}{arcosh}
\Declaration
Function arcosh(x : float) : float;
Function arccosh(x : float) : float;
\Description
\var{Arcosh} returns the inverse hyperbolic cosine of its argument \var{x}. 
The argument \var{x} should be larger than 1. 

The \var{arccosh} variant of this function is supplied for \delphi 
compatibility.
\Errors
If the argument \var{x} is not in the allowed range, an \var{EInvalidArgument}
exception is raised.
\SeeAlso
\seef{cosh}, \seef{sinh}, \seef{arcsin}, \seef{arsinh}, \seef{artanh},
\seef{tanh}
\end{function}

\FPCexample{ex3}

\begin{function}{arcsin}
\Declaration
Function arcsin(x : float) : float;
\Description
\var{Arcsin} returns the inverse sine of its argument \var{x}. The
argument \var{x} should lie between -1 and 1. 
\Errors
If the argument \var{x} is not in the allowed range, an \var{EInvalidArgument}
exception is raised.
\SeeAlso
\seef{arccos}, \seef{arcosh}, \seef{arsinh}, \seef{artanh}
\end{function}

\FPCexample{ex2}


\begin{function}{arctan2}
\Declaration
Function arctan2(x,y : float) : float;
\Description
\var{arctan2} calculates \var{arctan(y/x)}, and returns an angle in the
correct quadrant. The returned angle will be in the range $-\pi$ to
$\pi$ radians.
The values of \var{x} and \var{y} must be between -2\^{}64 and 2\^{}64,
moreover \var{x} should be different from zero.

On Intel systems this function is implemented with the native intel
\var{fpatan} instruction.
\Errors
If \var{x} is zero, an overflow error will occur.
\SeeAlso
\seef{arccos}, \seef{arcosh}, \seef{arsinh}, \seef{artanh}
\end{function}

\FPCexample{ex6}

\begin{function}{arsinh}
\Declaration
Function arsinh(x : float) : float;
Function arcsinh(x : float) : float;
\Description
\var{arsinh} returns the inverse hyperbolic sine of its argument \var{x}. 

The \var{arscsinh} variant of this function is supplied for \delphi 
compatibility.
\Errors
None.
\SeeAlso
\seef{arcosh}, \seef{arccos}, \seef{arcsin}, \seef{artanh}
\end{function}

\FPCexample{ex4}


\begin{function}{artanh}
\Declaration
Function artanh(x : float) : float;
Function arctanh(x : float) : float;
\Description
\var{artanh} returns the inverse hyperbolic tangent of its argument \var{x},
where \var{x} should lie in the interval [-1,1], borders included.

The \var{arctanh} variant of this function is supplied for \delphi compatibility.
\Errors
In case \var{x} is not in the interval [-1,1], an \var{EInvalidArgument}
exception is raised.
\SeeAlso
\seef{arcosh}, \seef{arccos}, \seef{arcsin}, \seef{artanh}
\Errors
\SeeAlso
\end{function}

\FPCexample{ex5}


\begin{function}{ceil}
\Declaration
Function ceil(x : float) : longint;
\Description
\var{Ceil} returns the lowest integer number greater than or equal to \var{x}.
The absolute value of \var{x} should be less than \var{maxint}.
\Errors
If the asolute value of \var{x} is larger than maxint, an overflow error will
occur.
\SeeAlso
\seef{floor}
\end{function}

\FPCexample{ex7}

\begin{function}{cosh}
\Declaration
Function cosh(x : float) : float;
\Description
\var{Cosh} returns the hyperbolic cosine of it's argument {x}.
\Errors
None.
\SeeAlso
\seef{arcosh}, \seef{sinh}, \seef{arsinh}
\end{function}

\FPCexample{ex8}


\begin{function}{cotan}
\Declaration
Function cotan(x : float) : float;
\Description
\var{Cotan} returns the cotangent of it's argument \var{x}. \var{x} should
be different from zero.
\Errors
If \var{x} is zero then a overflow error will occur.
\SeeAlso
\seef{tanh}
\end{function}

\FPCexample{ex9}


\begin{function}{cycletorad}
\Declaration
Function cycletorad(cycle : float) : float;
\Description
\var{Cycletorad} transforms it's argument \var{cycle}
(an angle expressed in cycles) to radians.
(1 cycle is $2 \pi$ radians).
\Errors
None.
\SeeAlso
\seef{degtograd}, \seef{degtorad}, \seef{radtodeg},
\seef{radtograd}, \seef{radtocycle}
\end{function}

\FPCexample{ex10}


\begin{function}{degtograd}
\Declaration
Function degtograd(deg : float) : float;
\Description
\var{Degtograd} transforms it's argument \var{deg} (an angle in degrees)
to grads.

(90 degrees is 100 grad.)
\Errors
None.
\SeeAlso
\seef{cycletorad}, \seef{degtorad}, \seef{radtodeg},
\seef{radtograd}, \seef{radtocycle}
\end{function}

\FPCexample{ex11}


\begin{function}{degtorad}
\Declaration
Function degtorad(deg : float) : float;
\Description
\var{Degtorad} converts it's argument \var{deg} (an angle in degrees) to
radians.

(pi radians is 180 degrees)
\Errors
None.
\SeeAlso
\seef{cycletorad}, \seef{degtograd}, \seef{radtodeg},
\seef{radtograd}, \seef{radtocycle}
\end{function}

\FPCexample{ex12}


\begin{function}{floor}
\Declaration
Function floor(x : float) : longint;
\Description
\var{Floor} returns the largest integer smaller than or equal to \var{x}.
The absolute value of \var{x} should be less than \var{maxint}.
\Errors
If \var{x} is larger than \var{maxint}, an overflow will occur.
\SeeAlso
\seef{ceil}
\end{function}

\FPCexample{ex13}


\begin{procedure}{frexp}
\Declaration
Procedure frexp(x : float;var mantissa : float; var exponent : integer);
\Description
\var{Frexp} returns the mantissa and exponent of it's argument
\var{x} in \var{mantissa} and \var{exponent}.
\Errors
None
\SeeAlso
\end{procedure}

\FPCexample{ex14}


\begin{function}{gradtodeg}
\Declaration
Function gradtodeg(grad : float) : float;
\Description
\var{Gradtodeg} converts its argument \var{grad} (an angle in grads)
to degrees.

(100 grad is 90 degrees)
\Errors
None.
\SeeAlso
\seef{cycletorad}, \seef{degtograd}, \seef{radtodeg},
\seef{radtograd}, \seef{radtocycle}, \seef{gradtorad}
\end{function}

\FPCexample{ex15}


\begin{function}{gradtorad}
\Declaration
Function gradtorad(grad : float) : float;
\Description
\var{Gradtorad} converts its argument \var{grad} (an angle in grads)
to radians.

(200 grad is pi degrees).
\Errors
None.
\SeeAlso
\seef{cycletorad}, \seef{degtograd}, \seef{radtodeg},
\seef{radtograd}, \seef{radtocycle}, \seef{gradtodeg}
\end{function}

\FPCexample{ex16}


\begin{function}{hypot}
\Declaration
Function hypot(x,y : float) : float;
\Description
\var{Hypot} returns the hypotenuse of the triangle where the sides
adjacent to the square angle have lengths \var{x} and \var{y}.

The function uses Pythagoras' rule for this.
\Errors
None.
\SeeAlso
\end{function}

\FPCexample{ex17}


\begin{function}{intpower}
\Declaration
Function intpower(base : float;exponent : longint) : float;
\Description
\var{Intpower} returns \var{base} to the power \var{exponent},
where exponent is an integer value.
\Errors
If \var{base} is zero and the exponent is negative, then an
overflow error will occur.
\SeeAlso
\seef{power}
\end{function}

\FPCexample{ex18}


\begin{function}{ldexp}
\Declaration
Function ldexp(x : float;p : longint) : float;
\Description
\var{Ldexp} returns $2^p x$.
\Errors
None.
\SeeAlso
\seef{lnxp1}, \seef{log10},\seef{log2},\seef{logn}
\end{function}

\FPCexample{ex19}


\begin{function}{lnxp1}
\Declaration
Function lnxp1(x : float) : float;
\Description
\var{Lnxp1} returns the natural logarithm of \var{1+X}. The result
is more precise for small values of \var{x}. \var{x} should be larger
than -1.
\Errors
If $x\leq -1$ then an \var{EInvalidArgument} exception will be raised.
\SeeAlso
\seef{ldexp}, \seef{log10},\seef{log2},\seef{logn}
\end{function}

\FPCexample{ex20}

\begin{function}{log10}
\Declaration
Function log10(x : float) : float;
\Description
\var{Log10} returns the 10-base logarithm of \var{X}.
\Errors
If \var{x} is less than or equal to 0 an 'invalid fpu operation' error
will occur.
\SeeAlso
\seef{ldexp}, \seef{lnxp1},\seef{log2},\seef{logn}
\end{function}

\FPCexample{ex21}


\begin{function}{log2}
\Declaration
Function log2(x : float) : float;
\Description
\var{Log2} returns the 2-base logarithm of \var{X}.
\Errors
If \var{x} is less than or equal to 0 an 'invalid fpu operation' error
will occur.
\SeeAlso
\seef{ldexp}, \seef{lnxp1},\seef{log10},\seef{logn}
\end{function}

\FPCexample{ex22}


\begin{function}{logn}
\Declaration
Function logn(n,x : float) : float;
\Description
\var{Logn} returns the n-base logarithm of \var{X}.
\Errors
If \var{x} is less than or equal to 0 an 'invalid fpu operation' error
will occur.
\SeeAlso
\seef{ldexp}, \seef{lnxp1},\seef{log10},\seef{log2}
\end{function}

\FPCexample{ex23}

\begin{function}{max}
\Declaration
Function max(Int1,Int2:Cardinal):Cardinal;
Function max(Int1,Int2:Integer):Integer;
\Description
\var{Max} returns the maximum of \var{Int1} and \var{Int2}.
\Errors
None.
\SeeAlso
\seef{min}, \seef{maxIntValue}, \seef{maxvalue}
\end{function}

\FPCexample{ex24}

\begin{function}{maxIntValue}
\Declaration
function MaxIntValue(const Data: array of Integer): Integer;
\Description
\var{MaxIntValue} returns the largest integer out of the \var{Data}
array.

This function is provided for \delphi compatibility, use the \seef{maxvalue}
function instead.
\Errors
None.
\SeeAlso
\seef{maxvalue}, \seef{minvalue}, \seef{minIntValue}
\end{function}

\FPCexample{ex25}


\begin{function}{maxvalue}
\Declaration
Function maxvalue(const data : array of float) : float;
Function maxvalue(const data : array of Integer) : Integer;
Function maxvalue(const data : PFloat; Const N : Integer) : float;
Function maxvalue(const data : PInteger; Const N : Integer) : Integer;
\Description
\var{Maxvalue} returns the largest value in the \var{data} 
array with integer or float values. The return value has 
the same type as the elements of the array.

The third and fourth forms accept a pointer to an array of \var{N} 
integer or float values.
\Errors
None.
\SeeAlso
\seef{maxIntValue}, \seef{minvalue}, \seef{minIntValue}
\end{function}

\FPCexample{ex26}

\begin{function}{mean}
\Declaration
Function mean(const data : array of float) : float;
Function mean(const data : PFloat; Const N : longint) : float;
\Description
\var{Mean} returns the average value of \var{data}.

The second form accepts a pointer to an array of \var{N} values.
\Errors
None.
\SeeAlso
\seep{meanandstddev}, \seep{momentskewkurtosis}, \seef{sum}
\end{function}

\FPCexample{ex27}

\begin{procedure}{meanandstddev}
\Declaration
Procedure meanandstddev(const data : array of float; 
                        var mean,stddev : float);
procedure meanandstddev(const data : PFloat;
  Const N : Longint;var mean,stddev : float);
\Description
\var{meanandstddev} calculates the mean and standard deviation of \var{data}
and returns the result in \var{mean} and \var{stddev}, respectively.
Stddev is zero if there is only one value.

The second form accepts a pointer to an array of \var{N} values.
\Errors
None.
\SeeAlso
\seef{mean},\seef{sum}, \seef{sumofsquares}, \seep{momentskewkurtosis}
\end{procedure}

\FPCexample{ex28}


\begin{function}{min}
\Declaration
Function min(Int1,Int2:Cardinal):Cardinal;
Function min(Int1,Int2:Integer):Integer;
\Description
\var{min} returns the smallest value of \var{Int1} and \var{Int2};
\Errors
None.
\SeeAlso
\seef{max}
\end{function}

\FPCexample{ex29}

\begin{function}{minIntValue}
\Declaration
Function minIntValue(const Data: array of Integer): Integer;
\Description
\var{MinIntvalue} returns the smallest value in the \var{Data} array.

This function is provided for \delphi compatibility, use \var{minvalue}
instead.
\Errors
None
\SeeAlso
\seef{minvalue}, \seef{maxIntValue}, \seef{maxvalue}
\end{function}

\FPCexample{ex30}


\begin{function}{minvalue}
\Declaration
Function minvalue(const data : array of float) : float;
Function minvalue(const data : array of Integer) : Integer;
Function minvalue(const data : PFloat; Const N : Integer) : float;
Function minvalue(const data : PInteger; Const N : Integer) : Integer;
\Description
\var{Minvalue} returns the smallest value in the \var{data} 
array with integer or float values. The return value has 
the same type as the elements of the array.

The third and fourth forms accept a pointer to an array of \var{N} 
integer or float values.
\Errors
None.
\SeeAlso
\seef{maxIntValue}, \seef{maxvalue}, \seef{minIntValue}
\end{function}

\FPCexample{ex31}


\begin{procedure}{momentskewkurtosis}
\Declaration
procedure momentskewkurtosis(const data : array of float;
  var m1,m2,m3,m4,skew,kurtosis : float);
procedure momentskewkurtosis(const data : PFloat; Const N : Integer;
  var m1,m2,m3,m4,skew,kurtosis : float);
\Description
\var{momentskewkurtosis} calculates the 4 first moments of the distribution
of valuesin \var{data} and returns them in \var{m1},\var{m2},\var{m3} and
\var{m4}, as well as the \var{skew} and \var{kurtosis}.
\Errors
None.
\SeeAlso
\seef{mean}, \seep{meanandstddev}
\end{procedure}

\FPCexample{ex32}

\begin{function}{norm}
\Declaration
Function norm(const data : array of float) : float;
Function norm(const data : PFloat; Const N : Integer) : float;
\Description
\var{Norm} calculates the Euclidian norm of the array of data.
This equals \var{sqrt(sumofsquares(data))}.

The second form accepts a pointer to an array of \var{N} values.
\Errors
None.
\SeeAlso
\seef{sumofsquares}
\end{function}

\FPCexample{ex33}


\begin{function}{popnstddev}
\Declaration
Function popnstddev(const data : array of float) : float;
Function popnstddev(const data : PFloat; Const N : Integer) : float;
\Description
\var{Popnstddev} returns the square root of the population variance of
the values in the  \var{Data} array. It returns zero if there is only one value.

The second form of this function accepts a pointer to an array of \var{N}
values.
\Errors
None.
\SeeAlso
\seef{popnvariance}, \seef{mean}, \seep{meanandstddev}, \seef{stddev},
\seep{momentskewkurtosis}
\end{function}

\FPCexample{ex35}


\begin{function}{popnvariance}
\Declaration
Function popnvariance(const data : array of float) : float;
Function popnvariance(const data : PFloat; Const N : Integer) : float;
\Description
\var{Popnvariance} returns the square root of the population variance of
the values in the  \var{Data} array. It returns zero if there is only one value.

The second form of this function accepts a pointer to an array of \var{N}
values.
\Errors
None.
\SeeAlso
\seef{popnstddev}, \seef{mean}, \seep{meanandstddev}, \seef{stddev},
\seep{momentskewkurtosis}
\end{function}

\FPCexample{ex36}


\begin{function}{power}
\Declaration
Function power(base,exponent : float) : float;
\Description
\var{power} raises \var{base} to the power \var{power}. This is equivalent
to \var{exp(power*ln(base))}. Therefore \var{base} should be non-negative.
\Errors
None.
\SeeAlso
\seef{intpower}
\end{function}

\FPCexample{ex34}


\begin{function}{radtocycle}
\Declaration
Function radtocycle(rad : float) : float;
\Description
\var{Radtocycle} converts its argument \var{rad} (an angle expressed in
radians) to an angle in cycles.

(1 cycle equals 2 pi radians)
\Errors
None.
\SeeAlso
\seef{degtograd}, \seef{degtorad}, \seef{radtodeg},
\seef{radtograd}, \seef{cycletorad}
\end{function}

\FPCexample{ex37}


\begin{function}{radtodeg}
\Declaration
Function radtodeg(rad : float) : float;
\Description
\var{Radtodeg} converts its argument \var{rad} (an angle expressed in
radians) to an angle in degrees.

(180 degrees equals pi radians)
\Errors
None.
\SeeAlso
\seef{degtograd}, \seef{degtorad}, \seef{radtocycle},
\seef{radtograd}, \seef{cycletorad}
\end{function}

\FPCexample{ex38}


\begin{function}{radtograd}
\Declaration
Function radtograd(rad : float) : float;
\Description
\var{Radtodeg} converts its argument \var{rad} (an angle expressed in
radians) to an angle in grads.

(200 grads equals pi radians)
\Errors
None.
\SeeAlso
\seef{degtograd}, \seef{degtorad}, \seef{radtocycle},
\seef{radtodeg}, \seef{cycletorad}
\end{function}

\FPCexample{ex39}


\begin{function}{randg}
\Declaration
Function randg(mean,stddev : float) : float;
\Description
\var{randg} returns a random number which - when produced in large
quantities - has a Gaussian distribution with mean \var{mean} and 
standarddeviation \var{stddev}. 
\Errors
None.
\SeeAlso
\seef{mean}, \seef{stddev}, \seep{meanandstddev}
\end{function}

\FPCexample{ex40}


\begin{procedure}{sincos}
\Declaration
Procedure sincos(theta : float;var sinus,cosinus : float);
\Description
\var{Sincos} calculates the sine and cosine of the angle \var{theta},
and returns the result in \var{sinus} and \var{cosinus}.

On Intel hardware, This calculation will be faster than making 2 calls
to clculatet he sine and cosine separately.
\Errors
None.
\SeeAlso
\seef{arcsin}, \seef{arccos}.
\end{procedure}

\FPCexample{ex41}


\begin{function}{sinh}
\Declaration
Function sinh(x : float) : float;
\Description
\var{Sinh} returns the hyperbolic sine of its argument \var{x}.
\Errors
\SeeAlso
\seef{cosh}, \seef{arsinh}, \seef{tanh}, \seef{artanh}
\end{function}

\FPCexample{ex42}


\begin{function}{stddev}
\Declaration
Function stddev(const data : array of float) : float;
Function stddev(const data : PFloat; Const N : Integer) : float;
\Description
\var{Stddev} returns the standard deviation of the values in \var{Data}.
It returns zero if there is only one value.

The second form of the function accepts a pointer to an array of \var{N}
values.
\Errors
None.
\SeeAlso
\seef{mean}, \seep{meanandstddev}, \seef{variance}, \seef{totalvariance}
\end{function}

\FPCexample{ex43}


\begin{function}{sum}
\Declaration
Function sum(const data : array of float) : float;
Function sum(const data : PFloat; Const N : Integer) : float;
\Description
\var{Sum} returns the sum of the values in the \var{data} array.

The second form of the function accepts a pointer to an array of \var{N}
values.
\Errors
None.
\SeeAlso
\seef{sumofsquares}, \seep{sumsandsquares}, \seef{totalvariance}
, \seef{variance}
\end{function}

\FPCexample{ex44}


\begin{function}{sumofsquares}
\Declaration
Function sumofsquares(const data : array of float) : float;
Function sumofsquares(const data : PFloat; Const N : Integer) : float;
\Description
\var{Sumofsquares} returns the sum of the squares of the values in the \var{data} 
array.

The second form of the function accepts a pointer to an array of \var{N}
values.
\Errors
None.
\SeeAlso
\seef{sum}, \seep{sumsandsquares}, \seef{totalvariance}
, \seef{variance}
\end{function}

\FPCexample{ex45}


\begin{procedure}{sumsandsquares}
\Declaration
Procedure sumsandsquares(const data : array of float;
  var sum,sumofsquares : float);
Procedure sumsandsquares(const data : PFloat; Const N : Integer;
  var sum,sumofsquares : float);
\Description
\var{sumsandsquares} calculates the sum of the values and the sum of 
the squares of the values in the \var{data} array and returns the
results in \var{sum} and \var{sumofsquares}.

The second form of the function accepts a pointer to an array of \var{N}
values.
\Errors
None.
\SeeAlso
\seef{sum}, \seef{sumofsquares}, \seef{totalvariance}
, \seef{variance}
\end{procedure}

\FPCexample{ex46}


\begin{function}{tan}
\Declaration
Function tan(x : float) : float;
\Description
\var{Tan} returns the tangent of \var{x}.
\Errors
If \var{x} (normalized) is pi/2 or 3pi/2 then an overflow will occur.
\SeeAlso
\seef{tanh}, \seef{arcsin}, \seep{sincos}, \seef{arccos}
\end{function}

\FPCexample{ex47}


\begin{function}{tanh}
\Declaration
Function tanh(x : float) : float;
\Description
\var{Tanh} returns the hyperbolic tangent of \var{x}.
\Errors
None.
\SeeAlso
\seef{arcsin}, \seep{sincos}, \seef{arccos}
\end{function}

\FPCexample{ex48}


\begin{function}{totalvariance}
\Declaration
Function totalvariance(const data : array of float) : float;
Function totalvariance(const data : PFloat; Const N : Integer) : float;
\Description
\var{TotalVariance} returns the total variance of the values in the 
\var{data} array. It returns zero if there is only one value.

The second form of the function accepts a pointer to an array of \var{N}
values.
\Errors
None.
\SeeAlso
\seef{variance}, \seef{stddev}, \seef{mean}
\end{function}

\FPCexample{ex49}


\begin{function}{variance}
\Declaration
Function variance(const data : array of float) : float;
Function variance(const data : PFloat; Const N : Integer) : float;
\Description
\var{Variance} returns the variance of the values in the 
\var{data} array. It returns zero if there is only one value.

The second form of the function accepts a pointer to an array of \var{N}
values.
\Errors
None.
\SeeAlso
\seef{totalvariance}, \seef{stddev}, \seef{mean}
\end{function}

\FPCexample{ex50}