1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
|
{
$Id: typ.pas,v 1.3 2005/02/14 17:13:21 peter Exp $
This file is part of the Numlib package.
Copyright (c) 1986-2000 by
Kees van Ginneken, Wil Kortsmit and Loek van Reij of the
Computational centre of the Eindhoven University of Technology
FPC port Code by Marco van de Voort (marco@freepascal.org)
documentation by Michael van Canneyt (Michael@freepascal.org)
This is the most basic unit from NumLib.
The most important items this unit defines are matrix types and machine
constants
See the file COPYING.FPC, included in this distribution,
for details about the copyright.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
**********************************************************************}
{
In the FPC revision, instead of picking a certain floating point type,
a new type "ArbFloat" is defined, which is used as floating point type
throughout the entire library. If you change the floating point type, you
should only have to change ArbFloat, and the machineconstants belonging to
the type you want.
However for IEEE Double (64bit) and Extended(80bit) these constants are
already defined, and autoselected by the library. (the library tests the
size of the float type in bytes for 8 and 10 and picks the appropiate
constants
Also some stuff had to be added to get ipf running (vector object and
complex.inp and scale methods)
}
unit typ;
{$I DIRECT.INC} {Contains "global" compilerswitches which
are imported into every unit of the library }
{$DEFINE ArbExtended}
interface
CONST numlib_version=2; {used to detect version conflicts between
header unit and dll}
highestelement=20000; {Maximal n x m dimensions of matrix.
+/- highestelement*SIZEOF(arbfloat) is
minimal size of matrix.}
type {Definition of base types}
{$IFDEF ArbExtended}
ArbFloat = extended;
{$ELSE}
ArbFloat = double;
{$ENDIF}
ArbInt = LONGINT;
Float8Arb =ARRAY[0..7] OF BYTE;
Float10Arb =ARRAY[0..9] OF BYTE;
CONST {Some constants for the variables below, in binary formats.}
{$IFNDEF ArbExtended}
{First for REAL/Double}
TC1 : Float8Arb = ($00,$00,$00,$00,$00,$00,$B0,$3C);
TC2 : Float8Arb = ($FF,$FF,$FF,$FF,$FF,$FF,$EF,$7F);
TC3 : Float8Arb = ($00,$00,$00,$00,$01,$00,$10,$00);
TC4 : Float8Arb = ($00,$00,$00,$00,$00,$00,$F0,$7F);
TC5 : Float8Arb = ($EF,$39,$FA,$FE,$42,$2E,$86,$40);
TC6 : Float8Arb = ($D6,$BC,$FA,$BC,$2B,$23,$86,$C0);
TC7 : Float8Arb = ($FF,$FF,$FF,$FF,$FF,$FF,$FF,$FF);
{$ENDIF}
{For Extended}
{$IFDEF ArbExtended}
TC1 : Float10Arb = (0,0,$00,$00,$00,$00,0,128,192,63); {Eps}
TC2 : Float10Arb = ($FF,$FF,$FF,$FF,$FF,$FF,$FF,$D6,$FE,127); {9.99188560553925115E+4931}
TC3 : Float10Arb = (1,0,0,0,0,0,0,0,0,0); {3.64519953188247460E-4951}
TC4 : Float10Arb = (0,0,0,0,0,0,0,$80,$FF,$7F); {Inf}
TC5 : Float10Arb = (18,25,219,91,61,101,113,177,12,64); {1.13563488668777920E+0004}
TC6 : Float10Arb = (108,115,3,170,182,56,27,178,12,192); {-1.13988053843083006E+0004}
TC7 : Float10Arb = ($FF,$FF,$FF,$FF,$FF,$FF,$FF,$FF,$FF,$FF); {NaN}
{$ENDIF}
{ numdig is the number of useful (safe) decimal places of an "ArbFloat"
for display.
minform is the number of decimal places shown by the rtls
write(x:ArbFloat)
maxform is the maximal number of decimal positions
}
numdig = 25;
minform = 10;
maxform = 26;
var
macheps : ArbFloat absolute TC1; { macheps = r - 1, with r
the smallest ArbFloat > 1}
giant : ArbFloat absolute TC2; { the largest ArbFloat}
midget : ArbFloat absolute TC3; { the smallest positive ArbFloat}
infinity : ArbFloat absolute TC4; { INF as defined in IEEE-754(double)
or intel (for extended)}
LnGiant : ArbFloat absolute TC5; {ln of giant}
LnMidget : ArbFloat absolute TC6; {ln of midget}
NaN : ArbFloat absolute TC7; {Not A Number}
{Copied from Det. Needs ArbExtended conditional}
const { og = 8^-maxexp, og>=midget,
bg = 8^maxexp, bg<=giant
midget and giant are defined in typ.pas}
{$IFDEF ArbExtended}
ogx: Float10Arb = (51,158,223,249,51,243,4,181,224,31);
bgx: Float10Arb = (108,119,117,92,70,38,155,234,254,95);
maxexpx : ArbInt = 2740;
{$ELSE}
ogx: Float8Arb= (84, 254, 32, 128, 32, 0, 0, 32);
bgx: Float8Arb= (149, 255, 255, 255, 255, 255, 239, 95);
maxexpx : ArbInt = 170;
{$ENDIF}
var
og : ArbFloat absolute ogx;
bg : ArbFloat absolute bgx;
MaxExp : ArbInt absolute maxexpx;
{Like standard EXP(), but for very small values (near lowest possible
ArbFloat this version returns 0}
Function exp(x: ArbFloat): ArbFloat;
type
Complex = object
{ Crude complex record. For me an example of
useless OOP, specially if you have operator overloading
}
xreal, imag : ArbFloat;
procedure Init (r, i: ArbFloat);
procedure Add (c: complex);
procedure Sub (c: complex);
function Inp(z:complex):ArbFloat;
procedure Conjugate;
procedure Scale(s: ArbFloat);
Function Norm : ArbFloat;
Function Size : ArbFloat;
Function Re : ArbFloat;
procedure Unary;
Function Im : ArbFloat;
Function Arg : ArbFloat;
procedure MinC(c: complex);
procedure MaxC(c: complex);
Procedure TransF(var t: complex);
end;
vector = object
i, j, k: ArbFloat;
procedure Init (vii, vjj, vkk: ArbFloat);
procedure Unary;
procedure Add (c: vector);
procedure Sub (c: vector);
function Vi : ArbFloat;
function Vj : ArbFloat;
function Vk : ArbFloat;
function Norm : ArbFloat;
Function Norm8 : ArbFloat;
function Size : ArbFloat;
function InProd(c: vector): ArbFloat;
procedure Uitprod(c: vector; var e: vector);
procedure Scale(s: ArbFloat);
procedure DScale(s: ArbFloat);
procedure Normalize;
procedure Rotate(calfa, salfa: ArbFloat; axe: vector);
procedure Show(p,q: ArbInt);
end;
transformorg = record offset: complex; ss, sc: real end;
transform = record
offsetx, offsety, scalex, scaley: ArbFloat
end;
{Standard Functions used in NumLib}
rfunc1r = Function(x : ArbFloat): ArbFloat;
rfunc2r = Function(x, y : ArbFloat): ArbFloat;
{Complex version}
rfunc1z = Function(z: complex): ArbFloat;
{Special Functions}
oderk1n = procedure(x: ArbFloat; var y, f: ArbFloat);
roofnrfunc = procedure(var x, fx: ArbFloat; var deff: boolean);
{Definition of matrix types in NumLib. First some vectors.
The high boundery is a maximal number only. Vectors can be smaller, but
not bigger. The difference is the starting number}
arfloat0 = array[0..highestelement] of ArbFloat;
arfloat1 = array[1..highestelement] of ArbFloat;
arfloat2 = array[2..highestelement] of ArbFloat;
arfloat_1 = array[-1..highestelement] of ArbFloat;
{A matrix is an array of floats}
ar2dr = array[0..highestelement] of ^arfloat0;
ar2dr1 = array[1..highestelement] of ^arfloat1;
{Matrices can get big, so we mosttimes allocate them on the heap.}
par2dr1 = ^ar2dr1;
{Integer vectors}
arint0 = array[0..highestelement] of ArbInt;
arint1 = array[1..highestelement] of ArbInt;
{Boolean (true/false) vectors}
arbool1 = array[1..highestelement] of boolean;
{Complex vectors}
arcomp0 = array[0..highestelement] of complex;
arcomp1 = array[1..highestelement] of complex;
arvect0 = array[0..highestelement] of vector;
vectors = array[1..highestelement] of vector;
parcomp = ^arcomp1;
{(de) Allocate mxn matrix to A}
procedure AllocateAr2dr(m, n: integer; var a: par2dr1);
procedure DeAllocateAr2dr(m, n: integer; var a: par2dr1);
{(de) allocate below-left triangle matrix for (de)convolution
(a 3x3 matrix looks like this
x
x x
x x x)
}
procedure AllocateL2dr(n: integer; var a: par2dr1);
procedure DeAllocateL2dr(n: integer; var a: par2dr1);
{Get the Re and Im parts of a complex type}
Function Re(z: complex): ArbFloat;
Function Im(z: complex): ArbFloat;
{ Creates a string from a floatingpoint value}
Function R2S(x: ArbFloat; p, q: integer): string;
{Calculate inproduct of V1 and V2, which are vectors with N elements;
I1 and I2 are the SIZEOF the datatypes of V1 and V2
MvdV: Change this to "V1,V2:array of ArbFloat and forget the i1 and i2
parameters?}
Function Inprod(var V1, V2; n, i1, i2: ArbInt): ArbFloat;
{Return certain special machine constants.(macheps=1, Nan=7)}
Function MachCnst(n: ArbInt): ArbFloat;
function dllversion:LONGINT;
implementation
Function MachCnst(n: ArbInt): ArbFloat;
begin
case n of
1: MachCnst := macheps;
2: MachCnst := giant;
3: MachCnst := midget;
4: MachCnst := infinity;
5: MachCnst := LnGiant;
6: MachCnst := LnMidget;
7: MachCnst := Nan;
end
end;
{ Are used in many of the example programs}
Function Re(z: complex): ArbFloat;
begin
Re := z.xreal
end;
Function Im(z: complex): ArbFloat;
begin
Im := z.imag
end;
{Kind of Sysutils.TrimRight and TrimLeft called after eachother}
procedure Compress(var s: string);
var i, j: LONGINT;
begin
j := length(s);
while (j>0) and (s[j]=' ') do dec(j);
i := 1;
while (i<=j) and (s[i]=' ') do Inc(i);
s := copy(s, i, j+1-i)
end;
Function R2S(x: ArbFloat; p, q: integer): string;
var s: string;
i, j, k: integer;
begin
if q=-1 then
begin
Str(x:p, s);
i := Pos('E', s)-1; k := i+1;
j := i+3; while (j<length(s)) and (s[j]='0') do inc(j);
while s[i]='0' do dec(i); if s[i]='.' then dec(i);
if s[j]='0' then s := copy(s,1,i) else
if s[k]='-' then
s := copy(s, 1, i)+'E-'+Copy(s, j, length(s)+1-j)
else
s := copy(s, 1, i)+'E'+Copy(s, j, length(s)+1-j)
end
else
Str(x:p:q, s);
Compress(s);
R2S := s
end;
procedure AllocateAr2dr(m, n: integer; var a: par2dr1);
var i: integer;
begin
GetMem(a, m*SizeOf(pointer));
for i:=1 to m do GetMem(a^[i], n*SizeOf(ArbFloat))
end;
procedure DeAllocateAr2dr(m, n: integer; var a: par2dr1);
var i: integer;
begin
for i:=m downto 1 do FreeMem(a^[i], n*SizeOf(ArbFloat));
FreeMem(a, m*SizeOf(pointer));
a := Nil
end;
procedure AllocateL2dr(n: integer; var a: par2dr1);
var i: integer;
begin
GetMem(a, n*SizeOf(pointer));
for i:=1 to n do GetMem(a^[i], i*SizeOf(ArbFloat))
end;
procedure DeAllocateL2dr(n: integer; var a: par2dr1);
var i: integer;
begin
for i:=n downto 1 do FreeMem(a^[i], i*SizeOf(ArbFloat));
FreeMem(a, n*SizeOf(pointer));
a := Nil
end;
var h, r, i: ArbFloat;
procedure Complex.Init(r, i: ArbFloat);
begin
xreal:= r;
imag := i
end;
procedure Complex.Conjugate;
begin
imag := -imag
end;
function Complex.Inp(z:complex):ArbFloat;
begin
Inp := xreal*z.xreal + imag*z.imag
end;
procedure Complex.MinC(c: complex);
begin if c.xreal<xreal then xreal := c.xreal;
if c.imag<imag then imag := c.imag
end;
procedure Complex.Maxc(c: complex);
begin if c.xreal>xreal then xreal := c.xreal;
if c.imag>imag then imag := c.imag
end;
procedure Complex.Add(c: complex);
begin
xreal := xreal + c.xreal; imag := imag + c.imag
end;
procedure Complex.Sub(c: complex);
begin
xreal := xreal - c.xreal; imag := imag - c.imag
end;
Function Complex.Norm: ArbFloat;
begin
Norm := Sqr(xreal) + Sqr(imag)
end;
Function Complex.Size: ArbFloat;
begin
Size := Sqrt(Norm)
end;
Function Complex.Re: ArbFloat;
begin
Re := xreal;
end;
Function Complex.Im: ArbFloat;
begin
Im := imag
end;
Procedure Complex.TransF(var t: complex);
var w: complex;
tt: transformorg absolute t;
begin
w := Self; Conjugate;
with tt do
begin
w.scale(ss);
scale(sc);
Add(offset)
end;
Add(w)
end;
procedure Complex.Unary;
begin
xreal := -xreal;
imag := -imag
end;
procedure Complex.Scale(s:ArbFloat);
begin
xreal := xreal*s; imag := imag*s
end;
Function Complex.Arg: ArbFloat;
begin
if xreal=0 then
if imag>0 then Arg := 0.5*pi else
if imag=0 then Arg := 0 else Arg := -0.5*pi else
if xReal>0 then Arg := ArcTan(imag/xReal)
else if imag>=0 then Arg := ArcTan(imag/xReal) + pi
else Arg := ArcTan(imag/xReal) - pi
end;
Function exp(x: ArbFloat): ArbFloat;
begin
if x<LnMidget then exp := 0 else exp := system.exp(x)
end;
{ procedure berekent: v1 = v1 + r*v2 i1 en i2 geven de
increments in bytes voor v1 en v2 }
Function Inprod(var V1, V2; n, i1, i2: ArbInt): ArbFloat;
VAR i: LONGINT;
p1, p2: ^ArbFloat;
s: ArbFloat;
begin
IF I1 <>SIZEOF(ArbFloat) THEN
BEGIN
WRITELN('1 Something went probably wrong while porting!');
HALT;
END;
p1 := @v1; p2 := @v2; s := 0;
for i:=1 to n do
begin
s := s + p1^*p2^;
Inc(longint(p1), i1);
Inc(longint(p2), i2)
end;
Inprod := s
end;
procedure Vector.Init(vii, vjj, vkk: ArbFloat);
begin
i := vii; j := vjj; k := vkk
end;
procedure Vector.Unary;
begin i := -i; j := -j; k := -k end;
procedure Vector.Add(c: vector);
begin
i := i + c.i; j := j + c.j; k := k + c.k
end;
procedure Vector.Sub(c: vector);
begin
i := i - c.i; j := j - c.j; k := k - c.k
end;
function Vector.Vi : ArbFloat; begin Vi := i end;
function Vector.Vj : ArbFloat; begin Vj := j end;
function Vector.Vk : ArbFloat; begin Vk := k end;
function Vector.Norm:ArbFloat;
begin
Norm := Sqr(i) + Sqr(j) + Sqr(k)
end;
function Vector.Norm8:ArbFloat;
var r: ArbFloat;
begin
r := abs(i);
if abs(j)>r then r := abs(j);
if abs(k)>r then r := abs(k);
Norm8 := r
end;
function Vector.Size: ArbFloat;
begin
Size := Sqrt(Norm)
end;
function Vector.InProd(c: vector): ArbFloat;
begin
InProd := i*c.i + j*c.j + k*c.k
end;
procedure Vector.Uitprod(c: vector; var e: vector);
begin
e.i := j*c.k - k*c.j;
e.j := k*c.i - i*c.k;
e.k := i*c.j - j*c.i
end;
procedure Vector.Scale(s: ArbFloat);
begin
i := i*s; j := j*s; k := k*s
end;
procedure Vector.DScale(s: ArbFloat);
begin
i := i/s; j := j/s; k := k/s
end;
procedure Vector.Normalize;
begin
DScale(Size)
end;
procedure Vector.Show(p,q:ArbInt);
begin writeln(i:p:q, 'I', j:p:q, 'J', k:p:q, 'K') end;
procedure Vector.Rotate(calfa, salfa: arbfloat; axe: vector);
var qv : vector;
begin
Uitprod(axe, qv); qv.scale(salfa);
axe.scale((1-calfa)*Inprod(axe));
scale(calfa); sub(qv); add(axe)
end;
function dllversion:LONGINT;
BEGIN
dllversion:=numlib_version;
END;
END.
{
$Log: typ.pas,v $
Revision 1.3 2005/02/14 17:13:21 peter
* truncate log
}
|