1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
|
{
$Id: ode.pas,v 1.3 2005/02/14 17:13:21 peter Exp $
This file is part of the Numlib package.
Copyright (c) 1986-2000 by
Kees van Ginneken, Wil Kortsmit and Loek van Reij of the
Computational centre of the Eindhoven University of Technology
FPC port Code by Marco van de Voort (marco@freepascal.org)
documentation by Michael van Canneyt (Michael@freepascal.org)
Solve first order starting value differential eqs, and
sets of first order starting value differential eqs,
Both versions are not suited for stiff differential equations
See the file COPYING.FPC, included in this distribution,
for details about the copyright.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
**********************************************************************}
Unit ode;
{$I DIRECT.INC}
interface
uses typ;
{Solve first order, starting value, differential eqs,
Calc y(b) for dy/dx=f(x,y) and y(a)=ae}
Procedure odeiv1(f: rfunc2r; a, ya: ArbFloat; Var b, yb: ArbFloat;
ae: ArbFloat; Var term: ArbInt);
{ The same as above, for a set of equations. ya and yb are vectors}
Procedure odeiv2(f: oderk1n; a: ArbFloat; Var ya, b, yb: ArbFloat;
n: ArbInt; ae: ArbFloat; Var term: ArbInt);
implementation
Procedure odeiv1(f: rfunc2r; a, ya: ArbFloat; Var b, yb: ArbFloat;
ae: ArbFloat; Var term: ArbInt);
Var last, first, reject, goon : boolean;
x, y, d, h, xl, yl, int, hmin,
absh,k0, k1, k2, k3, k4, k5,
discr, tol, mu, mu1, fh, hl : ArbFloat;
Begin
x := a;
y := ya;
d := b-a;
yb := y;
term := 1;
If ae <= 0 Then
Begin
term := 3;
exit
End;
If d <> 0 Then
Begin
xl := x;
yl := y;
h := d/4;
absh := abs(h);
int := abs(d);
hmin := int*1e-6;
ae := ae/int;
first := true;
goon := true;
while goon Do
Begin
absh := abs(h);
If absh < hmin Then
Begin
If h>0 Then h := hmin
Else h := -hmin;
absh := hmin
End;
If (h >= b-xl) = (h >= 0) Then
Begin
last := true;
h := b-xl;
absh := abs(h)
End
Else last := false;
x := xl;
y := yl;
k0 := f(x,y)*h;
x := xl+h*2/9;
y := yl+k0*2/9;
k1 := f(x,y)*h;
x := xl+h/3;
y := yl+(k0+k1*3)/12;
k2 := f(x,y)*h;
x := xl+h/2;
y := yl+(k0+k2*3)/8;
k3 := f(x,y)*h;
x := xl+h*0.8;
y := yl+(k0*53-k1*135+k2*126+k3*56)/125;
k4 := f(x,y)*h;
If last Then x := b
Else x := xl+h;
y := yl+(k0*133-k1*378+k2*276+k3*112+k4*25)/168;
k5 := f(x,y)*h;
discr := abs(21*(k0-k3)-162*(k2-k3)-125*(k4-k3)+42*(k5-k3))/14;
tol := absh*ae;
mu := 1/(1+discr/tol)+0.45;
reject := discr > tol;
If reject Then
Begin
If absh <= hmin Then
Begin
b := xl;
yb := yl;
term := 2;
exit
End;
h := mu*h
End
Else
Begin
If first Then
Begin
first := false;
hl := h;
h := mu*h
End
Else
Begin
fh := mu*h/hl+mu-mu1;
hl := h;
h := fh*h
End;
mu1 := mu;
y := yl+(-k0*63+k1*189-k2*36-k3*112+k4*50)/28;
k5 := f(x,y)*hl;
y := yl+(k0*35+k2*162+k4*125+k5*14)/336;
If b <> x Then
Begin
xl := x;
yl := y
End
Else
Begin
yb := y;
goon := false
End
End {not reject}
End; {while}
End {d<>0}
End; {odeiv1}
Procedure odeiv2(f: oderk1n; a: ArbFloat; Var ya, b, yb: ArbFloat;
n: ArbInt; ae: ArbFloat; Var term: ArbInt);
Var pya, pyb, yl, k0, k1, k2, k3, k4, k5, y : ^arfloat1;
i, jj, ns : ArbInt;
last, first, reject, goon : boolean;
x, xl, hmin, int, hl, absh, fhm,
discr, tol, mu, mu1, fh, d, h : ArbFloat;
Begin
If (ae <= 0) Or (n < 1) Then
Begin
term := 3;
exit
End;
ns := n*sizeof(ArbFloat);
pya := @ya;
pyb := @yb;
move(pya^[1], pyb^[1], ns);
term := 1;
getmem(yl, ns);
getmem(k0, ns);
getmem(k1, ns);
getmem(k2, ns);
getmem(k3, ns);
getmem(k4, ns);
getmem(k5, ns);
getmem(y, ns);
x := a;
d := b-a;
move(pya^[1], y^[1], ns);
If d <> 0 Then
Begin
xl := x;
move(y^[1], yl^[1], ns);
h := d/4;
absh := abs(h);
int := abs(d);
hmin := int*1e-6;
hl := ae;
ae := ae/int;
first := true;
goon := true;
while goon Do
Begin
absh := abs(h);
If absh < hmin Then
Begin
If h > 0 Then h := hmin
Else h := -hmin;
absh := hmin
End;
If (h >= b-xl) = (h >= 0) Then
Begin
last := true;
h := b-xl;
absh := abs(h)
End
Else last := false;
x := xl;
move(yl^[1], y^[1], ns);
f(x, y^[1], k0^[1]);
For i:=1 To n Do
k0^[i] := k0^[i]*h;
x := xl+h*2/9;
For jj:=1 To n Do
y^[jj] := yl^[jj]+k0^[jj]*2/9;
f(x, y^[1], k1^[1]);
For i:=1 To n Do
k1^[i] := k1^[i]*h;
x := xl+h/3;
For jj:=1 To n Do
y^[jj] := yl^[jj]+(k0^[jj]+k1^[jj]*3)/12;
f(x, y^[1], k2^[1]);
For i:=1 To n Do
k2^[i] := k2^[i]*h;
x := xl+h/2;
For jj:=1 To n Do
y^[jj] := yl^[jj]+(k0^[jj]+k2^[jj]*3)/8;
f(x, y^[1], k3^[1]);
For i:=1 To n Do
k3^[i] := k3^[i]*h;
x := xl+h*0.8;
For jj:=1 To n Do
y^[jj] := yl^[jj]+
(k0^[jj]*53-k1^[jj]*135+k2^[jj]*126+k3^[jj]*56)/125;
f(x, y^[1], k4^[1]);
For i:=1 To n Do
k4^[i] := k4^[i]*h;
If last Then x := b
Else x := xl+h;
For jj:=1 To n Do
y^[jj] := yl^[jj]+(k0^[jj]*133-k1^[jj]*378+k2^[jj]*276+
k3^[jj]*112+k4^[jj]*25)/168;
f(x, y^[1], k5^[1]);
For i:=1 To n Do
k5^[i] := k5^[i]*h;
reject := false;
fhm := 0;
tol := absh*ae;
For jj:=1 To n Do
Begin
discr := abs((k0^[jj]-k3^[jj])*21-(k2^[jj]-k3^[jj])*162-
(k4^[jj]-k3^[jj])*125+(k5^[jj]-k3^[jj])*42)/14;
reject := (discr > tol) Or reject;
fh := discr/tol;
If fh > fhm Then fhm := fh
End; {jj}
mu := 1/(1+fhm)+0.45;
If reject Then
Begin
If absh <= hmin Then
Begin
b := xl;
move(yl^[1], pyb^[1], ns);
term := 2;
freemem(yl, ns);
freemem(k0, ns);
freemem(k1, ns);
freemem(k2, ns);
freemem(k3, ns);
freemem(k4, ns);
freemem(k5, ns);
freemem(y, ns);
exit
End;
h := mu*h
End
Else
Begin
If first Then
Begin
first := false;
hl := h;
h := mu*h
End
Else
Begin
fh := mu*h/hl+mu-mu1;
hl := h;
h := fh*h
End;
mu1 := mu;
For jj:=1 To n Do
y^[jj] := yl^[jj]+(-k0^[jj]*63+k1^[jj]*189
-k2^[jj]*36-k3^[jj]*112+k4^[jj]*50)/28;
f(x, y^[1], k5^[1]);
For i:=1 To n Do
k5^[i] := k5^[i]*hl;
For jj:=1 To n Do
y^[jj] := yl^[jj]+(k0^[jj]*35+k2^[jj]*162+k4^[jj]*125
+k5^[jj]*14)/336;
If b <> x Then
Begin
xl := x;
move(y^[1], yl^[1], ns)
End
Else
Begin
move(y^[1], pyb^[1], ns);
goon := false
End
End {not reject}
End {while}
End; {d<>0}
freemem(yl, ns);
freemem(k0, ns);
freemem(k1, ns);
freemem(k2, ns);
freemem(k3, ns);
freemem(k4, ns);
freemem(k5, ns);
freemem(y, ns)
End; {odeiv2}
End.
{
$Log: ode.pas,v $
Revision 1.3 2005/02/14 17:13:21 peter
* truncate log
}
|