1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
|
{
Copyright (c) 1998-2002 by Florian Klaempfl
Generate i386 assembler for math nodes
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
****************************************************************************
}
unit n386mat;
{$i fpcdefs.inc}
interface
uses
node,nmat,ncgmat,nx86mat;
type
ti386moddivnode = class(tmoddivnode)
procedure pass_generate_code;override;
end;
ti386shlshrnode = class(tcgshlshrnode)
procedure second_64bit;override;
function first_shlshr64bitint: tnode; override;
end;
ti386unaryminusnode = class(tx86unaryminusnode)
end;
ti386notnode = class(tx86notnode)
end;
implementation
uses
globtype,systems,constexp,
cutils,verbose,globals,
symconst,symdef,aasmbase,aasmtai,aasmdata,defutil,
cgbase,pass_2,
ncon,
cpubase,cpuinfo,
cga,ncgutil,cgobj,cgutils;
{*****************************************************************************
TI386MODDIVNODE
*****************************************************************************}
function log2(i : dword) : dword;
begin
result:=0;
i:=i shr 1;
while i<>0 do
begin
i:=i shr 1;
inc(result);
end;
end;
procedure ti386moddivnode.pass_generate_code;
var
hreg1,hreg2:Tregister;
power:longint;
hl:Tasmlabel;
op:Tasmop;
e : longint;
d,l,r,s,m,a,n,t : dword;
m_low,m_high,j,k : qword;
begin
secondpass(left);
if codegenerror then
exit;
secondpass(right);
if codegenerror then
exit;
if is_64bitint(resultdef) then
{ should be handled in pass_1 (JM) }
internalerror(200109052);
{ put numerator in register }
location_reset(location,LOC_REGISTER,def_cgsize(resultdef));
location_force_reg(current_asmdata.CurrAsmList,left.location,location.size,false);
hreg1:=left.location.register;
if (nodetype=divn) and (right.nodetype=ordconstn) then
begin
if ispowerof2(tordconstnode(right).value.svalue,power) then
begin
{ for signed numbers, the numerator must be adjusted before the
shift instruction, but not wih unsigned numbers! Otherwise,
"Cardinal($ffffffff) div 16" overflows! (JM) }
if is_signed(left.resultdef) Then
begin
if (current_settings.optimizecputype <> cpu_386) and
not(cs_opt_size in current_settings.optimizerswitches) then
{ use a sequence without jumps, saw this in
comp.compilers (JM) }
begin
{ no jumps, but more operations }
hreg2:=cg.getintregister(current_asmdata.CurrAsmList,OS_INT);
emit_reg_reg(A_MOV,S_L,hreg1,hreg2);
{If the left value is signed, hreg2=$ffffffff, otherwise 0.}
emit_const_reg(A_SAR,S_L,31,hreg2);
{If signed, hreg2=right value-1, otherwise 0.}
emit_const_reg(A_AND,S_L,tordconstnode(right).value.svalue-1,hreg2);
{ add to the left value }
emit_reg_reg(A_ADD,S_L,hreg2,hreg1);
{ do the shift }
emit_const_reg(A_SAR,S_L,power,hreg1);
end
else
begin
{ a jump, but less operations }
emit_reg_reg(A_TEST,S_L,hreg1,hreg1);
current_asmdata.getjumplabel(hl);
cg.a_jmp_flags(current_asmdata.CurrAsmList,F_NS,hl);
if power=1 then
emit_reg(A_INC,S_L,hreg1)
else
emit_const_reg(A_ADD,S_L,tordconstnode(right).value.svalue-1,hreg1);
cg.a_label(current_asmdata.CurrAsmList,hl);
emit_const_reg(A_SAR,S_L,power,hreg1);
end
end
else
emit_const_reg(A_SHR,S_L,power,hreg1);
location.register:=hreg1;
end
else
begin
if is_signed(left.resultdef) then
begin
e:=tordconstnode(right).value.svalue;
d:=abs(e);
{ Determine algorithm (a), multiplier (m), and shift factor (s) for 32-bit
signed integer division. Based on: Granlund, T.; Montgomery, P.L.:
"Division by Invariant Integers using Multiplication". SIGPLAN Notices,
Vol. 29, June 1994, page 61.
}
l:=log2(d);
j:=qword($80000000) mod qword(d);
k:=(qword(1) shl (32+l)) div (qword($80000000-j));
m_low:=((qword(1)) shl (32+l)) div d;
m_high:=(((qword(1)) shl (32+l)) + k) div d;
while ((m_low shr 1) < (m_high shr 1)) and (l > 0) do
begin
m_low:=m_low shr 1;
m_high:=m_high shr 1;
dec(l);
end;
m:=dword(m_high);
s:=l;
if (m_high shr 31)<>0 then
a:=1
else
a:=0;
cg.getcpuregister(current_asmdata.CurrAsmList,NR_EAX);
emit_const_reg(A_MOV,S_L,aint(m),NR_EAX);
cg.getcpuregister(current_asmdata.CurrAsmList,NR_EDX);
emit_reg(A_IMUL,S_L,hreg1);
emit_reg_reg(A_MOV,S_L,hreg1,NR_EAX);
if a<>0 then
begin
emit_reg_reg(A_ADD,S_L,NR_EAX,NR_EDX);
{
printf ("; dividend: memory location or register other than EAX or EDX\n");
printf ("\n");
printf ("MOV EAX, 0%08LXh\n", m);
printf ("IMUL dividend\n");
printf ("MOV EAX, dividend\n");
printf ("ADD EDX, EAX\n");
if (s) printf ("SAR EDX, %d\n", s);
printf ("SHR EAX, 31\n");
printf ("ADD EDX, EAX\n");
if (e < 0) printf ("NEG EDX\n");
printf ("\n");
printf ("; quotient now in EDX\n");
}
end;
{
printf ("; dividend: memory location of register other than EAX or EDX\n");
printf ("\n");
printf ("MOV EAX, 0%08LXh\n", m);
printf ("IMUL dividend\n");
printf ("MOV EAX, dividend\n");
if (s) printf ("SAR EDX, %d\n", s);
printf ("SHR EAX, 31\n");
printf ("ADD EDX, EAX\n");
if (e < 0) printf ("NEG EDX\n");
printf ("\n");
printf ("; quotient now in EDX\n");
}
if s<>0 then
emit_const_reg(A_SAR,S_L,s,NR_EDX);
emit_const_reg(A_SHR,S_L,31,NR_EAX);
emit_reg_reg(A_ADD,S_L,NR_EAX,NR_EDX);
if e<0 then
emit_reg(A_NEG,S_L,NR_EDX);
cg.ungetcpuregister(current_asmdata.CurrAsmList,NR_EDX);
cg.ungetcpuregister(current_asmdata.CurrAsmList,NR_EAX);
location.register:=cg.getintregister(current_asmdata.CurrAsmList,OS_INT);
cg.a_load_reg_reg(current_asmdata.CurrAsmList,OS_INT,OS_INT,NR_EDX,location.register)
end
else
begin
d:=tordconstnode(right).value.svalue;
if d>=$80000000 then
begin
emit_const_reg(A_CMP,S_L,aint(d),hreg1);
location.register:=cg.getintregister(current_asmdata.CurrAsmList,OS_INT);
emit_const_reg(A_MOV,S_L,0,location.register);
emit_const_reg(A_SBB,S_L,-1,location.register);
end
else
begin
{ Reduce divisor until it becomes odd }
n:=0;
t:=d;
while (t and 1)=0 do
begin
t:=t shr 1;
inc(n);
end;
{ Generate m, s for algorithm 0. Based on: Granlund, T.; Montgomery,
P.L.: "Division by Invariant Integers using Multiplication".
SIGPLAN Notices, Vol. 29, June 1994, page 61.
}
l:=log2(t)+1;
j:=qword($ffffffff) mod qword(t);
k:=(qword(1) shl (32+l)) div (qword($ffffffff-j));
m_low:=((qword(1)) shl (32+l)) div t;
m_high:=(((qword(1)) shl (32+l)) + k) div t;
while ((m_low shr 1) < (m_high shr 1)) and (l>0) do
begin
m_low:=m_low shr 1;
m_high:=m_high shr 1;
l:=l-1;
end;
if (m_high shr 32)=0 then
begin
m:=dword(m_high);
s:=l;
a:=0;
end
{ Generate m, s for algorithm 1. Based on: Magenheimer, D.J.; et al:
"Integer Multiplication and Division on the HP Precision Architecture".
IEEE Transactions on Computers, Vol 37, No. 8, August 1988, page 980.
}
else
begin
s:=log2(t);
m_low:=(qword(1) shl (32+s)) div qword(t);
r:=dword(((qword(1)) shl (32+s)) mod qword(t));
if (r < ((t>>1)+1)) then
m:=dword(m_low)
else
m:=dword(m_low)+1;
a:=1;
end;
{ Reduce multiplier for either algorithm to smallest possible }
while (m and 1)=0 do
begin
m:=m shr 1;
dec(s);
end;
{ Adjust multiplier for reduction of even divisors }
inc(s,n);
cg.getcpuregister(current_asmdata.CurrAsmList,NR_EAX);
emit_const_reg(A_MOV,S_L,aint(m),NR_EAX);
cg.getcpuregister(current_asmdata.CurrAsmList,NR_EDX);
emit_reg(A_MUL,S_L,hreg1);
if a<>0 then
begin
{
printf ("; dividend: register other than EAX or memory location\n");
printf ("\n");
printf ("MOV EAX, 0%08lXh\n", m);
printf ("MUL dividend\n");
printf ("ADD EAX, 0%08lXh\n", m);
printf ("ADC EDX, 0\n");
if (s) printf ("SHR EDX, %d\n", s);
printf ("\n");
printf ("; quotient now in EDX\n");
}
emit_const_reg(A_ADD,S_L,aint(m),NR_EAX);
emit_const_reg(A_ADC,S_L,0,NR_EDX);
end;
if s<>0 then
emit_const_reg(A_SHR,S_L,aint(s),NR_EDX);
cg.ungetcpuregister(current_asmdata.CurrAsmList,NR_EDX);
cg.ungetcpuregister(current_asmdata.CurrAsmList,NR_EAX);
location.register:=cg.getintregister(current_asmdata.CurrAsmList,OS_INT);
cg.a_load_reg_reg(current_asmdata.CurrAsmList,OS_INT,OS_INT,NR_EDX,location.register)
end;
end
end
end
else
begin
cg.getcpuregister(current_asmdata.CurrAsmList,NR_EAX);
emit_reg_reg(A_MOV,S_L,hreg1,NR_EAX);
cg.getcpuregister(current_asmdata.CurrAsmList,NR_EDX);
{Sign extension depends on the left type.}
if torddef(left.resultdef).ordtype=u32bit then
emit_reg_reg(A_XOR,S_L,NR_EDX,NR_EDX)
else
emit_none(A_CDQ,S_NO);
{Division depends on the right type.}
if Torddef(right.resultdef).ordtype=u32bit then
op:=A_DIV
else
op:=A_IDIV;
if right.location.loc in [LOC_REFERENCE,LOC_CREFERENCE] then
emit_ref(op,S_L,right.location.reference)
else if right.location.loc in [LOC_REGISTER,LOC_CREGISTER] then
emit_reg(op,S_L,right.location.register)
else
begin
hreg1:=cg.getintregister(current_asmdata.CurrAsmList,right.location.size);
cg.a_load_loc_reg(current_asmdata.CurrAsmList,OS_32,right.location,hreg1);
emit_reg(op,S_L,hreg1);
end;
{Copy the result into a new register. Release EAX & EDX.}
cg.ungetcpuregister(current_asmdata.CurrAsmList,NR_EDX);
cg.ungetcpuregister(current_asmdata.CurrAsmList,NR_EAX);
location.register:=cg.getintregister(current_asmdata.CurrAsmList,OS_INT);
if nodetype=divn then
cg.a_load_reg_reg(current_asmdata.CurrAsmList,OS_INT,OS_INT,NR_EAX,location.register)
else
cg.a_load_reg_reg(current_asmdata.CurrAsmList,OS_INT,OS_INT,NR_EDX,location.register);
end;
end;
{*****************************************************************************
TI386SHLRSHRNODE
*****************************************************************************}
function ti386shlshrnode.first_shlshr64bitint: tnode;
begin
result := nil;
end;
procedure ti386shlshrnode.second_64bit;
var
hreg64hi,hreg64lo:Tregister;
v : TConstExprInt;
l1,l2,l3:Tasmlabel;
begin
location_reset(location,LOC_REGISTER,def_cgsize(resultdef));
{ load left operator in a register }
location_force_reg(current_asmdata.CurrAsmList,left.location,location.size,false);
hreg64hi:=left.location.register64.reghi;
hreg64lo:=left.location.register64.reglo;
{ shifting by a constant directly coded: }
if (right.nodetype=ordconstn) then
begin
v:=Tordconstnode(right).value and 63;
if v>31 then
begin
if nodetype=shln then
begin
emit_reg_reg(A_XOR,S_L,hreg64hi,hreg64hi);
if ((v and 31) <> 0) then
emit_const_reg(A_SHL,S_L,v.svalue and 31,hreg64lo);
end
else
begin
emit_reg_reg(A_XOR,S_L,hreg64lo,hreg64lo);
if ((v and 31) <> 0) then
emit_const_reg(A_SHR,S_L,v.svalue and 31,hreg64hi);
end;
location.register64.reghi:=hreg64lo;
location.register64.reglo:=hreg64hi;
end
else
begin
if nodetype=shln then
begin
emit_const_reg_reg(A_SHLD,S_L,v.svalue and 31,hreg64lo,hreg64hi);
emit_const_reg(A_SHL,S_L,v.svalue and 31,hreg64lo);
end
else
begin
emit_const_reg_reg(A_SHRD,S_L,v.svalue and 31,hreg64hi,hreg64lo);
emit_const_reg(A_SHR,S_L,v.svalue and 31,hreg64hi);
end;
location.register64.reglo:=hreg64lo;
location.register64.reghi:=hreg64hi;
end;
end
else
begin
{ load right operators in a register }
cg.getcpuregister(current_asmdata.CurrAsmList,NR_ECX);
cg.a_load_loc_reg(current_asmdata.CurrAsmList,OS_32,right.location,NR_ECX);
{ left operator is already in a register }
{ hence are both in a register }
{ is it in the case ECX ? }
{ the damned shift instructions work only til a count of 32 }
{ so we've to do some tricks here }
current_asmdata.getjumplabel(l1);
current_asmdata.getjumplabel(l2);
current_asmdata.getjumplabel(l3);
emit_const_reg(A_CMP,S_L,64,NR_ECX);
cg.a_jmp_flags(current_asmdata.CurrAsmList,F_L,l1);
emit_reg_reg(A_XOR,S_L,hreg64lo,hreg64lo);
emit_reg_reg(A_XOR,S_L,hreg64hi,hreg64hi);
cg.a_jmp_always(current_asmdata.CurrAsmList,l3);
cg.a_label(current_asmdata.CurrAsmList,l1);
emit_const_reg(A_CMP,S_L,32,NR_ECX);
cg.a_jmp_flags(current_asmdata.CurrAsmList,F_L,l2);
emit_const_reg(A_SUB,S_L,32,NR_ECX);
if nodetype=shln then
begin
emit_reg_reg(A_SHL,S_L,NR_CL,hreg64lo);
emit_reg_reg(A_MOV,S_L,hreg64lo,hreg64hi);
emit_reg_reg(A_XOR,S_L,hreg64lo,hreg64lo);
cg.a_jmp_always(current_asmdata.CurrAsmList,l3);
cg.a_label(current_asmdata.CurrAsmList,l2);
emit_reg_reg_reg(A_SHLD,S_L,NR_CL,hreg64lo,hreg64hi);
emit_reg_reg(A_SHL,S_L,NR_CL,hreg64lo);
end
else
begin
emit_reg_reg(A_SHR,S_L,NR_CL,hreg64hi);
emit_reg_reg(A_MOV,S_L,hreg64hi,hreg64lo);
emit_reg_reg(A_XOR,S_L,hreg64hi,hreg64hi);
cg.a_jmp_always(current_asmdata.CurrAsmList,l3);
cg.a_label(current_asmdata.CurrAsmList,l2);
emit_reg_reg_reg(A_SHRD,S_L,NR_CL,hreg64hi,hreg64lo);
emit_reg_reg(A_SHR,S_L,NR_CL,hreg64hi);
end;
cg.a_label(current_asmdata.CurrAsmList,l3);
cg.ungetcpuregister(current_asmdata.CurrAsmList,NR_ECX);
location.register64.reglo:=hreg64lo;
location.register64.reghi:=hreg64hi;
end;
end;
begin
cunaryminusnode:=ti386unaryminusnode;
cmoddivnode:=ti386moddivnode;
cshlshrnode:=ti386shlshrnode;
cnotnode:=ti386notnode;
end.
|