1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
|
{
$Id: spl.pas,v 1.3 2005/02/14 17:13:21 peter Exp $
This file is part of the Numlib package.
Copyright (c) 1986-2000 by
Kees van Ginneken, Wil Kortsmit and Loek van Reij of the
Computational centre of the Eindhoven University of Technology
FPC port Code by Marco van de Voort (marco@freepascal.org)
documentation by Michael van Canneyt (Michael@freepascal.org)
Undocumented unit. B- and other Splines. Not imported by the other units
afaik.
See the file COPYING.FPC, included in this distribution,
for details about the copyright.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
**********************************************************************}
unit spl;
{$I direct.inc}
interface
uses typ, sle;
function spl1bspv(q: ArbInt; var kmin1, c1: ArbFloat; x: ArbFloat; var term: ArbInt): ArbFloat;
function spl2bspv(qx, qy: ArbInt; var kxmin1, kymin1, c11: ArbFloat; x, y: ArbFloat; var term: ArbInt): ArbFloat;
procedure spl1bspf(M, Q: ArbInt; var XYW1: ArbFloat;
var Kmin1, C1, residu: ArbFloat;
var term: ArbInt);
procedure spl2bspf(M, Qx, Qy: ArbInt; var XYZW1: ArbFloat;
var Kxmin1, Kymin1, C11, residu: ArbFloat;
var term: ArbInt);
procedure spl1nati(n: ArbInt; var xyc1: ArbFloat; var term: ArbInt);
procedure spl1naki(n: ArbInt; var xyc1: ArbFloat; var term: ArbInt);
procedure spl1cmpi(n: ArbInt; var xyc1: ArbFloat; dy1, dyn: ArbFloat;
var term: ArbInt);
procedure spl1peri(n: ArbInt; var xyc1: ArbFloat; var term: ArbInt);
function spl1pprv(n: ArbInt; var xyc1: ArbFloat; t: ArbFloat; var term: ArbInt): ArbFloat;
procedure spl1nalf(n: ArbInt; var xyw1: ArbFloat; lambda:ArbFloat;
var xac1, residu: ArbFloat; var term: ArbInt);
function spl2natv(n: ArbInt; var xyg0: ArbFloat; u, v: ArbFloat): ArbFloat;
procedure spl2nalf(n: ArbInt; var xyzw1: ArbFloat; lambda:ArbFloat;
var xyg0, residu: ArbFloat; var term: ArbInt);
{ term = 1: succes,
term = 2: set linear equations is not "PD"
term = 4: Approx. number of points? On a line.
term = 3: wrong input n<3 or a weight turned out to be <=0 }
implementation
type
Krec = record K1, K2, K3, K4, K5, K6 : ArbFloat end;
function spl1bspv(q: ArbInt; var kmin1, c1: ArbFloat; x: ArbFloat; var term: ArbInt): ArbFloat;
var c : arfloat1 absolute c1;
k : arfloat_1 absolute kmin1;
D1, D2, D3,
E2, E3, E4, E5: ArbFloat;
pk : ^Krec;
l, r, m : ArbInt;
begin
spl1bspv := NaN;
term := 3; { q >=4 ! }
if q<4 then exit; { at least 1 interval }
if (x<k[2]) or (x>k[q-1]) then exit; { x inside the interval }
term := 1; { Let's hope the params are good :-)}
l := 2; r := q-1;
while l+1<r do { after this loop goes: }
begin { k[l]<=x<=k[l+1] with }
m := (l+r) div 2; { k[l] < k[l+1] }
if x>=k[m] then l := m else r := m
end;
pk := @k[l-2]; { the (de) Boor algoritm .. }
with pk^ do
begin
E2 := X - K2; E3 := X - K3; E4 := K4 - X; E5 := K5 - X;
D2 := C[l]; D3 := C[l+1];
D1 := ((X-K1)*D2+E4*C[l-1])/(K4-K1);
D2 := (E2*D3+E5*D2)/(K5-K2);
D3 := (E3*C[l+2]+(K6-X)*D3)/(K6-K3);
D1 := (E2*D2+E4*D1)/(K4-K2);
D2 := (E3*D3+E5*D2)/(K5-K3);
spl1bspv := (E3*D2+E4*D1)/(K4-K3)
end;
end;
function spl2bspv(qx, qy: ArbInt; var kxmin1, kymin1, c11: ArbFloat; x, y: ArbFloat; var term: ArbInt): ArbFloat;
var pd: ^arfloat1;
i, iy: ArbInt;
c: arfloat1 absolute c11;
begin
GetMem(pd, qx*SizeOf(ArbFloat));
i := 0;
iy := 1;
repeat
i := i + 1;
pd^[i] := spl1bspv(qy, kymin1, c[iy], y, term);
Inc(iy, qy)
until (i=qx) or (term<>1);
if term=1
then spl2bspv := spl1bspv(qx, kxmin1, pd^[1], x, term)
else spl2bspv := NaN;
FreeMem(pd, qx*SizeOf(ArbFloat));
end;
(* Bron: NAG LIBRARY SUBROUTINE E02BAF *)
function Imin(x, y: ArbInt): ArbInt;
begin if x<y then Imin := x else Imin := y end;
type ar4 = array[1..$ffe0 div (4*SizeOf(ArbFloat)),1..4] of ArbFloat;
ar3 = array[1..$ffe0 div (3*SizeOf(ArbFloat)),1..3] of ArbFloat;
r_3 = record x, y, w: ArbFloat end;
r3Ar= array[1..$ffe0 div SizeOf(r_3)] of r_3;
r_4 = record x, y, z, w: ArbFloat end;
r4Ar= array[1..$ffe0 div SizeOf(r_4)] of r_4;
r4 = array[1..4] of ArbFloat;
r2 = array[1..2] of ArbFloat;
r4x = record xy: R2; alfa, d: ArbFloat end;
r4xAr= array[1..$ffe0 div SizeOf(r4x)] of r4x;
nsp2rec = array[0..$ff80 div (3*SizeOf(ArbFloat))] of
record xy: R2; gamma: ArbFloat end;
procedure spl1bspf(M, Q: ArbInt; var XYW1: ArbFloat;
var Kmin1, C1, residu: ArbFloat;
var term: ArbInt);
var work1: ^arfloat1;
work2: ^ar4;
c : arfloat1 absolute c1;
k : arfloat_1 absolute kmin1;
xyw : r3Ar absolute XYW1;
r, j, jmax, l, lplus1, i, iplusj, jold, jrev,
jplusl, iu, lplusu : ArbInt;
s, k0, k4, sigma,
d, d4, d5, d6, d7, d8, d9,
e2, e3, e4, e5,
n1, n2, n3,
relemt, dprime, cosine, sine,
acol, arow, crow, ccol, ss : ArbFloat;
pk : ^Krec;
label einde;
(*
DOUBLE PRECISION C(NCAP7), K(NCAP7), W(M), WORK1(M),
* WORK2(4,NCAP7), X(M), Y(M)
.. Local Scalars ..
DOUBLE PRECISION ACOL, AROW, CCOL, COSINE, CROW, D, D4, D5, D6,
* D7, D8, D9, DPRIME, E2, E3, E4, E5, K0, K1, K2,
* K3, K4, K5, K6, N1, N2, N3, RELEMT, S, SIGMA,
* SINE, WI, XI
INTEGER I, IERROR, IPLUSJ, IU, J, JOLD, JPLUSL, JREV, L,
* L4, LPLUS1, LPLUSU, NCAP, NCAP3, NCAPM1, R
*)
begin
term := 3;
if q<4 then exit;
if m<q then exit;
(*
CHECK THAT THE VALUES OF M AND NCAP7 ARE REASONABLE
IF (NCAP7.LT.8 .OR. M.LT.NCAP7-4) GO TO 420
NCAP = NCAP7 - 7
NCAPM1 = NCAP - 1
NCAP3 = NCAP + 3
IN ORDER TO DEFINE THE FULL B-SPLINE BASIS, AUGMENT THE
PRESCRIBED INTERIOR KNOTS BY KNOTS OF MULTIPLICITY FOUR
AT EACH END OF THE DATA RANGE.
*)
for j:=-1 to 2 do k[j] := xyw[1].x;
for j:=q-1 to q+2 do k[j] := xyw[m].x;
if (k[3]<=xyw[1].x) or (k[q-2]>=xyw[m].x) then exit;
(*
CHECK THAT THE KNOTS ARE ORDERED AND ARE INTERIOR
TO THE DATA INTERVAL.
*)
j := 3; while (k[j]<=k[j+1]) and (j<q-2) do Inc(j);
if j<q-2 then exit;
(*
CHECK THAT THE WEIGHTS ARE STRICTLY POSITIVE.
*)
j := 1;
while (xyw[j].w>0) and (j<m) do Inc(j);
if xyw[j].w<=0 then exit;
(*
CHECK THAT THE DATA ABSCISSAE ARE ORDERED, THEN FORM THE
ARRAY WORK1 FROM THE ARRAY X. THE ARRAY WORK1 CONTAINS
THE
SET OF DISTINCT DATA ABSCISSAE.
*)
GetMem(Work1, m*SizeOf(ArbFloat));
GetMem(Work2, q*4*SizeOf(ArbFloat));
r := 1; work1^[1] := xyw[1].x;
j := 1;
while (j<m) do
begin
Inc(j);
if xyw[j].x>work1^[r]
then begin Inc(r); work1^[r] := xyw[j].x end
else if xyw[j].x<work1^[r] then goto einde;
end;
if r<q then goto einde;
(*
CHECK THE FIRST S AND THE LAST S SCHOENBERG-WHITNEY
CONDITIONS ( S = MIN(NCAP - 1, 4) ).
*)
jmax := Imin(q-4,4);
j := 1;
while (j<=jmax) do
begin
if (work1^[j]>=k[j+2]) or (k[q-j-1]>=work1^[r-j+1]) then goto einde;
Inc(j)
end;
(*
CHECK ALL THE REMAINING SCHOENBERG-WHITNEY CONDITIONS.
*)
Dec(r, 4); i := 4; j := 5;
while j<=q-4 do
begin
K0 := K[j+2]; K4 := K[J-2];
repeat Inc(i) until (Work1^[i]>k4);
if (I>R) or (WORK1^[I]>=K0) then goto einde;
Inc(j)
end;
(*
INITIALISE A BAND TRIANGULAR SYSTEM (I.E. A
MATRIX AND A RIGHT HAND SIDE) TO ZERO. THE
PROCESSING OF EACH DATA POINT IN TURN RESULTS
IN AN UPDATING OF THIS SYSTEM. THE SUBSEQUENT
SOLUTION OF THE RESULTING BAND TRIANGULAR SYSTEM
YIELDS THE COEFFICIENTS OF THE B-SPLINES.
*)
FillChar(Work2^, q*4*SizeOf(ArbFloat), 0);
FillChar(c, q*SizeOf(ArbFloat), 0);
SIGMA := 0; j := 0; jold := 0;
for i:=1 to m do
with xyw[i] do
begin
(*
FOR THE DATA POINT (X(I), Y(I)) DETERMINE AN INTERVAL
K(J + 3) .LE. X .LT. K(J + 4) CONTAINING X(I). (IN THE
CASE J + 4 .EQ. NCAP THE SECOND EQUALITY IS RELAXED TO
INCLUDE
EQUALITY).
*)
while (x>=k[j+2]) and (j<=q-4) do Inc(j);
if j<>jold then
begin
pk := @k[j-1];
with pk^ do
begin
D4 := 1/(K4-K1); D5 := 1/(K5-K2); D6 := 1/(K6-K3);
D7 := 1/(K4-K2); D8 := 1/(K5-K3); D9 := 1/(K4-K3)
end;
JOLD := J;
end;
(*
COMPUTE AND STORE IN WORK1(L) (L = 1, 2, 3, 4) THE VALUES
OF
THE FOUR NORMALIZED CUBIC B-SPLINES WHICH ARE NON-ZERO AT
X=X(I).
*) with pk^ do
begin
E5 := k5 - X;
E4 := K4 - X;
E3 := X - K3;
E2 := X - K2;
N1 := W*D9;
N2 := E3*N1*D8;
N1 := E4*N1*D7;
N3 := E3*N2*D6;
N2 := (E2*N1+E5*N2)*D5;
N1 := E4*N1*D4;
WORK1^[4] := E3*N3;
WORK1^[3] := E2*N2 + (K6-X)*N3;
WORK1^[2] := (X-K1)*N1 + E5*N2;
WORK1^[1] := E4*N1;
CROW := Y*W;
end;
(*
ROTATE THIS ROW INTO THE BAND TRIANGULAR SYSTEM USING PLANE
ROTATIONS.
*)
for lplus1:=1 to 4 do
begin L := LPLUS1 - 1;
RELEMT := WORK1^[LPLUS1];
if relemt<>0 then
begin JPLUSL := J + L;
D := WORK2^[JPLUSL,1];
IF (ABS(RELEMT)>=D)
then DPRIME := ABS(RELEMT)*SQRT(1+sqr(D/RELEMT))
else DPRIME := D*SQRT(1+sqr(RELEMT/D));
WORK2^[JPLUSL,1] := DPRIME;
COSINE := D/DPRIME; SINE := RELEMT/DPRIME;
for iu :=2 to 4-l do
begin
LPLUSU := L + IU;
ACOL := WORK2^[JPLUSL,iu];
AROW := WORK1^[LPLUSU];
WORK2^[JPLUSL,iu] := COSINE*ACOL + SINE*AROW;
WORK1^[LPLUSU] := COSINE*AROW - SINE*ACOL
end;
CCOL := C[JPLUSL];
C[JPLUSL] := COSINE*CCOL + SINE*CROW;
CROW := COSINE*CROW - SINE*CCOL
end;
end;
SIGMA := SIGMA + sqr(CROW)
end;
residu := SIGMA;
(*
SOLVE THE BAND TRIANGULAR SYSTEM FOR THE B-SPLINE
COEFFICIENTS. IF A DIAGONAL ELEMENT IS ZERO, AND HENCE
THE TRIANGULAR SYSTEM IS SINGULAR, THE IMPLICATION IS
THAT THE SCHOENBERG-WHITNEY CONDITIONS ARE ONLY JUST
SATISFIED. THUS IT IS APPROPRIATE TO EXIT IN THIS
CASE WITH THE SAME VALUE (IFAIL=5) OF THE ERROR
INDICATOR.
*)
term := 2;
L := -1;
for jrev:=1 to q do
begin
J := q - JREV + 1; D := WORK2^[J,1];
if d=0 then goto einde;
IF l<3 then L := L + 1;
S := C[j];
for i:=1 to l do
begin
IPLUSJ := I + J;
S := S - WORK2^[j,i+1]*C[IPLUSJ];
end;
C[J] := S/D
end;
term:=1;
einde:
FreeMem(Work2, q*4*SizeOf(ArbFloat));
FreeMem(Work1, m*SizeOf(ArbFloat))
end;
procedure spl2bspf(M, Qx, Qy: ArbInt; var XYZW1: ArbFloat;
var Kxmin1, Kymin1, C11, residu: ArbFloat;
var term: ArbInt);
(* !!!!!!!! Test input !!!!!!!!!! *)
(*
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c part 1: determination of the number of knots and their position. c
c **************************************************************** c
c given a set of knots we compute the least-squares spline sinf(x,y), c
c and the corresponding weighted sum of squared residuals fp=f(p=inf). c
c if iopt=-1 sinf(x,y) is the requested approximation. c
c if iopt=0 or iopt=1 we check whether we can accept the knots: c
c if fp <=s we will continue with the current set of knots. c
c if fp > s we will increase the number of knots and compute the c
c corresponding least-squares spline until finally fp<=s. c
c the initial choice of knots depends on the value of s and iopt. c
c if iopt=0 we first compute the least-squares polynomial of degree c
c 3 in x and 3 in y; nx=nminx=2*3+2 and ny=nminy=2*3+2. c
c fp0=f(0) denotes the corresponding weighted sum of squared c
c residuals c
c if iopt=1 we start with the knots found at the last call of the c
c routine, except for the case that s>=fp0; then we can compute c
c the least-squares polynomial directly. c
c eventually the independent variables x and y (and the corresponding c
c parameters) will be switched if this can reduce the bandwidth of the c
c system to be solved. c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc *)
function Min(a, b:ArbInt): ArbInt;
begin if a<b then Min := a else Min := b end;
procedure WisselR(var x, y: ArbFloat);
var h: ArbFloat; begin h := x; x := y; y := h end;
procedure Wisseli(var x, y: ArbInt);
var h: ArbInt; begin h := x; x := y; y := h end;
procedure fprota(var cos1, sin1, a, b: ArbFloat);
var store: ArbFloat;
begin
store := b; b := cos1*b+sin1*a; a := cos1*a-sin1*store
end;
procedure fpgivs(var piv, ww, cos1, sin1: ArbFloat);
var store, dd: ArbFloat;
begin
store := abs(piv);
if store>=ww
then dd := store*sqrt(1+sqr(ww/piv))
else dd := ww*sqrt(1+sqr(piv/ww));
cos1 := ww/dd; sin1 := piv/dd; ww := dd
end;
procedure fpback(var a11, z1: ArbFloat; n, k: ArbInt; var c1: ArbFloat);
(*
subroutine fpback calculates the solution of the system of
equations a*c = z with a a n x n upper triangular matrix
of bandwidth k.
ArbFloat a(.,k)
*)
var a: arfloat1 absolute a11;
z: arfloat1 absolute z1;
c: arfloat1 absolute c1;
i, l: ArbInt;
store : ArbFloat;
begin
for i:=n downto 1 do
begin
store := z[i];
for l:=min(n+1-i,k)-1 downto 1 do store := store-c[i+l]*a[(i-1)*k+l+1];
c[i] := store/a[(i-1)*k+1]
end;
end;
procedure fpbspl(var kmin1: ArbFloat; x: ArbFloat; l: ArbInt; var h: r4);
(*
subroutine fpbspl evaluates the 4 non-zero b-splines of
degree 3 at t(l) <= x < t(l+1) using the stable recurrence
relation of de boor and cox.
*)
var k : arfloat_1 absolute kmin1;
f : ArbFloat;
hh: array[1..3] of ArbFloat;
i, j, li, lj : ArbInt;
begin
h[1] := 1;
for j:=1 to 3 do
begin
for i:=1 to j do hh[i] := h[i];
h[1] := 0;
for i:=1 to j do
begin
li := l+i; lj := li-j;
f := hh[i]/(k[li]-k[lj]);
h[i] := h[i]+f*(k[li]-x);
h[i+1] := f*(x-k[lj])
end;
end;
end;
procedure fporde(m, qx, qy: ArbInt; var xyzw1, kxmin1, kymin1: ArbFloat;
var nummer1, index1: ArbInt);
var xi, yi : ArbFloat;
i, im, num,
k, l : ArbInt;
xyzw : r4Ar absolute xyzw1;
kx : arfloat_1 absolute kxmin1;
ky : arfloat_1 absolute kymin1;
nummer : arint1 absolute nummer1;
index : arint1 absolute index1;
begin
for i:=1 to (qx-3)*(qy-3) do index[i] := 0;
for im:=1 to m do
with xyzw[im] do
begin
l := 2; while (x>=kx[l+1]) and (l<qx-2) do Inc(l);
k := 2; while (y>=ky[k+1]) and (k<qy-2) do Inc(k);
num := (l-2)*(qy-3)+k-1;
nummer[im] := index[num]; index[num] := im
end;
end;
label einde;
var x0, x1, y0, y1, eps, cos1, sin1, dmax, sigma,
wi, zi, hxi, piv : ArbFloat;
i, j, l, l1, l2, lx, ly, nreg, ncof, jrot,
inpanel, i1, j1,
iband, num, irot : ArbInt;
xyzw : r4Ar absolute xyzw1;
kx, ky : ^arfloat_1;
a, f, h : ^arfloat1;
c : arfloat1 absolute c11;
nummer, index : ^arint1;
hx, hy : r4;
ichang, fullrank : boolean;
begin
eps := 10*macheps;
(* find the position of the additional knots which are needed for the
b-spline representation of s(x,y) *)
iband := 1+min(3*qy+3,3*qx+3);
if qy>qx then
begin
ichang := true;
kx := @kymin1; ky := @kxmin1;
for i:=1 to m do with xyzw[i] do Wisselr(x, y);
WisselI(qx, qy)
end else
begin
ichang := false;
kx := @kxmin1; ky := @kymin1;
end;
with xyzw[1] do begin x0 := x; x1 := x; y0 := y; y1 := y end;
for i:=2 to m do with xyzw[i] do
begin if x<x0 then x0 := x; if x>x1 then x1 := x;
if y<y0 then y0 := y; if y>y1 then y1 := y
end;
for i:=-1 to 2 do kx^[i] := x0;
for i:=-1 to 2 do ky^[i] := y0;
for i:=qx-1 to qx+2 do kx^[i] := x1;
for i:=qy-1 to qy+2 do ky^[i] := y1;
(* arrange the data points according to the panel they belong to *)
nreg := (qx-3)*(qy-3);
ncof := qx*qy;
GetMem(nummer, m*SizeOf(ArbInt));
GetMem(index, nreg*SizeOf(ArbInt));
GetMem(h, iband*SizeOf(ArbFloat));
GetMem(a, iband*ncof*SizeOf(ArbFloat));
GetMem(f, ncof*SizeOf(ArbFloat));
fporde(m, qx, qy, xyzw1, kx^[-1], ky^[-1], nummer^[1], index^[1]);
for i:=1 to ncof do f^[i] := 0;
for j:=1 to ncof*iband do a^[j] := 0;
residu := 0;
(* fetch the data points in the new order. main loop for the different panels *)
for num:=1 to nreg do
begin
lx := (num-1) div (qy-3); l1 := lx+2;
ly := (num-1) mod (qy-3); l2 := ly+2;
jrot := lx*qy+ly;
inpanel := index^[num];
while inpanel<>0 do
with xyzw[inpanel] do
begin
wi := w; zi := z*wi;
fpbspl(kx^[-1], x, l1, hx);
fpbspl(ky^[-1], y, l2, hy);
for i:=1 to iband do h^[i] := 0;
i1 := 0;
for i:=1 to 4 do
begin
hxi := hx[i]; j1 := i1;
for j:=1 to 4 do begin Inc(j1); h^[j1] := hxi*hy[j]*wi end;
Inc(i1, qy)
end;
irot := jrot;
for i:=1 to iband do
begin
Inc(irot); piv := h^[i];
if piv<>0 then
begin
fpgivs(piv, a^[(irot-1)*iband+1], cos1, sin1);
fprota(cos1, sin1, zi, f^[irot]);
for j:=i+1 to iband do
fprota(cos1, sin1, h^[j], a^[(irot-1)*iband+j-i+1])
end;
end;
residu := residu+sqr(zi);
inpanel := nummer^[inpanel]
end;
end;
dmax := 0;
i := 1;
while i<ncof*iband do
begin
if dmax<a^[i] then dmax:=a^[i]; Inc(i, iband)
end;
sigma := eps*dmax;
i := 1; fullrank := true;
while fullrank and (i<ncof*iband) do
begin
fullrank := a^[i]>sigma; Inc(i, iband)
end;
term := 2; if not fullrank then goto einde;
term := 1;
fpback(a^[1], f^[1], ncof, iband, c11);
if ichang then
begin
l1 := 1;
for i:=1 to qx do
begin
l2 := i;
for j:=1 to qy do
begin
f^[l2] := c[l1]; Inc(l1); Inc(l2, qx)
end;
end;
for i:=1 to ncof do c[i] := f^[i]
end;
einde:
if ichang then for i:=1 to m do with xyzw[i] do Wisselr(x, y);
FreeMem(f, ncof*SizeOf(ArbFloat));
FreeMem(a, iband*ncof*SizeOf(ArbFloat));
FreeMem(h, iband*SizeOf(ArbFloat));
FreeMem(index, nreg*SizeOf(ArbInt));
FreeMem(nummer, m*SizeOf(ArbInt))
end;
procedure spl1nati(n: ArbInt; var xyc1: ArbFloat; var term: ArbInt);
var
xyc : r3Ar absolute XYC1;
l, b, d, u, c : ^arfloat1;
h2, h3, s2, s3: ArbFloat;
i, m : ArbInt; { afmeting van op te lossen stelsel }
begin
term:=3;
if n < 2 then exit;
for i:=2 to n do if xyc[i-1].x>=xyc[i].x then exit;
term:=1;
xyc[1].w := 0; xyc[n].w := 0; { c1=cn=0 }
m := n-2;
if m=0 then exit;
getmem(u, n*SizeOf(ArbFloat));
getmem(l, n*Sizeof(ArbFloat));
getmem(d, n*SizeOf(ArbFloat));
getmem(c, n*SizeOf(ArbFloat));
getmem(b, n*SizeOf(ArbFloat));
h3:=xyc[2].x-xyc[1].x;
s3:=(xyc[2].y-xyc[1].y)/h3;
for i:=2 to n-1 do
begin
h2:=h3; h3:=xyc[i+1].x-xyc[i].x;
s2:=s3; s3:=(xyc[i+1].y-xyc[i].y)/h3;
l^[i]:=h2/6;
d^[i]:=(h2+h3)/3;
u^[i]:=h3/6;
b^[i]:=s3-s2
end;
sledtr(m, l^[3], d^[2], u^[2], b^[2], c^[2], term);
for i:=2 to n-1 do xyc[i].w := c^[i];
Freemem(b, n*SizeOf(ArbFloat));
Freemem(c, n*SizeOf(ArbFloat));
Freemem(d, n*SizeOf(ArbFloat));
Freemem(l, n*Sizeof(ArbFloat));
Freemem(u, n*SizeOf(ArbFloat));
end; {spl1nati}
procedure spl1naki(n: ArbInt; var xyc1: ArbFloat; var term: ArbInt);
var
xyc : r3Ar absolute XYC1;
l, b, d, u, c : ^arfloat1;
h2, h3, s2, s3: ArbFloat;
i, m : ArbInt; { Dimensions of set lin eqs to solve}
begin
term:=3;
if n < 4 then exit;
for i:=2 to n do if xyc[i-1].x>=xyc[i].x then exit;
term:=1;
m := n-2;
getmem(u, n*SizeOf(ArbFloat));
getmem(l, n*Sizeof(ArbFloat));
getmem(d, n*SizeOf(ArbFloat));
getmem(c, n*SizeOf(ArbFloat));
getmem(b, n*SizeOf(ArbFloat));
h3:=xyc[2].x-xyc[1].x;
s3:=(xyc[2].y-xyc[1].y)/h3;
for i:=2 to n-1 do
begin
h2:=h3; h3:=xyc[i+1].x-xyc[i].x;
s2:=s3; s3:=(xyc[i+1].y-xyc[i].y)/h3;
l^[i]:=h2/6;
d^[i]:=(h2+h3)/3;
u^[i]:=h3/6;
b^[i]:=s3-s2
end;
d^[n-1]:=d^[n-1]+h3/6*(1+h3/h2); l^[n-1]:=l^[n-1]-sqr(h3)/(6*h2);
h2:=xyc[2].x-xyc[1].x; h3:=xyc[3].x-xyc[2].x;
d^[2]:=d^[2]+h2/6*(1+h2/h3); u^[2]:=u^[2]-sqr(h2)/(6*h3);
sledtr(m, l^[3], d^[2], u^[2], b^[2], c^[2], term);
for i:=2 to n-1 do xyc[i].w := c^[i];
xyc[1].w := xyc[2].w + (h2/h3)*(xyc[2].w-xyc[3].w);
h2:=xyc[n-1].x-xyc[n-2].x; h3:=xyc[n].x-xyc[n-1].x;
xyc[n].w := xyc[n-1].w + (h3/h2)*(xyc[n-1].w-xyc[n-2].w);
Freemem(b, n*SizeOf(ArbFloat));
Freemem(c, n*SizeOf(ArbFloat));
Freemem(d, n*SizeOf(ArbFloat));
Freemem(l, n*Sizeof(ArbFloat));
Freemem(u, n*SizeOf(ArbFloat));
end; {spl1naki}
procedure spl1cmpi(n: ArbInt; var xyc1: ArbFloat; dy1, dyn: ArbFloat;
var term: ArbInt);
var
xyc : r3Ar absolute XYC1;
l, b, d, u, c : ^arfloat1;
h2, h3, s2, s3: ArbFloat;
i : ArbInt; { Dimensions of set lin eqs to solve}
begin
term:=3;
if n < 2 then exit;
for i:=2 to n do if xyc[i-1].x>=xyc[i].x then exit;
term:=1;
getmem(u, n*SizeOf(ArbFloat));
getmem(l, n*Sizeof(ArbFloat));
getmem(d, n*SizeOf(ArbFloat));
getmem(c, n*SizeOf(ArbFloat));
getmem(b, n*SizeOf(ArbFloat));
h3:=xyc[2].x-xyc[1].x;
s3:=(xyc[2].y-xyc[1].y)/h3;
d^[1] := h3/3; u^[1] := h3/6; b^[1] := -dy1+s3;
for i:=2 to n-1 do
begin
h2:=h3; h3:=xyc[i+1].x-xyc[i].x;
s2:=s3; s3:=(xyc[i+1].y-xyc[i].y)/h3;
l^[i]:=h2/6;
d^[i]:=(h2+h3)/3;
u^[i]:=h3/6;
b^[i]:=s3-s2
end;
d^[n] := h3/3; l^[n] := h3/6; b^[n] := dyn-s3;
sledtr(n, l^[2], d^[1], u^[1], b^[1], c^[1], term);
for i:=1 to n do xyc[i].w := c^[i];
Freemem(b, n*SizeOf(ArbFloat));
Freemem(c, n*SizeOf(ArbFloat));
Freemem(d, n*SizeOf(ArbFloat));
Freemem(l, n*Sizeof(ArbFloat));
Freemem(u, n*SizeOf(ArbFloat));
end; {spl1cmpi}
procedure spl1peri(n: ArbInt; var xyc1: ArbFloat; var term: ArbInt);
var
xyc : r3Ar absolute XYC1;
l, b, d, u, c, k : ^arfloat1;
k2, kn1, dy1, cn,
h2, h3, s2, s3: ArbFloat;
i, m : ArbInt; { Dimensions of set lin eqs to solve}
begin
term:=3;
if n < 2 then exit;
if xyc[1].y<>xyc[n].y then exit;
for i:=2 to n do if xyc[i-1].x>=xyc[i].x then exit;
term:=1;
m := n-2;
xyc[1].w := 0; xyc[n].w := 0; { c1=cn=0 }
if m=0 then exit;
if m=1 then
begin
h2:=xyc[2].x-xyc[1].x;
s2:=(xyc[2].y-xyc[1].y)/h2;
h3:=xyc[3].x-xyc[2].x;
s3:=(xyc[3].y-xyc[2].y)/h3;
xyc[2].w := 6*(s3-s2)/(h2+h3);
xyc[3].w := -xyc[2].w;
xyc[1].w := xyc[3].w;
exit
end;
getmem(u, n*SizeOf(ArbFloat));
getmem(l, n*Sizeof(ArbFloat));
getmem(k, n*SizeOf(ArbFloat));
getmem(d, n*SizeOf(ArbFloat));
getmem(c, n*SizeOf(ArbFloat));
getmem(b, n*SizeOf(ArbFloat));
h3:=xyc[2].x-xyc[1].x;
s3:=(xyc[2].y-xyc[1].y)/h3;
k2 := h3/6; dy1 := s3;
for i:=2 to n-1 do
begin
h2:=h3; h3:=xyc[i+1].x-xyc[i].x;
s2:=s3; s3:=(xyc[i+1].y-xyc[i].y)/h3;
l^[i]:=h2/6;
d^[i]:=(h2+h3)/3;
u^[i]:=h3/6;
b^[i]:=s3-s2;
k^[i]:=0
end;
kn1 := h3/6; k^[2] := k2; k^[n-1] := kn1;
sledtr(m, l^[3], d^[2], u^[2], k^[2], k^[2], term);
sledtr(m, l^[3], d^[2], u^[2], b^[2], c^[2], term);
cn := (dy1-s3-k2*c^[2]-kn1*c^[n-1])/(2*(k2+kn1)-k2*k^[2]-kn1*k^[n-1]);
for i:=2 to n-1 do xyc[i].w := c^[i] - cn*k^[i];
xyc[1].w := cn; xyc[n].w := cn;
Freemem(b, n*SizeOf(ArbFloat));
Freemem(c, n*SizeOf(ArbFloat));
Freemem(d, n*SizeOf(ArbFloat));
Freemem(l, n*Sizeof(ArbFloat));
Freemem(k, n*SizeOf(ArbFloat));
Freemem(u, n*SizeOf(ArbFloat));
end; {spl1peri}
function spl1pprv(n: ArbInt; var xyc1: ArbFloat; t: ArbFloat; var term: ArbInt): ArbFloat;
var
xyc : r3Ar absolute XYC1;
i, j, m : ArbInt;
d, d3, h, dy : ArbFloat;
begin { Assumption : x[i]<x[i+1] i=1..n-1 }
spl1pprv := NaN;
term:=3; if n<2 then exit;
if (t<xyc[1].x) or (t>xyc[n].x) then exit;
term:=1;
i:=1; j:=n;
while j <> i+1 do
begin
m:=(i+j) div 2;
if t>=xyc[m].x then i:=m else j:=m
end; { x[i]<= t <=x[i+1] }
h := xyc[i+1].x-xyc[i].x;
d := t-xyc[i].x;
d3 :=(xyc[i+1].w-xyc[i].w)/h;
dy :=(xyc[i+1].y-xyc[i].y)/h-h*(2*xyc[i].w+xyc[i+1].w)/6;
spl1pprv:= xyc[i].y+d*(dy+d*(xyc[i].w/2+d*d3/6))
end; {spl1pprv}
procedure spl1nalf(n: ArbInt; var xyw1: ArbFloat; lambda:ArbFloat;
var xac1, residu: ArbFloat; var term: ArbInt);
var
xyw : r3Ar absolute xyw1;
xac : r3Ar absolute xac1;
i, j, ncd : ArbInt;
ca, crow : ArbFloat;
h, qty : ^arfloat1;
ch : ^arfloat0;
qtdq : ^arfloat1;
begin
term := 3; { testing input}
if n<2 then exit;
for i:=2 to n do if xyw[i-1].x>=xyw[i].x then exit;
for i:=1 to n do if xyw[i].w<=0 then exit;
if lambda<0 then exit;
term := 1;
Move(xyw, xac, n*SizeOf(r_3));
if n=2 then begin xac[1].w := 0; xac[2].w := 0; exit end;
Getmem(ch, (n+2)*SizeOf(ArbFloat)); FillChar(ch^, (n+2)*SizeOf(ArbFloat), 0);
Getmem(h, n*SizeOf(ArbFloat));
Getmem(qty, n*SizeOf(ArbFloat));
ncd := n-3; if ncd>2 then ncd := 2;
Getmem(qtdq, ((n-2)*(ncd+1)-(ncd*(ncd+1)) div 2)*SizeOf(ArbFloat));
for i:=2 to n do h^[i] := 1/(xyw[i].x-xyw[i-1].x); h^[1] := 0;
for i:=1 to n-2
do qty^[i] := (h^[i+1]*xyw[i].y -
(h^[i+1]+h^[i+2])*xyw[i+1].y +
h^[i+2]*xyw[i+2].y);
j := 1; i := 1;
qtdq^[j] := sqr(h^[i+1])/xyw[i].w +
sqr(h^[i+1]+h^[i+2])/xyw[i+1].w +
sqr(h^[i+2])/xyw[i+2].w +
lambda*(1/h^[i+1]+1/h^[i+2])/3;
Inc(j);
if ncd>0 then
begin i := 2;
qtdq^[j] := -h^[i+1]*(h^[i]+h^[i+1])/xyw[i].w
-h^[i+1]*(h^[i+1]+h^[i+2])/xyw[i+1].w +
lambda/h^[i+1]/6;
Inc(j);
qtdq^[j] := sqr(h^[i+1])/xyw[i].w +
sqr(h^[i+1]+h^[i+2])/xyw[i+1].w +
sqr(h^[i+2])/xyw[i+2].w +
lambda*(1/h^[i+1]+1/h^[i+2])/3;
Inc(j)
end;
for i:=3 to n-2
do begin
qtdq^[j] := h^[i]*h^[i+1]/xyw[i].w;
Inc(j);
qtdq^[j] := -h^[i+1]*(h^[i]+h^[i+1])/xyw[i].w
-h^[i+1]*(h^[i+1]+h^[i+2])/xyw[i+1].w +
lambda/h^[i+1]/6;
Inc(j);
qtdq^[j] := sqr(h^[i+1])/xyw[i].w +
sqr(h^[i+1]+h^[i+2])/xyw[i+1].w +
sqr(h^[i+2])/xyw[i+2].w +
lambda*(1/h^[i+1]+1/h^[i+2])/3;
Inc(j)
end;
{ Solving for c/lambda }
Slegpb(n-2, ncd, qtdq^[1], qty^[1], ch^[2], ca, term);
if term=1 then
begin
residu := 0;
for i:=1 to n do
begin
crow := (h^[i]*ch^[i-1] - (h^[i]+h^[i+1])*ch^[i]+h^[i+1]*ch^[i+1])
/xyw[i].w;
xac[i].y := xyw[i].y - crow;
residu := residu + sqr(crow)*xyw[i].w
end;
xac[1].w := 0;
for i:=2 to n-1 do xac[i].w := lambda*ch^[i];
xac[n].w := 0;
end;
Freemem(qtdq, ((n-2)*(ncd+1)-(ncd*(ncd+1)) div 2)*SizeOf(ArbFloat));
Freemem(qty, n*SizeOf(ArbFloat));
Freemem(h, n*SizeOf(ArbFloat));
Freemem(ch, (n+2)*SizeOf(ArbFloat));
end;
procedure spl2nalf(n: ArbInt; var xyzw1: ArbFloat; lambda:ArbFloat;
var xyg0, residu: ArbFloat; var term: ArbInt);
type R3 = array[1..3] of ArbFloat;
R33= array[1..3] of R3;
Rn3= array[1..$ffe0 div SizeOf(R3)] of R3;
var b,e21t,ht :^Rn3;
pfac :par2dr1;
e22 :R33;
i,j,l,i1,i2,n3 :ArbInt;
s,s1,px,py,hr,ca,
x,absdet,x1,x2,
absdetmax :ArbFloat;
vr :R4x;
wr :R2;
w,u :R3;
a_alfa_d :R4xAr absolute xyzw1;
a_gamma :nsp2rec absolute xyg0;
gamma :^arfloat1;
function e(var x,y:R2):ArbFloat;
const c1:ArbFloat=1/(16*pi);
var s:ArbFloat;
begin s:=sqr(x[1]-y[1]) +sqr(x[2]-y[2]);
if s=0 then e:=0 else e:=c1*s*ln(s)
end {e};
procedure pfxpfy(var a,b,c:R2;var f:r3; var pfx,pfy:ArbFloat);
var det:ArbFloat;
begin det:=(b[1]-a[1])*(c[2]-a[2]) - (b[2]-a[2])*(c[1]-a[1]);
pfx:=((f[2]-f[1])*(c[2]-a[2]) - (f[3]-f[1])*(b[2]-a[2]))/det;
pfy:=(-(f[2]-f[1])*(c[1]-a[1]) + (f[3]-f[1])*(b[1]-a[1]))/det
end {pfxpfy};
procedure pxpy(var a,b,c:R2; var px,py:ArbFloat);
var det : ArbFloat;
begin det:=(b[1]-a[1])*(c[2]-a[2]) - (b[2]-a[2])*(c[1]-a[1]);
px:=(b[2]-c[2])/det; py:=(c[1]-b[1])/det
end {pxpy};
function p(var x,a:R2; var px,py:ArbFloat):ArbFloat;
begin p:=1 + (x[1]-a[1])*px +(x[2]-a[2])*py end {p};
procedure slegpdlown(n: ArbInt; var a1; var bx1: ArbFloat;
var term: ArbInt);
var i, j, k, kmin1 : ArbInt;
h, lkk : ArbFloat;
a : ar2dr1 absolute a1;
x : arfloat1 absolute bx1;
begin
k:=0; term := 2;
while (k<n) do
begin
kmin1:=k; k:=k+1; lkk:=a[k]^[k];
for j:=1 to kmin1 do lkk:=lkk-sqr(a[k]^[j]);
if lkk<=0 then exit else
begin
a[k]^[k]:=sqrt(lkk); lkk:=a[k]^[k];
for i:=k+1 to n do
begin
h:=a[i]^[k];
for j:=1 to kmin1 do h:=h-a[k]^[j]*a[i]^[j];
a[i]^[k]:=h/lkk
end; {i}
h:=x[k];
for j:=1 to kmin1 do h:=h-a[k]^[j]*x[j];
x[k]:=h/lkk
end {lkk > 0}
end; {k}
for i:=n downto 1 do
begin
h:=x[i];
for j:=i+1 to n do h:=h-a[j]^[i]*x[j];
x[i]:=h/a[i]^[i];
end; {i}
term := 1
end;
begin
term := 3; if n<3 then exit;
n3 := n - 3;
i1:=1; x1:=a_alfa_d[1].xy[1]; i2:=1; x2:=x1;
for i:= 2 to n do
begin hr:=a_alfa_d[i].xy[1];
if hr < x1 then begin i1:=i; x1:=hr end else
if hr > x2 then begin i2:=i; x2:=hr end;
end;
vr:=a_alfa_d[n-2]; a_alfa_d[n-2]:=a_alfa_d[i1]; a_alfa_d[i1]:=vr;
vr:=a_alfa_d[n-1]; a_alfa_d[n-1]:=a_alfa_d[i2]; a_alfa_d[i2]:=vr;
for i:=1 to 2 do vr.xy[i]:=a_alfa_d[n-2].xy[i]-a_alfa_d[n-1].xy[i];
absdetmax:=-1; i1:=0;
for i:=1 to n do
begin for j:=1 to 2 do wr[j]:=a_alfa_d[i].xy[j]-a_alfa_d[n-2].xy[j];
if a_alfa_d[i].d<=0 then exit;
absdet:=abs(wr[1]*vr.xy[2]-wr[2]*vr.xy[1]);
if absdet > absdetmax then begin i1:=i; absdetmax:=absdet end;
end;
term := 4;
if absdetmax<=macheps*abs(x2-x1) then exit;
term := 1;
vr:=a_alfa_d[n]; a_alfa_d[n]:=a_alfa_d[i1]; a_alfa_d[i1]:=vr;
GetMem(e21t, n3*SizeOf(r3));
GetMem(b, n3*SizeOf(r3));
GetMem(gamma, n*SizeOf(ArbFloat));
pxpy(a_alfa_d[n-2].xy,a_alfa_d[n-1].xy,a_alfa_d[n].xy,px,py);
for i:=1 to n3 do b^[i][1]:=p(a_alfa_d[i].xy,a_alfa_d[n-2].xy,px,py);
pxpy(a_alfa_d[n-1].xy,a_alfa_d[n].xy,a_alfa_d[n-2].xy,px,py);
for i:=1 to n3 do b^[i][2]:=p(a_alfa_d[i].xy,a_alfa_d[n-1].xy,px,py);
pxpy(a_alfa_d[n].xy,a_alfa_d[n-2].xy,a_alfa_d[n-1].xy,px,py);
for i:=1 to n3 do b^[i][3]:=p(a_alfa_d[i].xy,a_alfa_d[n].xy,px,py);
e22[1,1]:=0; e22[2,2]:=0; e22[3,3]:=0;
e22[2,1]:=e(a_alfa_d[n-1].xy,a_alfa_d[n-2].xy); e22[1,2]:=e22[2,1];
e22[3,1]:=e(a_alfa_d[n].xy,a_alfa_d[n-2].xy); e22[1,3]:=e22[3,1];
e22[3,2]:=e(a_alfa_d[n].xy,a_alfa_d[n-1].xy); e22[2,3]:=e22[3,2];
for i:=1 to 3 do
for j:=1 to n3 do e21t^[j,i]:=e(a_alfa_d[n3+i].xy,a_alfa_d[j].xy);
GetMem(ht, n3*SizeOf(r3));
for i:=1 to 3 do
for j:=1 to n3 do
begin s:=0;
for l:= 1 to 3 do s:=s+e22[i,l]*b^[j][l]; ht^[j][i]:=s
end;
AllocateL2dr(n3,pfac);
for i:= 1 to n3 do
for j:= 1 to i do
begin if j=i then s1:=0 else s1:=e(a_alfa_d[i].xy,a_alfa_d[j].xy);
for l:= 1 to 3 do s1:=s1+b^[i][l]*(ht^[j][l]-e21t^[j][l])-e21t^[i][l]*b^[j][l];
if j=i then s:=1/a_alfa_d[i].d else s:=0;
for l:= 1 to 3 do s:=s+b^[i][l]*b^[j][l]/a_alfa_d[n3+l].d;
pfac^[i]^[j] := s1+s/lambda
end;
for i:= 1 to n3 do
gamma^[i]:=a_alfa_d[i].alfa-b^[i][1]*a_alfa_d[n-2].alfa-b^[i][2]*a_alfa_d[n-1].alfa-b^[i][3]*a_alfa_d[n].alfa;
slegpdlown(n3,pfac^[1],gamma^[1],term);
DeAllocateL2dr(n3,pfac);
FreeMem(ht, n3*SizeOf(r3));
if term=1 then
begin
for i:= 1 to 3 do
begin s:= 0;
for j:= 1 to n3 do
s:=s+b^[j][i]*gamma^[j]; w[i]:=s;
gamma^[n3+i]:=-w[i]
end;{w=btgamma}
for i:=1 to 3 do
begin s:=0;
for l:=1 to n3 do s:=s+e21t^[l][i]*gamma^[l];
s1:=0;
for l:=1 to 3 do s1:=s1+e22[i,l]*w[l];
u[i]:=a_alfa_d[n3+i].alfa+w[i]/(lambda*a_alfa_d[n3+i].d)+s1-s
end;
with a_gamma[0] do
pfxpfy(a_alfa_d[n-2].xy,a_alfa_d[n-1].xy,a_alfa_d[n].xy,u,xy[1],xy[2]);
residu:=0;for i:=1 to n3 do residu:=residu+sqr(gamma^[i])/a_alfa_d[i].d;
for i:= 1 to 3 do residu:=residu+sqr(w[i])/a_alfa_d[n3+i].d;
residu:=residu/sqr(lambda);
a_gamma[0].gamma := u[1];
for i:=1 to n do
begin
a_gamma[i].xy := a_alfa_d[i].xy;
a_gamma[i].gamma := gamma^[i]
end;
end;
FreeMem(gamma, n*SizeOf(ArbFloat));
FreeMem(b, n3*SizeOf(r3));
FreeMem(e21t, n3*SizeOf(r3))
end;
function spl2natv(n: ArbInt; var xyg0: ArbFloat; u, v: ArbFloat): ArbFloat;
const c1: ArbFloat=1/(16*pi);
var i : ArbInt;
s : ArbFloat;
a_gamma : nsp2rec absolute xyg0;
z : R2;
function e(var x,y:R2):ArbFloat;
var s:ArbFloat;
begin
s:=sqr(x[1]-y[1]) + sqr(x[2]-y[2]);
if s=0 then
e:= 0
else
e:=s*ln(s)
end {e};
function pf(var x,a:R2;fa,pfx,pfy:ArbFloat):ArbFloat;
begin
pf:=fa + (x[1]-a[1])*pfx + (x[2]-a[2])*pfy
end {pf};
begin
s:=0;
z[1] := u;
z[2] := v;
for i:=1 to n do
s:=s+a_gamma[i].gamma*e(z, a_gamma[i].xy);
with a_gamma[0] do
spl2natv :=s*c1+pf(z,a_gamma[n-2].xy, gamma, xy[1], xy[2])
end;
begin
end.
{
$Log: spl.pas,v $
Revision 1.3 2005/02/14 17:13:21 peter
* truncate log
}
|