1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
|
{
Copyright (c) 1998-2002 by Florian Klaempfl
Generate PowerPC assembler for type converting nodes
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
****************************************************************************
}
unit nppccnv;
{$I fpcdefs.inc}
interface
uses
node, ncnv, ncgcnv, ngppccnv;
type
tppctypeconvnode = class(tgenppctypeconvnode)
protected
{ procedure second_int_to_int;override; }
{ procedure second_string_to_string;override; }
{ procedure second_cstring_to_pchar;override; }
{ procedure second_string_to_chararray;override; }
{ procedure second_array_to_pointer;override; }
function first_int_to_real: tnode; override;
{ procedure second_pointer_to_array;override; }
{ procedure second_chararray_to_string;override; }
{ procedure second_char_to_string;override; }
procedure second_int_to_real; override;
{ procedure second_real_to_real; override;}
{ procedure second_cord_to_pointer;override; }
{ procedure second_proc_to_procvar;override; }
{ procedure second_bool_to_int;override; }
{ procedure second_int_to_bool; override; }
{ procedure second_load_smallset;override; }
{ procedure second_ansistring_to_pchar;override; }
{ procedure second_pchar_to_string;override; }
{ procedure second_class_to_intf;override; }
{ procedure second_char_to_char;override; }
end;
implementation
uses
verbose, globtype, globals, systems,
symconst, symdef, aasmbase, aasmtai,aasmdata,
defutil,
cgbase, cgutils, pass_1, pass_2,
ncon, ncal,procinfo,
ncgutil,
cpubase, aasmcpu,
rgobj, tgobj, cgobj;
{*****************************************************************************
FirstTypeConv
*****************************************************************************}
function tppctypeconvnode.first_int_to_real: tnode;
begin
if (is_currency(left.resultdef)) then begin
// hack to avoid double division by 10000, as it's
// already done by typecheckpass.resultdef_int_to_real
left.resultdef := s64inttype;
end else begin
// everything that is less than 64 bits is converted to a 64 bit signed
// integer - because the int_to_real conversion is faster for 64 bit
// signed ints compared to 64 bit unsigned ints.
if (not (torddef(left.resultdef).ordtype in [s64bit, u64bit, scurrency])) then begin
inserttypeconv(left, s64inttype);
end;
end;
firstpass(left);
result := nil;
expectloc := LOC_FPUREGISTER;
end;
{*****************************************************************************
SecondTypeConv
*****************************************************************************}
procedure tppctypeconvnode.second_int_to_real;
const
convconst : double = $100000000;
var
tempconst : tnode;
disp, disp2: treference;
// temp registers for converting signed ints
valuereg, leftreg,
// additional temp registers for converting unsigned 64 bit ints
tmpintreg1, tmpintreg2, tmpfpureg, tmpfpuconst : tregister;
size: tcgsize;
signed: boolean;
begin
location_reset(location, LOC_FPUREGISTER, def_cgsize(resultdef));
{ the code here comes from the PowerPC Compiler Writer's Guide }
{ * longint to double (works for all rounding modes) }
{ std R3,disp(R1) # store doubleword }
{ lfd FR1,disp(R1) # load float double }
{ fcfid FR1,FR1 # convert to floating-point integer }
{ * unsigned 64 bit int to fp value (works for all rounding modes) }
{ rldicl rT1,rS,32,32 # isolate high half }
{ rldicl rT2,rS,0,32 # isolate low half }
{ std rT1,disp(R1) # store high half }
{ std rT2,disp+8(R1) # store low half }
{ lfd frT1,disp(R1) # load high half }
{ lfd frD,disp+8(R1) # load low half }
{ fcfid frT1,frT1 # convert each half to floating }
{ fcfid frD,frD # point integer (no round) }
{ fmadd frD,frC,frT1,frD # (2^32)*high + low }
{ # (only add can round) }
tg.Gettemp(current_asmdata.CurrAsmList, 8, 8, tt_normal, disp);
{ do the signed case for everything but 64 bit unsigned integers }
signed := (left.location.size <> OS_64);
{ we need a certain constant for the conversion of unsigned 64 bit integers,
so create them here. Additonally another temporary location is neeted }
if (not signed) then begin
// allocate temp for constant value used for unsigned 64 bit ints
tempconst :=
crealconstnode.create(convconst, pbestrealtype^);
typecheckpass(tempconst);
firstpass(tempconst);
secondpass(tempconst);
if (tempconst.location.loc <> LOC_CREFERENCE) then
internalerror(200110011);
// allocate second temp memory
tg.Gettemp(current_asmdata.CurrAsmList, 8, 8, tt_normal, disp2);
end;
if not(left.location.loc in [LOC_REGISTER,LOC_CREGISTER,LOC_REFERENCE,LOC_CREFERENCE]) then
location_force_reg(current_asmdata.CurrAsmList,left.location,left.location.size,false);
case left.location.loc of
// the conversion algorithm does not modify the input register, so it can
// be used for both LOC_REGISTER and LOC_CREGISTER
LOC_REGISTER, LOC_CREGISTER:
begin
leftreg := left.location.register;
valuereg := leftreg;
end;
LOC_REFERENCE, LOC_CREFERENCE:
begin
leftreg := cg.getintregister(current_asmdata.CurrAsmList, OS_INT);
valuereg := leftreg;
if signed then
size := OS_S64
else
size := OS_64;
cg.a_load_ref_reg(current_asmdata.CurrAsmList, def_cgsize(left.resultdef),
size, left.location.reference, leftreg);
end
else
internalerror(200110012);
end;
if (signed) then begin
// std rS, disp(r1)
cg.a_load_reg_ref(current_asmdata.CurrAsmList, OS_S64, OS_S64, valuereg, disp);
// lfd frD, disp(r1)
location.register := cg.getfpuregister(current_asmdata.CurrAsmList,OS_F64);
cg.a_loadfpu_ref_reg(current_asmdata.CurrAsmList,OS_F64, OS_F64, disp, location.register);
// fcfid frD, frD
current_asmdata.CurrAsmList.concat(taicpu.op_reg_reg(A_FCFID, location.register,
location.register));
end else begin
{ ts:todo use TOC for this constant or at least schedule better }
// lfd frC, const
tmpfpuconst := cg.getfpuregister(current_asmdata.CurrAsmList,OS_F64);
cg.a_loadfpu_ref_reg(current_asmdata.CurrAsmList,OS_F64,OS_F64,tempconst.location.reference,
tmpfpuconst);
tempconst.free;
tmpintreg1 := cg.getintregister(current_asmdata.CurrAsmList, OS_64);
// rldicl rT1, rS, 32, 32
current_asmdata.CurrAsmList.concat(taicpu.op_reg_reg_const_const(A_RLDICL, tmpintreg1, valuereg, 32, 32));
// rldicl rT2, rS, 0, 32
tmpintreg2 := cg.getintregister(current_asmdata.CurrAsmList, OS_64);
current_asmdata.CurrAsmList.concat(taicpu.op_reg_reg_const_const(A_RLDICL, tmpintreg2, valuereg, 0, 32));
// std rT1, disp(r1)
cg.a_load_reg_ref(current_asmdata.CurrAsmList, OS_S64, OS_S64, tmpintreg1, disp);
// std rT2, disp2(r1)
cg.a_load_reg_ref(current_asmdata.CurrAsmList, OS_S64, OS_S64, tmpintreg2, disp2);
// lfd frT1, disp(R1)
tmpfpureg := cg.getfpuregister(current_asmdata.CurrAsmList,OS_F64);
cg.a_loadfpu_ref_reg(current_asmdata.CurrAsmList,OS_F64, OS_F64, disp, tmpfpureg);
// lfd frD, disp+8(R1)
location.register := cg.getfpuregister(current_asmdata.CurrAsmList,OS_F64);
cg.a_loadfpu_ref_reg(current_asmdata.CurrAsmList,OS_F64, OS_F64, disp2, location.register);
// fcfid frT1, frT1
current_asmdata.CurrAsmList.concat(taicpu.op_reg_reg(A_FCFID, tmpfpureg,
tmpfpureg));
// fcfid frD, frD
current_asmdata.CurrAsmList.concat(taicpu.op_reg_reg(A_FCFID, location.register,
location.register));
// fmadd frD,frC,frT1,frD # (2^32)*high + low }
current_asmdata.CurrAsmList.concat(taicpu.op_reg_reg_reg_reg(A_FMADD, location.register, tmpfpuconst,
tmpfpureg, location.register));
// free used temps
tg.ungetiftemp(current_asmdata.CurrAsmList, disp2);
end;
// free reference
tg.ungetiftemp(current_asmdata.CurrAsmList, disp);
// make sure the precision is correct
if (tfloatdef(resultdef).floattype = s32real) then
current_asmdata.CurrAsmList.concat(taicpu.op_reg_reg(A_FRSP,location.register,
location.register));
end;
begin
ctypeconvnode := tppctypeconvnode;
end.
|