1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
|
Unit InfTrees;
{ inftrees.h -- header to use inftrees.c
inftrees.c -- generate Huffman trees for efficient decoding
Copyright (C) 1995-1998 Mark Adler
WARNING: this file should *not* be used by applications. It is
part of the implementation of the compression library and is
subject to change.
Pascal tranlastion
Copyright (C) 1998 by Jacques Nomssi Nzali
For conditions of distribution and use, see copyright notice in readme.txt
}
interface
{$I zconf.inc}
uses
zutil, zbase;
{ Maximum size of dynamic tree. The maximum found in a long but non-
exhaustive search was 1004 huft structures (850 for length/literals
and 154 for distances, the latter actually the result of an
exhaustive search). The actual maximum is not known, but the
value below is more than safe. }
const
MANY = 1440;
{$ifdef DEBUG}
var
inflate_hufts : uInt;
{$endif}
function inflate_trees_bits(
var c : array of uIntf; { 19 code lengths }
var bb : uIntf; { bits tree desired/actual depth }
var tb : pinflate_huft; { bits tree result }
var hp : array of Inflate_huft; { space for trees }
var z : z_stream { for messages }
) : int;
function inflate_trees_dynamic(
nl : uInt; { number of literal/length codes }
nd : uInt; { number of distance codes }
var c : Array of uIntf; { that many (total) code lengths }
var bl : uIntf; { literal desired/actual bit depth }
var bd : uIntf; { distance desired/actual bit depth }
var tl : pInflate_huft; { literal/length tree result }
var td : pInflate_huft; { distance tree result }
var hp : array of Inflate_huft; { space for trees }
var z : z_stream { for messages }
) : int;
function inflate_trees_fixed (
var bl : uIntf; { literal desired/actual bit depth }
var bd : uIntf; { distance desired/actual bit depth }
var tl : pInflate_huft; { literal/length tree result }
var td : pInflate_huft; { distance tree result }
var z : z_stream { for memory allocation }
) : int;
implementation
const
inflate_copyright = 'inflate 1.1.2 Copyright 1995-1998 Mark Adler';
{
If you use the zlib library in a product, an acknowledgment is welcome
in the documentation of your product. If for some reason you cannot
include such an acknowledgment, I would appreciate that you keep this
copyright string in the executable of your product.
}
const
{ Tables for deflate from PKZIP's appnote.txt. }
cplens : Array [0..30] Of uInt { Copy lengths for literal codes 257..285 }
= (3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0);
{ actually lengths - 2; also see note #13 above about 258 }
invalid_code = 112;
cplext : Array [0..30] Of uInt { Extra bits for literal codes 257..285 }
= (0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, invalid_code, invalid_code);
cpdist : Array [0..29] Of uInt { Copy offsets for distance codes 0..29 }
= (1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
8193, 12289, 16385, 24577);
cpdext : Array [0..29] Of uInt { Extra bits for distance codes }
= (0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
12, 12, 13, 13);
{ Huffman code decoding is performed using a multi-level table lookup.
The fastest way to decode is to simply build a lookup table whose
size is determined by the longest code. However, the time it takes
to build this table can also be a factor if the data being decoded
is not very long. The most common codes are necessarily the
shortest codes, so those codes dominate the decoding time, and hence
the speed. The idea is you can have a shorter table that decodes the
shorter, more probable codes, and then point to subsidiary tables for
the longer codes. The time it costs to decode the longer codes is
then traded against the time it takes to make longer tables.
This results of this trade are in the variables lbits and dbits
below. lbits is the number of bits the first level table for literal/
length codes can decode in one step, and dbits is the same thing for
the distance codes. Subsequent tables are also less than or equal to
those sizes. These values may be adjusted either when all of the
codes are shorter than that, in which case the longest code length in
bits is used, or when the shortest code is *longer* than the requested
table size, in which case the length of the shortest code in bits is
used.
There are two different values for the two tables, since they code a
different number of possibilities each. The literal/length table
codes 286 possible values, or in a flat code, a little over eight
bits. The distance table codes 30 possible values, or a little less
than five bits, flat. The optimum values for speed end up being
about one bit more than those, so lbits is 8+1 and dbits is 5+1.
The optimum values may differ though from machine to machine, and
possibly even between compilers. Your mileage may vary. }
{ If BMAX needs to be larger than 16, then h and x[] should be uLong. }
const
BMAX = 15; { maximum bit length of any code }
{$DEFINE USE_PTR}
function huft_build(
var b : array of uIntf; { code lengths in bits (all assumed <= BMAX) }
n : uInt; { number of codes (assumed <= N_MAX) }
s : uInt; { number of simple-valued codes (0..s-1) }
const d : array of uIntf; { list of base values for non-simple codes }
{ array of word }
const e : array of uIntf; { list of extra bits for non-simple codes }
{ array of byte }
t : ppInflate_huft; { result: starting table }
var m : uIntf; { maximum lookup bits, returns actual }
var hp : array of inflate_huft; { space for trees }
var hn : uInt; { hufts used in space }
var v : array of uIntf { working area: values in order of bit length }
) : int;
{ Given a list of code lengths and a maximum table size, make a set of
tables to decode that set of codes. Return Z_OK on success, Z_BUF_ERROR
if the given code set is incomplete (the tables are still built in this
case), Z_DATA_ERROR if the input is invalid (an over-subscribed set of
lengths), or Z_MEM_ERROR if not enough memory. }
Var
a : uInt; { counter for codes of length k }
c : Array [0..BMAX] Of uInt; { bit length count table }
f : uInt; { i repeats in table every f entries }
g : int; { maximum code length }
h : int; { table level }
i : uInt; {register} { counter, current code }
j : uInt; {register} { counter }
k : Int; {register} { number of bits in current code }
l : int; { bits per table (returned in m) }
mask : uInt; { (1 shl w) - 1, to avoid cc -O bug on HP }
p : ^uIntf; {register} { pointer into c[], b[], or v[] }
q : pInflate_huft; { points to current table }
r : inflate_huft; { table entry for structure assignment }
u : Array [0..BMAX-1] Of pInflate_huft; { table stack }
w : int; {register} { bits before this table = (l*h) }
x : Array [0..BMAX] Of uInt; { bit offsets, then code stack }
{$IFDEF USE_PTR}
xp : puIntf; { pointer into x }
{$ELSE}
xp : uInt;
{$ENDIF}
y : int; { number of dummy codes added }
z : uInt; { number of entries in current table }
Begin
{ Generate counts for each bit length }
FillChar(c,SizeOf(c),0) ; { clear c[] }
for i := 0 to n-1 do
Inc (c[b[i]]); { assume all entries <= BMAX }
If (c[0] = n) Then { null input--all zero length codes }
Begin
t^ := pInflate_huft(NIL);
m := 0 ;
huft_build := Z_OK ;
Exit;
End ;
{ Find minimum and maximum length, bound [m] by those }
l := m;
for j:=1 To BMAX do
if (c[j] <> 0) then
break;
k := j ; { minimum code length }
if (uInt(l) < j) then
l := j;
for i := BMAX downto 1 do
if (c[i] <> 0) then
break ;
g := i ; { maximum code length }
if (uInt(l) > i) then
l := i;
m := l;
{ Adjust last length count to fill out codes, if needed }
y := 1 shl j ;
while (j < i) do
begin
Dec(y, c[j]) ;
if (y < 0) then
begin
huft_build := Z_DATA_ERROR; { bad input: more codes than bits }
exit;
end ;
Inc(j) ;
y := y shl 1
end;
Dec (y, c[i]) ;
if (y < 0) then
begin
huft_build := Z_DATA_ERROR; { bad input: more codes than bits }
exit;
end;
Inc(c[i], y);
{ Generate starting offsets into the value table FOR each length }
{$IFDEF USE_PTR}
x[1] := 0;
j := 0;
p := @c[1];
xp := @x[2];
dec(i); { note that i = g from above }
WHILE (i > 0) DO
BEGIN
inc(j, p^);
xp^ := j;
inc(p);
inc(xp);
dec(i);
END;
{$ELSE}
x[1] := 0;
j := 0 ;
for i := 1 to g do
begin
x[i] := j;
Inc(j, c[i]);
end;
{$ENDIF}
{ Make a table of values in order of bit lengths }
for i := 0 to n-1 do
begin
j := b[i];
if (j <> 0) then
begin
v[ x[j] ] := i;
Inc(x[j]);
end;
end;
n := x[g]; { set n to length of v }
{ Generate the Huffman codes and for each, make the table entries }
i := 0 ;
x[0] := 0 ; { first Huffman code is zero }
p := Addr(v) ; { grab values in bit order }
h := -1 ; { no tables yet--level -1 }
w := -l ; { bits decoded = (l*h) }
u[0] := pInflate_huft(NIL); { just to keep compilers happy }
q := pInflate_huft(NIL); { ditto }
z := 0 ; { ditto }
{ go through the bit lengths (k already is bits in shortest code) }
while (k <= g) Do
begin
a := c[k] ;
while (a<>0) Do
begin
Dec (a) ;
{ here i is the Huffman code of length k bits for value p^ }
{ make tables up to required level }
while (k > w + l) do
begin
Inc (h) ;
Inc (w, l); { add bits already decoded }
{ previous table always l bits }
{ compute minimum size table less than or equal to l bits }
{ table size upper limit }
z := g - w;
If (z > uInt(l)) Then
z := l;
{ try a k-w bit table }
j := k - w;
f := 1 shl j;
if (f > a+1) Then { too few codes for k-w bit table }
begin
Dec(f, a+1); { deduct codes from patterns left }
{$IFDEF USE_PTR}
xp := Addr(c[k]);
if (j < z) then
begin
Inc(j);
while (j < z) do
begin { try smaller tables up to z bits }
f := f shl 1;
Inc (xp) ;
If (f <= xp^) Then
break; { enough codes to use up j bits }
Dec(f, xp^); { else deduct codes from patterns }
Inc(j);
end;
end;
{$ELSE}
xp := k;
if (j < z) then
begin
Inc (j) ;
While (j < z) Do
begin { try smaller tables up to z bits }
f := f * 2;
Inc (xp) ;
if (f <= c[xp]) then
Break ; { enough codes to use up j bits }
Dec (f, c[xp]) ; { else deduct codes from patterns }
Inc (j);
end;
end;
{$ENDIF}
end;
z := 1 shl j; { table entries for j-bit table }
{ allocate new table }
if (hn + z > MANY) then { (note: doesn't matter for fixed) }
begin
huft_build := Z_MEM_ERROR; { not enough memory }
exit;
end;
q := @hp[hn];
u[h] := q;
Inc(hn, z);
{ connect to last table, if there is one }
if (h <> 0) then
begin
x[h] := i; { save pattern for backing up }
r.bits := Byte(l); { bits to dump before this table }
r.exop := Byte(j); { bits in this table }
j := i shr (w - l);
{r.base := uInt( q - u[h-1] -j);} { offset to this table }
r.base := (ptr2int(q) - ptr2int(u[h-1]) ) div sizeof(q^) - j;
huft_Ptr(u[h-1])^[j] := r; { connect to last table }
end
else
t^ := q; { first table is returned result }
end;
{ set up table entry in r }
r.bits := Byte(k - w);
{ C-code: if (p >= v + n) - see ZUTIL.PAS for comments }
if ptr2int(p)>=ptr2int(@(v[n])) then { also works under DPMI ?? }
r.exop := 128 + 64 { out of values--invalid code }
else
if (p^ < s) then
begin
if (p^ < 256) then { 256 is end-of-block code }
r.exop := 0
Else
r.exop := 32 + 64; { EOB_code; }
r.base := p^; { simple code is just the value }
Inc(p);
end
Else
begin
r.exop := Byte(e[p^-s] + 16 + 64); { non-simple--look up in lists }
r.base := d[p^-s];
Inc (p);
end ;
{ fill code-like entries with r }
f := 1 shl (k - w);
j := i shr w;
while (j < z) do
begin
huft_Ptr(q)^[j] := r;
Inc(j, f);
end;
{ backwards increment the k-bit code i }
j := 1 shl (k-1) ;
while (i and j) <> 0 do
begin
i := i xor j; { bitwise exclusive or }
j := j shr 1
end ;
i := i xor j;
{ backup over finished tables }
mask := (1 shl w) - 1; { needed on HP, cc -O bug }
while ((i and mask) <> x[h]) do
begin
Dec(h); { don't need to update q }
Dec(w, l);
mask := (1 shl w) - 1;
end;
end;
Inc(k);
end;
{ Return Z_BUF_ERROR if we were given an incomplete table }
if (y <> 0) And (g <> 1) then
huft_build := Z_BUF_ERROR
else
huft_build := Z_OK;
end; { huft_build}
function inflate_trees_bits(
var c : array of uIntf; { 19 code lengths }
var bb : uIntf; { bits tree desired/actual depth }
var tb : pinflate_huft; { bits tree result }
var hp : array of Inflate_huft; { space for trees }
var z : z_stream { for messages }
) : int;
var
r : int;
hn : uInt; { hufts used in space }
v : PuIntArray; { work area for huft_build }
begin
hn := 0;
v := PuIntArray( ZALLOC(z, 19, sizeof(uInt)) );
if (v = Z_NULL) then
begin
inflate_trees_bits := Z_MEM_ERROR;
exit;
end;
r := huft_build(c, 19, 19, cplens, cplext,
{puIntf(Z_NULL), puIntf(Z_NULL),}
@tb, bb, hp, hn, v^);
if (r = Z_DATA_ERROR) then
z.msg := 'oversubscribed dynamic bit lengths tree'
else
if (r = Z_BUF_ERROR) or (bb = 0) then
begin
z.msg := 'incomplete dynamic bit lengths tree';
r := Z_DATA_ERROR;
end;
ZFREE(z, v);
inflate_trees_bits := r;
end;
function inflate_trees_dynamic(
nl : uInt; { number of literal/length codes }
nd : uInt; { number of distance codes }
var c : Array of uIntf; { that many (total) code lengths }
var bl : uIntf; { literal desired/actual bit depth }
var bd : uIntf; { distance desired/actual bit depth }
var tl : pInflate_huft; { literal/length tree result }
var td : pInflate_huft; { distance tree result }
var hp : array of Inflate_huft; { space for trees }
var z : z_stream { for messages }
) : int;
var
r : int;
hn : uInt; { hufts used in space }
v : PuIntArray; { work area for huft_build }
begin
hn := 0;
{ allocate work area }
v := PuIntArray( ZALLOC(z, 288, sizeof(uInt)) );
if (v = Z_NULL) then
begin
inflate_trees_dynamic := Z_MEM_ERROR;
exit;
end;
{ build literal/length tree }
r := huft_build(c, nl, 257, cplens, cplext, @tl, bl, hp, hn, v^);
if (r <> Z_OK) or (bl = 0) then
begin
if (r = Z_DATA_ERROR) then
z.msg := 'oversubscribed literal/length tree'
else
if (r <> Z_MEM_ERROR) then
begin
z.msg := 'incomplete literal/length tree';
r := Z_DATA_ERROR;
end;
ZFREE(z, v);
inflate_trees_dynamic := r;
exit;
end;
{ build distance tree }
r := huft_build(puIntArray(@c[nl])^, nd, 0,
cpdist, cpdext, @td, bd, hp, hn, v^);
if (r <> Z_OK) or ((bd = 0) and (nl > 257)) then
begin
if (r = Z_DATA_ERROR) then
z.msg := 'oversubscribed literal/length tree'
else
if (r = Z_BUF_ERROR) then
begin
{$ifdef PKZIP_BUG_WORKAROUND}
r := Z_OK;
end;
{$else}
z.msg := 'incomplete literal/length tree';
r := Z_DATA_ERROR;
end
else
if (r <> Z_MEM_ERROR) then
begin
z.msg := 'empty distance tree with lengths';
r := Z_DATA_ERROR;
end;
ZFREE(z, v);
inflate_trees_dynamic := r;
exit;
{$endif}
end;
{ done }
ZFREE(z, v);
inflate_trees_dynamic := Z_OK;
end;
{$UNDEF BUILDFIXED}
{ build fixed tables only once--keep them here }
{$IFNDEF BUILDFIXED}
{ locals }
const
fixed_built : Boolean = false;
FIXEDH = 544; { number of hufts used by fixed tables }
var
fixed_mem : array[0..FIXEDH-1] of inflate_huft;
fixed_bl : uInt;
fixed_bd : uInt;
fixed_tl : pInflate_huft;
fixed_td : pInflate_huft;
{$ELSE}
{ inffixed.h -- table for decoding fixed codes }
{local}
const
fixed_bl = uInt(9);
{local}
const
fixed_bd = uInt(5);
{local}
const
fixed_tl : array [0..288-1] of inflate_huft = (
Exop, { number of extra bits or operation }
bits : Byte; { number of bits in this code or subcode }
{pad : uInt;} { pad structure to a power of 2 (4 bytes for }
{ 16-bit, 8 bytes for 32-bit int's) }
base : uInt; { literal, length base, or distance base }
{ or table offset }
((96,7),256), ((0,8),80), ((0,8),16), ((84,8),115), ((82,7),31),
((0,8),112), ((0,8),48), ((0,9),192), ((80,7),10), ((0,8),96),
((0,8),32), ((0,9),160), ((0,8),0), ((0,8),128), ((0,8),64),
((0,9),224), ((80,7),6), ((0,8),88), ((0,8),24), ((0,9),144),
((83,7),59), ((0,8),120), ((0,8),56), ((0,9),208), ((81,7),17),
((0,8),104), ((0,8),40), ((0,9),176), ((0,8),8), ((0,8),136),
((0,8),72), ((0,9),240), ((80,7),4), ((0,8),84), ((0,8),20),
((85,8),227), ((83,7),43), ((0,8),116), ((0,8),52), ((0,9),200),
((81,7),13), ((0,8),100), ((0,8),36), ((0,9),168), ((0,8),4),
((0,8),132), ((0,8),68), ((0,9),232), ((80,7),8), ((0,8),92),
((0,8),28), ((0,9),152), ((84,7),83), ((0,8),124), ((0,8),60),
((0,9),216), ((82,7),23), ((0,8),108), ((0,8),44), ((0,9),184),
((0,8),12), ((0,8),140), ((0,8),76), ((0,9),248), ((80,7),3),
((0,8),82), ((0,8),18), ((85,8),163), ((83,7),35), ((0,8),114),
((0,8),50), ((0,9),196), ((81,7),11), ((0,8),98), ((0,8),34),
((0,9),164), ((0,8),2), ((0,8),130), ((0,8),66), ((0,9),228),
((80,7),7), ((0,8),90), ((0,8),26), ((0,9),148), ((84,7),67),
((0,8),122), ((0,8),58), ((0,9),212), ((82,7),19), ((0,8),106),
((0,8),42), ((0,9),180), ((0,8),10), ((0,8),138), ((0,8),74),
((0,9),244), ((80,7),5), ((0,8),86), ((0,8),22), ((192,8),0),
((83,7),51), ((0,8),118), ((0,8),54), ((0,9),204), ((81,7),15),
((0,8),102), ((0,8),38), ((0,9),172), ((0,8),6), ((0,8),134),
((0,8),70), ((0,9),236), ((80,7),9), ((0,8),94), ((0,8),30),
((0,9),156), ((84,7),99), ((0,8),126), ((0,8),62), ((0,9),220),
((82,7),27), ((0,8),110), ((0,8),46), ((0,9),188), ((0,8),14),
((0,8),142), ((0,8),78), ((0,9),252), ((96,7),256), ((0,8),81),
((0,8),17), ((85,8),131), ((82,7),31), ((0,8),113), ((0,8),49),
((0,9),194), ((80,7),10), ((0,8),97), ((0,8),33), ((0,9),162),
((0,8),1), ((0,8),129), ((0,8),65), ((0,9),226), ((80,7),6),
((0,8),89), ((0,8),25), ((0,9),146), ((83,7),59), ((0,8),121),
((0,8),57), ((0,9),210), ((81,7),17), ((0,8),105), ((0,8),41),
((0,9),178), ((0,8),9), ((0,8),137), ((0,8),73), ((0,9),242),
((80,7),4), ((0,8),85), ((0,8),21), ((80,8),258), ((83,7),43),
((0,8),117), ((0,8),53), ((0,9),202), ((81,7),13), ((0,8),101),
((0,8),37), ((0,9),170), ((0,8),5), ((0,8),133), ((0,8),69),
((0,9),234), ((80,7),8), ((0,8),93), ((0,8),29), ((0,9),154),
((84,7),83), ((0,8),125), ((0,8),61), ((0,9),218), ((82,7),23),
((0,8),109), ((0,8),45), ((0,9),186), ((0,8),13), ((0,8),141),
((0,8),77), ((0,9),250), ((80,7),3), ((0,8),83), ((0,8),19),
((85,8),195), ((83,7),35), ((0,8),115), ((0,8),51), ((0,9),198),
((81,7),11), ((0,8),99), ((0,8),35), ((0,9),166), ((0,8),3),
((0,8),131), ((0,8),67), ((0,9),230), ((80,7),7), ((0,8),91),
((0,8),27), ((0,9),150), ((84,7),67), ((0,8),123), ((0,8),59),
((0,9),214), ((82,7),19), ((0,8),107), ((0,8),43), ((0,9),182),
((0,8),11), ((0,8),139), ((0,8),75), ((0,9),246), ((80,7),5),
((0,8),87), ((0,8),23), ((192,8),0), ((83,7),51), ((0,8),119),
((0,8),55), ((0,9),206), ((81,7),15), ((0,8),103), ((0,8),39),
((0,9),174), ((0,8),7), ((0,8),135), ((0,8),71), ((0,9),238),
((80,7),9), ((0,8),95), ((0,8),31), ((0,9),158), ((84,7),99),
((0,8),127), ((0,8),63), ((0,9),222), ((82,7),27), ((0,8),111),
((0,8),47), ((0,9),190), ((0,8),15), ((0,8),143), ((0,8),79),
((0,9),254), ((96,7),256), ((0,8),80), ((0,8),16), ((84,8),115),
((82,7),31), ((0,8),112), ((0,8),48), ((0,9),193), ((80,7),10),
((0,8),96), ((0,8),32), ((0,9),161), ((0,8),0), ((0,8),128),
((0,8),64), ((0,9),225), ((80,7),6), ((0,8),88), ((0,8),24),
((0,9),145), ((83,7),59), ((0,8),120), ((0,8),56), ((0,9),209),
((81,7),17), ((0,8),104), ((0,8),40), ((0,9),177), ((0,8),8),
((0,8),136), ((0,8),72), ((0,9),241), ((80,7),4), ((0,8),84),
((0,8),20), ((85,8),227), ((83,7),43), ((0,8),116), ((0,8),52),
((0,9),201), ((81,7),13), ((0,8),100), ((0,8),36), ((0,9),169),
((0,8),4), ((0,8),132), ((0,8),68), ((0,9),233), ((80,7),8),
((0,8),92), ((0,8),28), ((0,9),153), ((84,7),83), ((0,8),124),
((0,8),60), ((0,9),217), ((82,7),23), ((0,8),108), ((0,8),44),
((0,9),185), ((0,8),12), ((0,8),140), ((0,8),76), ((0,9),249),
((80,7),3), ((0,8),82), ((0,8),18), ((85,8),163), ((83,7),35),
((0,8),114), ((0,8),50), ((0,9),197), ((81,7),11), ((0,8),98),
((0,8),34), ((0,9),165), ((0,8),2), ((0,8),130), ((0,8),66),
((0,9),229), ((80,7),7), ((0,8),90), ((0,8),26), ((0,9),149),
((84,7),67), ((0,8),122), ((0,8),58), ((0,9),213), ((82,7),19),
((0,8),106), ((0,8),42), ((0,9),181), ((0,8),10), ((0,8),138),
((0,8),74), ((0,9),245), ((80,7),5), ((0,8),86), ((0,8),22),
((192,8),0), ((83,7),51), ((0,8),118), ((0,8),54), ((0,9),205),
((81,7),15), ((0,8),102), ((0,8),38), ((0,9),173), ((0,8),6),
((0,8),134), ((0,8),70), ((0,9),237), ((80,7),9), ((0,8),94),
((0,8),30), ((0,9),157), ((84,7),99), ((0,8),126), ((0,8),62),
((0,9),221), ((82,7),27), ((0,8),110), ((0,8),46), ((0,9),189),
((0,8),14), ((0,8),142), ((0,8),78), ((0,9),253), ((96,7),256),
((0,8),81), ((0,8),17), ((85,8),131), ((82,7),31), ((0,8),113),
((0,8),49), ((0,9),195), ((80,7),10), ((0,8),97), ((0,8),33),
((0,9),163), ((0,8),1), ((0,8),129), ((0,8),65), ((0,9),227),
((80,7),6), ((0,8),89), ((0,8),25), ((0,9),147), ((83,7),59),
((0,8),121), ((0,8),57), ((0,9),211), ((81,7),17), ((0,8),105),
((0,8),41), ((0,9),179), ((0,8),9), ((0,8),137), ((0,8),73),
((0,9),243), ((80,7),4), ((0,8),85), ((0,8),21), ((80,8),258),
((83,7),43), ((0,8),117), ((0,8),53), ((0,9),203), ((81,7),13),
((0,8),101), ((0,8),37), ((0,9),171), ((0,8),5), ((0,8),133),
((0,8),69), ((0,9),235), ((80,7),8), ((0,8),93), ((0,8),29),
((0,9),155), ((84,7),83), ((0,8),125), ((0,8),61), ((0,9),219),
((82,7),23), ((0,8),109), ((0,8),45), ((0,9),187), ((0,8),13),
((0,8),141), ((0,8),77), ((0,9),251), ((80,7),3), ((0,8),83),
((0,8),19), ((85,8),195), ((83,7),35), ((0,8),115), ((0,8),51),
((0,9),199), ((81,7),11), ((0,8),99), ((0,8),35), ((0,9),167),
((0,8),3), ((0,8),131), ((0,8),67), ((0,9),231), ((80,7),7),
((0,8),91), ((0,8),27), ((0,9),151), ((84,7),67), ((0,8),123),
((0,8),59), ((0,9),215), ((82,7),19), ((0,8),107), ((0,8),43),
((0,9),183), ((0,8),11), ((0,8),139), ((0,8),75), ((0,9),247),
((80,7),5), ((0,8),87), ((0,8),23), ((192,8),0), ((83,7),51),
((0,8),119), ((0,8),55), ((0,9),207), ((81,7),15), ((0,8),103),
((0,8),39), ((0,9),175), ((0,8),7), ((0,8),135), ((0,8),71),
((0,9),239), ((80,7),9), ((0,8),95), ((0,8),31), ((0,9),159),
((84,7),99), ((0,8),127), ((0,8),63), ((0,9),223), ((82,7),27),
((0,8),111), ((0,8),47), ((0,9),191), ((0,8),15), ((0,8),143),
((0,8),79), ((0,9),255)
);
{local}
const
fixed_td : array[0..32-1] of inflate_huft = (
(Exop:80;bits:5;base:1), (Exop:87;bits:5;base:257), (Exop:83;bits:5;base:17),
(Exop:91;bits:5;base:4097), (Exop:81;bits:5;base), (Exop:89;bits:5;base:1025),
(Exop:85;bits:5;base:65), (Exop:93;bits:5;base:16385), (Exop:80;bits:5;base:3),
(Exop:88;bits:5;base:513), (Exop:84;bits:5;base:33), (Exop:92;bits:5;base:8193),
(Exop:82;bits:5;base:9), (Exop:90;bits:5;base:2049), (Exop:86;bits:5;base:129),
(Exop:192;bits:5;base:24577), (Exop:80;bits:5;base:2), (Exop:87;bits:5;base:385),
(Exop:83;bits:5;base:25), (Exop:91;bits:5;base:6145), (Exop:81;bits:5;base:7),
(Exop:89;bits:5;base:1537), (Exop:85;bits:5;base:97), (Exop:93;bits:5;base:24577),
(Exop:80;bits:5;base:4), (Exop:88;bits:5;base:769), (Exop:84;bits:5;base:49),
(Exop:92;bits:5;base:12289), (Exop:82;bits:5;base:13), (Exop:90;bits:5;base:3073),
(Exop:86;bits:5;base:193), (Exop:192;bits:5;base:24577)
);
{$ENDIF}
function inflate_trees_fixed(
var bl : uIntf; { literal desired/actual bit depth }
var bd : uIntf; { distance desired/actual bit depth }
var tl : pInflate_huft; { literal/length tree result }
var td : pInflate_huft; { distance tree result }
var z : z_stream { for memory allocation }
) : int;
type
pFixed_table = ^fixed_table;
fixed_table = array[0..288-1] of uIntf;
var
k : int; { temporary variable }
c : pFixed_table; { length list for huft_build }
v : PuIntArray; { work area for huft_build }
var
f : uInt; { number of hufts used in fixed_mem }
begin
{ build fixed tables if not already (multiple overlapped executions ok) }
if not fixed_built then
begin
f := 0;
{ allocate memory }
c := pFixed_table( ZALLOC(z, 288, sizeof(uInt)) );
if (c = Z_NULL) then
begin
inflate_trees_fixed := Z_MEM_ERROR;
exit;
end;
v := PuIntArray( ZALLOC(z, 288, sizeof(uInt)) );
if (v = Z_NULL) then
begin
ZFREE(z, c);
inflate_trees_fixed := Z_MEM_ERROR;
exit;
end;
{ literal table }
for k := 0 to Pred(144) do
c^[k] := 8;
for k := 144 to Pred(256) do
c^[k] := 9;
for k := 256 to Pred(280) do
c^[k] := 7;
for k := 280 to Pred(288) do
c^[k] := 8;
fixed_bl := 9;
huft_build(c^, 288, 257, cplens, cplext, @fixed_tl, fixed_bl,
fixed_mem, f, v^);
{ distance table }
for k := 0 to Pred(30) do
c^[k] := 5;
fixed_bd := 5;
huft_build(c^, 30, 0, cpdist, cpdext, @fixed_td, fixed_bd,
fixed_mem, f, v^);
{ done }
ZFREE(z, v);
ZFREE(z, c);
fixed_built := True;
end;
bl := fixed_bl;
bd := fixed_bd;
tl := fixed_tl;
td := fixed_td;
inflate_trees_fixed := Z_OK;
end; { inflate_trees_fixed }
end.
|