1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566
|
{
Copyright (c) 1998-2002 by Florian Klaempfl
Compare definitions and parameter lists
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
****************************************************************************
}
unit defcmp;
{$i fpcdefs.inc}
interface
uses
cclasses,
globtype,globals,
node,
symconst,symtype,symdef,symbase;
type
{ if acp is cp_all the var const or nothing are considered equal }
tcompare_paras_type = ( cp_none, cp_value_equal_const, cp_all,cp_procvar);
tcompare_paras_option = (
cpo_allowdefaults,
cpo_ignorehidden, // ignore hidden parameters
cpo_allowconvert,
cpo_comparedefaultvalue,
cpo_openequalisexact,
cpo_ignoreuniv,
cpo_warn_incompatible_univ,
cpo_ignorevarspez, // ignore parameter access type
cpo_ignoreframepointer, // ignore frame pointer parameter (for assignment-compatibility of global procedures to nested procvars)
cpo_compilerproc,
cpo_rtlproc,
cpo_generic // two different undefined defs (or a constraint in the forward) alone or in open arrays are
// treated as exactly equal (also in open arrays) if they are owned by their respective procdefs
);
tcompare_paras_options = set of tcompare_paras_option;
tcompare_defs_option = (
cdo_internal,
cdo_explicit,
cdo_check_operator,
cdo_allow_variant,
cdo_parameter,
cdo_warn_incompatible_univ,
cdo_strict_undefined_check // undefined defs are incompatible to everything except other undefined defs
);
tcompare_defs_options = set of tcompare_defs_option;
tconverttype = (tc_none,
tc_equal,
tc_not_possible,
tc_string_2_string,
tc_char_2_string,
tc_char_2_chararray,
tc_pchar_2_string,
tc_cchar_2_pchar,
tc_cstring_2_pchar,
tc_cstring_2_int,
tc_ansistring_2_pchar,
tc_string_2_chararray,
tc_chararray_2_string,
tc_array_2_pointer,
tc_pointer_2_array,
tc_int_2_int,
tc_int_2_bool,
tc_bool_2_bool,
tc_bool_2_int,
tc_real_2_real,
tc_int_2_real,
tc_real_2_currency,
tc_proc_2_procvar,
tc_nil_2_methodprocvar,
tc_arrayconstructor_2_set,
tc_set_to_set,
tc_cord_2_pointer,
tc_intf_2_string,
tc_intf_2_guid,
tc_class_2_intf,
tc_char_2_char,
tc_dynarray_2_openarray,
tc_pwchar_2_string,
tc_variant_2_dynarray,
tc_dynarray_2_variant,
tc_variant_2_enum,
tc_enum_2_variant,
tc_interface_2_variant,
tc_variant_2_interface,
tc_array_2_dynarray,
tc_elem_2_openarray,
tc_arrayconstructor_2_dynarray
);
function compare_defs_ext(def_from,def_to : tdef;
fromtreetype : tnodetype;
var doconv : tconverttype;
var operatorpd : tprocdef;
cdoptions:tcompare_defs_options):tequaltype;
{ Returns if the type def_from can be converted to def_to or if both types are equal }
function compare_defs(def_from,def_to:tdef;fromtreetype:tnodetype):tequaltype;
{ Returns true, if def1 and def2 are semantically the same }
function equal_defs(def_from,def_to:tdef):boolean;
{ Checks for type compatibility (subgroups of type)
used for case statements... probably missing stuff
to use on other types }
function is_subequal(def1, def2: tdef): boolean;
{# true, if two parameter lists are equal
if acp is cp_all, all have to match exactly
if acp is cp_value_equal_const call by value
and call by const parameter are assumed as
equal
if acp is cp_procvar then the varspez have to match,
and all parameter types must be at least te_equal
if acp is cp_none, then we don't check the varspez at all
allowdefaults indicates if default value parameters
are allowed (in this case, the search order will first
search for a routine with default parameters, before
searching for the same definition with no parameters)
para1 is expected to be parameter list of the first encountered
declaration (interface, forward), and para2 that of the second one
(important in case of cpo_comparedefaultvalue)
}
function compare_paras(para1,para2 : TFPObjectList; acp : tcompare_paras_type; cpoptions: tcompare_paras_options):tequaltype;
{ True if a function can be assigned to a procvar }
{ changed first argument type to pabstractprocdef so that it can also be }
{ used to test compatibility between two pprocvardefs (JM) }
function proc_to_procvar_equal(def1:tabstractprocdef;def2:tprocvardef;checkincompatibleuniv: boolean):tequaltype;
{ Parentdef is the definition of a method defined in a parent class or interface }
{ Childdef is the definition of a method defined in a child class, interface or }
{ a class implementing an interface with parentdef. }
{ Returns true if the resultdef of childdef can be used to implement/override }
{ parentdef's resultdef }
function compatible_childmethod_resultdef(parentretdef, childretdef: tdef): boolean;
{ Checks whether the class impldef or one of its parent classes implements }
{ the interface intfdef and returns the corresponding "implementation link }
function find_implemented_interface(impldef,intfdef:tobjectdef):timplementedinterface;
{ Checks whether to defs are related to each other. Thereby the following }
{ cases of curdef are implemented: }
{ - stringdef: on JVM JLObject, JLString and AnsiString are compatible }
{ - recorddef: on JVM records are compatible to java_fpcbaserecordtype }
{ and JLObject }
{ - objectdef: if it inherits from otherdef or they are equal }
function def_is_related(curdef,otherdef:tdef):boolean;
{ Checks whether two defs for parameters or result types of a generic }
{ routine can be considered as equal. Requires the symtables of the }
{ procdefs the parameters defs shall belong to. }
function equal_genfunc_paradefs(fwdef,currdef:tdef;fwpdst,currpdst:tsymtable):boolean;
implementation
uses
verbose,systems,constexp,
symtable,symsym,symcpu,
defutil,symutil;
function compare_defs_ext(def_from,def_to : tdef;
fromtreetype : tnodetype;
var doconv : tconverttype;
var operatorpd : tprocdef;
cdoptions:tcompare_defs_options):tequaltype;
{ tordtype:
uvoid,
u8bit,u16bit,u32bit,u64bit,
s8bit,s16bit,s32bit,s64bit,
pasbool, bool8bit,bool16bit,bool32bit,bool64bit,
uchar,uwidechar,scurrency }
type
tbasedef=(bvoid,bchar,bint,bbool);
const
basedeftbl:array[tordtype] of tbasedef =
(bvoid,
bint,bint,bint,bint,bint,
bint,bint,bint,bint,bint,
bbool,bbool,bbool,bbool,bbool,
bbool,bbool,bbool,bbool,
bchar,bchar,bint);
basedefconvertsimplicit : array[tbasedef,tbasedef] of tconverttype =
{ void, char, int, bool }
((tc_not_possible,tc_not_possible,tc_not_possible,tc_not_possible),
(tc_not_possible,tc_char_2_char,tc_not_possible,tc_not_possible),
(tc_not_possible,tc_not_possible,tc_int_2_int,tc_not_possible),
(tc_not_possible,tc_not_possible,tc_not_possible,tc_bool_2_bool));
basedefconvertsexplicit : array[tbasedef,tbasedef] of tconverttype =
{ void, char, int, bool }
((tc_not_possible,tc_not_possible,tc_not_possible,tc_not_possible),
(tc_not_possible,tc_char_2_char,tc_int_2_int,tc_int_2_bool),
(tc_not_possible,tc_int_2_int,tc_int_2_int,tc_int_2_bool),
(tc_not_possible,tc_bool_2_int,tc_bool_2_int,tc_bool_2_bool));
var
subeq,eq : tequaltype;
hd1,hd2 : tdef;
def_generic : tstoreddef;
hct : tconverttype;
hobjdef : tobjectdef;
hpd : tprocdef;
i : longint;
diff : boolean;
symfrom,symto : tsym;
begin
eq:=te_incompatible;
doconv:=tc_not_possible;
{ safety check }
if not(assigned(def_from) and assigned(def_to)) then
begin
compare_defs_ext:=te_incompatible;
exit;
end;
{ resolve anonymous external definitions }
if def_from.typ=objectdef then
def_from:=find_real_class_definition(tobjectdef(def_from),false);
if def_to.typ=objectdef then
def_to:=find_real_class_definition(tobjectdef(def_to),false);
{ same def? then we've an exact match }
if def_from=def_to then
begin
doconv:=tc_equal;
compare_defs_ext:=te_exact;
exit;
end;
if cdo_strict_undefined_check in cdoptions then
begin
{ two different undefined defs are not considered equal }
if (def_from.typ=undefineddef) and
(def_to.typ=undefineddef) then
begin
doconv:=tc_not_possible;
compare_defs_ext:=te_incompatible;
exit;
end;
{ if only one def is a undefined def then they are not considered as
equal}
if (
(def_from.typ=undefineddef) or
assigned(tstoreddef(def_from).genconstraintdata)
) or (
(def_to.typ=undefineddef) or
assigned(tstoreddef(def_to).genconstraintdata)
) then
begin
doconv:=tc_not_possible;
compare_defs_ext:=te_incompatible;
exit;
end;
end
else
begin
{ undefined defs are considered equal to everything }
if (def_from.typ=undefineddef) or
(def_to.typ=undefineddef) then
begin
doconv:=tc_equal;
compare_defs_ext:=te_exact;
exit;
end;
{ either type has constraints }
if assigned(tstoreddef(def_from).genconstraintdata) or
assigned(tstoreddef(def_to).genconstraintdata) then
begin
{ constants could get another deftype (e.g. niln) }
if (def_from.typ<>def_to.typ) and not(fromtreetype in nodetype_const) then
begin
{ not compatible anyway }
doconv:=tc_not_possible;
compare_defs_ext:=te_incompatible;
exit;
end;
{ maybe we are in generic type declaration/implementation.
In this case constraint in comparison to not specialized generic
is not "exact" nor "incompatible" }
if not(((df_genconstraint in def_from.defoptions) and
([df_generic,df_specialization]*def_to.defoptions=[df_generic])
) or
(
(df_genconstraint in def_to.defoptions) and
([df_generic,df_specialization]*def_from.defoptions=[df_generic]))
) then
begin
{ one is definitely a constraint, for the other we don't
care right now }
doconv:=tc_equal;
compare_defs_ext:=te_exact;
exit;
end;
end;
end;
{ two specializations are considered equal if they specialize the same
generic with the same types }
if (df_specialization in def_from.defoptions) and
(df_specialization in def_to.defoptions) and
(tstoreddef(def_from).genericdef=tstoreddef(def_to).genericdef) then
begin
if assigned(tstoreddef(def_from).genericparas) xor
assigned(tstoreddef(def_to).genericparas) then
internalerror(2013030901);
diff:=false;
if assigned(tstoreddef(def_from).genericparas) then
begin
if tstoreddef(def_from).genericparas.count<>tstoreddef(def_to).genericparas.count then
internalerror(2012091301);
for i:=0 to tstoreddef(def_from).genericparas.count-1 do
begin
if tstoreddef(def_from).genericparas.nameofindex(i)<>tstoreddef(def_to).genericparas.nameofindex(i) then
internalerror(2012091302);
symfrom:=ttypesym(tstoreddef(def_from).genericparas[i]);
symto:=ttypesym(tstoreddef(def_to).genericparas[i]);
if not (symfrom.typ=typesym) or not (symto.typ=typesym) then
internalerror(2012121401);
if not equal_defs(ttypesym(symfrom).typedef,ttypesym(symto).typedef) then
diff:=true;
if diff then
break;
end;
end;
if not diff then
begin
doconv:=tc_equal;
{ the definitions are not exactly the same, but only equal }
compare_defs_ext:=te_equal;
exit;
end;
end;
{ handling of partial specializations }
if (
(df_generic in def_to.defoptions) and
(df_specialization in def_from.defoptions) and
(tstoreddef(def_from).genericdef=def_to)
) or (
(df_generic in def_from.defoptions) and
(df_specialization in def_to.defoptions) and
(tstoreddef(def_to).genericdef=def_from)
) then
begin
if tstoreddef(def_from).genericdef=def_to then
def_generic:=tstoreddef(def_to)
else
def_generic:=tstoreddef(def_from);
if not assigned(def_generic.genericparas) then
internalerror(2014052306);
diff:=false;
for i:=0 to def_generic.genericparas.count-1 do
begin
symfrom:=tsym(def_generic.genericparas[i]);
if symfrom.typ<>typesym then
internalerror(2014052307);
if ttypesym(symfrom).typedef.typ<>undefineddef then
diff:=true;
if diff then
break;
end;
if not diff then
begin
doconv:=tc_equal;
{ the definitions are not exactly the same, but only equal }
compare_defs_ext:=te_equal;
exit;
end;
end;
{ we walk the wanted (def_to) types and check then the def_from
types if there is a conversion possible }
case def_to.typ of
orddef :
begin
case def_from.typ of
orddef :
begin
if (torddef(def_from).ordtype=torddef(def_to).ordtype) then
begin
case torddef(def_from).ordtype of
uchar,uwidechar,
u8bit,u16bit,u32bit,u64bit,
s8bit,s16bit,s32bit,s64bit:
begin
if (torddef(def_from).low>=torddef(def_to).low) and
(torddef(def_from).high<=torddef(def_to).high) then
eq:=te_equal
else
begin
doconv:=tc_int_2_int;
eq:=te_convert_l1;
end;
end;
uvoid,
pasbool1,pasbool8,pasbool16,pasbool32,pasbool64,
bool8bit,bool16bit,bool32bit,bool64bit:
eq:=te_equal;
else
internalerror(200210061);
end;
end
{ currency cannot be implicitly converted to an ordinal
type }
else if not is_currency(def_from) or
(cdo_explicit in cdoptions) then
begin
if cdo_explicit in cdoptions then
doconv:=basedefconvertsexplicit[basedeftbl[torddef(def_from).ordtype],basedeftbl[torddef(def_to).ordtype]]
else
doconv:=basedefconvertsimplicit[basedeftbl[torddef(def_from).ordtype],basedeftbl[torddef(def_to).ordtype]];
if (doconv=tc_not_possible) then
eq:=te_incompatible
else if (not is_in_limit(def_from,def_to)) then
{ "punish" bad type conversions :) (JM) }
eq:=te_convert_l3
else
eq:=te_convert_l1;
end;
end;
enumdef :
begin
{ needed for char(enum) }
if cdo_explicit in cdoptions then
begin
doconv:=tc_int_2_int;
eq:=te_convert_l1;
end;
end;
floatdef :
begin
if is_currency(def_to) then
begin
doconv:=tc_real_2_currency;
eq:=te_convert_l2;
end;
end;
objectdef:
begin
if (m_delphi in current_settings.modeswitches) and
is_implicit_pointer_object_type(def_from) and
(cdo_explicit in cdoptions) then
begin
eq:=te_convert_l1;
if (fromtreetype=niln) then
begin
{ will be handled by the constant folding }
doconv:=tc_equal;
end
else
doconv:=tc_int_2_int;
end;
end;
classrefdef,
procvardef,
pointerdef :
begin
if cdo_explicit in cdoptions then
begin
eq:=te_convert_l1;
if (fromtreetype=niln) then
begin
{ will be handled by the constant folding }
doconv:=tc_equal;
end
else
doconv:=tc_int_2_int;
end;
end;
arraydef :
begin
if (m_mac in current_settings.modeswitches) and
is_integer(def_to) and
(fromtreetype=stringconstn) then
begin
eq:=te_convert_l3;
doconv:=tc_cstring_2_int;
end;
end;
end;
end;
stringdef :
begin
case def_from.typ of
stringdef :
begin
{ Constant string }
if (fromtreetype=stringconstn) and
is_shortstring(def_from) and
is_shortstring(def_to) then
eq:=te_equal
else if (tstringdef(def_to).stringtype=st_ansistring) and
(tstringdef(def_from).stringtype=st_ansistring) then
begin
{ don't convert ansistrings if any condition is true:
1) same encoding
2) from explicit codepage ansistring to ansistring and vice versa
3) from any ansistring to rawbytestring
4) from rawbytestring to any ansistring }
if (tstringdef(def_from).encoding=tstringdef(def_to).encoding) or
((tstringdef(def_to).encoding=0) and (tstringdef(def_from).encoding=getansistringcodepage)) or
((tstringdef(def_to).encoding=getansistringcodepage) and (tstringdef(def_from).encoding=0)) or
(tstringdef(def_to).encoding=globals.CP_NONE) or
(tstringdef(def_from).encoding=globals.CP_NONE) then
begin
eq:=te_equal;
end
else
begin
doconv := tc_string_2_string;
{ prefere conversion to utf8 codepage }
if tstringdef(def_to).encoding = globals.CP_UTF8 then
eq:=te_convert_l1
{ else to AnsiString type }
else if def_to=getansistringdef then
eq:=te_convert_l2
{ else to AnsiString with other codepage }
else
eq:=te_convert_l3;
end
end
else
{ same string type ? }
if (tstringdef(def_from).stringtype=tstringdef(def_to).stringtype) and
{ for shortstrings also the length must match }
((tstringdef(def_from).stringtype<>st_shortstring) or
(tstringdef(def_from).len=tstringdef(def_to).len)) and
{ for ansi- and unicodestrings also the encoding must match }
(not(tstringdef(def_from).stringtype in [st_ansistring,st_unicodestring]) or
(tstringdef(def_from).encoding=tstringdef(def_to).encoding)) then
eq:=te_equal
else
begin
doconv:=tc_string_2_string;
case tstringdef(def_from).stringtype of
st_widestring :
begin
case tstringdef(def_to).stringtype of
{ Prefer conversions to unicodestring }
st_unicodestring: eq:=te_convert_l1;
{ else prefer conversions to ansistring }
st_ansistring: eq:=te_convert_l2;
else
eq:=te_convert_l3;
end;
end;
st_unicodestring :
begin
case tstringdef(def_to).stringtype of
{ Prefer conversions to widestring }
st_widestring: eq:=te_convert_l1;
{ else prefer conversions to ansistring }
st_ansistring: eq:=te_convert_l2;
else
eq:=te_convert_l3;
end;
end;
st_shortstring :
begin
{ Prefer shortstrings of different length or conversions
from shortstring to ansistring }
case tstringdef(def_to).stringtype of
st_shortstring: eq:=te_convert_l1;
st_ansistring:
if tstringdef(def_to).encoding=globals.CP_UTF8 then
eq:=te_convert_l2
else if def_to=getansistringdef then
eq:=te_convert_l3
else
eq:=te_convert_l4;
st_unicodestring: eq:=te_convert_l5;
else
eq:=te_convert_l6;
end;
end;
st_ansistring :
begin
{ Prefer conversion to widestrings }
case tstringdef(def_to).stringtype of
st_unicodestring: eq:=te_convert_l4;
st_widestring: eq:=te_convert_l5;
else
eq:=te_convert_l6;
end;
end;
end;
end;
end;
orddef :
begin
{ char to string}
if is_char(def_from) then
begin
doconv:=tc_char_2_string;
case tstringdef(def_to).stringtype of
st_shortstring: eq:=te_convert_l1;
st_ansistring: eq:=te_convert_l2;
st_unicodestring: eq:=te_convert_l3;
st_widestring: eq:=te_convert_l4;
else
eq:=te_convert_l5;
end;
end
else
if is_widechar(def_from) then
begin
doconv:=tc_char_2_string;
case tstringdef(def_to).stringtype of
st_unicodestring: eq:=te_convert_l1;
st_widestring: eq:=te_convert_l2;
st_ansistring: eq:=te_convert_l3;
st_shortstring: eq:=te_convert_l4;
else
eq:=te_convert_l5;
end;
end;
end;
arraydef :
begin
{ array of char to string, the length check is done by the firstpass of this node }
if (is_chararray(def_from) or
is_open_chararray(def_from)) and
{ bitpacked arrays of char whose element bitsize is not
8 cannot be auto-converted to strings }
(not is_packed_array(def_from) or
(tarraydef(def_from).elementdef.packedbitsize=8)) then
begin
{ "Untyped" stringconstn is an array of char }
if fromtreetype=stringconstn then
begin
doconv:=tc_string_2_string;
{ prefered string type depends on the $H switch }
if (m_default_unicodestring in current_settings.modeswitches) and
(cs_refcountedstrings in current_settings.localswitches) then
case tstringdef(def_to).stringtype of
st_unicodestring: eq:=te_equal;
st_widestring: eq:=te_convert_l1;
// widechar: eq:=te_convert_l2;
// ansichar: eq:=te_convert_l3;
st_ansistring: eq:=te_convert_l4;
st_shortstring: eq:=te_convert_l5;
else
eq:=te_convert_l6;
end
else if not(cs_refcountedstrings in current_settings.localswitches) and
(tstringdef(def_to).stringtype=st_shortstring) then
eq:=te_equal
else if not(m_default_unicodestring in current_settings.modeswitches) and
(cs_refcountedstrings in current_settings.localswitches) and
(tstringdef(def_to).stringtype=st_ansistring) then
eq:=te_equal
else if tstringdef(def_to).stringtype in [st_widestring,st_unicodestring] then
eq:=te_convert_l3
else
eq:=te_convert_l1;
end
else
begin
doconv:=tc_chararray_2_string;
if is_open_array(def_from) then
begin
if is_ansistring(def_to) then
eq:=te_convert_l1
else if is_wide_or_unicode_string(def_to) then
eq:=te_convert_l3
else
eq:=te_convert_l2;
end
else
begin
if is_shortstring(def_to) then
begin
{ Only compatible with arrays that fit
smaller than 255 chars }
if (def_from.size <= 255) then
eq:=te_convert_l1;
end
else if is_ansistring(def_to) then
begin
if (def_from.size > 255) then
eq:=te_convert_l1
else
eq:=te_convert_l2;
end
else if is_wide_or_unicode_string(def_to) then
eq:=te_convert_l3
else
eq:=te_convert_l2;
end;
end;
end
else
{ array of widechar to string, the length check is done by the firstpass of this node }
if is_widechararray(def_from) or is_open_widechararray(def_from) then
begin
doconv:=tc_chararray_2_string;
if is_wide_or_unicode_string(def_to) then
eq:=te_convert_l1
else
{ size of widechar array is double due the sizeof a widechar }
if not(is_shortstring(def_to) and (is_open_widechararray(def_from) or (def_from.size>255*sizeof(widechar)))) then
eq:=te_convert_l3
else
eq:=te_convert_l2;
end;
end;
pointerdef :
begin
{ pchar can be assigned to short/ansistrings,
but not in tp7 compatible mode }
if not(m_tp7 in current_settings.modeswitches) then
begin
if is_pchar(def_from) then
begin
doconv:=tc_pchar_2_string;
{ prefer ansistrings/unicodestrings because pchars
can overflow shortstrings; don't use l1/l2/l3
because then pchar -> ansistring has the same
preference as conststring -> pchar, and this
breaks webtbs/tw3328.pp }
if is_ansistring(def_to) then
eq:=te_convert_l2
else if is_wide_or_unicode_string(def_to) then
eq:=te_convert_l3
else
eq:=te_convert_l4
end
else if is_pwidechar(def_from) then
begin
doconv:=tc_pwchar_2_string;
if is_wide_or_unicode_string(def_to) then
eq:=te_convert_l1
else
{ shortstring and ansistring can both result in
data loss, so don't prefer one over the other }
eq:=te_convert_l3;
end;
end;
end;
objectdef :
begin
{ corba interface -> id string }
if is_interfacecorba(def_from) then
begin
doconv:=tc_intf_2_string;
eq:=te_convert_l1;
end
else if (def_from=java_jlstring) then
begin
if is_wide_or_unicode_string(def_to) then
begin
doconv:=tc_equal;
eq:=te_equal;
end
else if def_to.typ=stringdef then
begin
doconv:=tc_string_2_string;
if is_ansistring(def_to) then
eq:=te_convert_l2
else
eq:=te_convert_l3
end;
end;
end;
end;
end;
floatdef :
begin
case def_from.typ of
orddef :
begin { ordinal to real }
{ only for implicit and internal typecasts in tp/delphi }
if (([cdo_explicit,cdo_internal] * cdoptions <> [cdo_explicit]) or
([m_tp7,m_delphi] * current_settings.modeswitches = [])) and
(is_integer(def_from) or
(is_currency(def_from) and
(s64currencytype.typ = floatdef))) then
begin
doconv:=tc_int_2_real;
{ prefer single over others }
if is_single(def_to) then
eq:=te_convert_l3
else
eq:=te_convert_l4;
end
else if is_currency(def_from)
{ and (s64currencytype.typ = orddef)) } then
begin
{ prefer conversion to orddef in this case, unless }
{ the orddef < currency (then it will get convert l3, }
{ and conversion to float is favoured) }
doconv:=tc_int_2_real;
if is_extended(def_to) then
eq:=te_convert_l2
else if is_double(def_to) then
eq:=te_convert_l3
else if is_single(def_to) then
eq:=te_convert_l4
else
eq:=te_convert_l2;
end;
end;
floatdef :
begin
if tfloatdef(def_from).floattype=tfloatdef(def_to).floattype then
eq:=te_equal
else
begin
{ Delphi does not allow explicit type conversions for float types like:
single_var:=single(double_var);
But if such conversion is inserted by compiler (internal) for some purpose,
it should be allowed even in Delphi mode. }
if (fromtreetype=realconstn) or
not((cdoptions*[cdo_explicit,cdo_internal]=[cdo_explicit]) and
(m_delphi in current_settings.modeswitches)) then
begin
doconv:=tc_real_2_real;
{ do we lose precision? }
if (def_to.size<def_from.size) or
(is_currency(def_from) and (tfloatdef(def_to).floattype in [s32real,s64real])) then
begin
if is_currency(def_from) and (tfloatdef(def_to).floattype=s32real) then
eq:=te_convert_l3
else
eq:=te_convert_l2
end
else
eq:=te_convert_l1;
end;
end;
end;
end;
end;
enumdef :
begin
case def_from.typ of
enumdef :
begin
if cdo_explicit in cdoptions then
begin
eq:=te_convert_l1;
doconv:=tc_int_2_int;
end
else
begin
hd1:=def_from;
while assigned(tenumdef(hd1).basedef) do
hd1:=tenumdef(hd1).basedef;
hd2:=def_to;
while assigned(tenumdef(hd2).basedef) do
hd2:=tenumdef(hd2).basedef;
if (hd1=hd2) then
begin
eq:=te_convert_l1;
{ because of packenum they can have different sizes! (JM) }
doconv:=tc_int_2_int;
end
else
begin
{ assignment of an enum symbol to an unique type? }
if (fromtreetype=ordconstn) and
(tenumsym(tenumdef(hd1).getfirstsym)=tenumsym(tenumdef(hd2).getfirstsym)) then
begin
{ because of packenum they can have different sizes! (JM) }
eq:=te_convert_l1;
doconv:=tc_int_2_int;
end;
end;
end;
end;
orddef :
begin
if cdo_explicit in cdoptions then
begin
eq:=te_convert_l1;
doconv:=tc_int_2_int;
end;
end;
variantdef :
begin
eq:=te_convert_l1;
doconv:=tc_variant_2_enum;
end;
pointerdef :
begin
{ ugly, but delphi allows it }
if cdo_explicit in cdoptions then
begin
if target_info.system in systems_jvm then
begin
doconv:=tc_equal;
eq:=te_convert_l1;
end
else if m_delphi in current_settings.modeswitches then
begin
doconv:=tc_int_2_int;
eq:=te_convert_l1;
end
end;
end;
objectdef:
begin
{ ugly, but delphi allows it }
if (cdo_explicit in cdoptions) and
is_class_or_interface_or_dispinterface_or_objc_or_java(def_from) then
begin
{Â in Java enums /are/ class instances, and hence such
typecasts must not be treated as integer-like
conversions
}
if target_info.system in systems_jvm then
begin
doconv:=tc_equal;
eq:=te_convert_l1;
end
else if m_delphi in current_settings.modeswitches then
begin
doconv:=tc_int_2_int;
eq:=te_convert_l1;
end;
end;
end;
end;
end;
arraydef :
begin
{ open array is also compatible with a single element of its base type.
the extra check for deftyp is needed because equal defs can also return
true if the def types are not the same, for example with dynarray to pointer. }
if is_open_array(def_to) and
(def_from.typ=tarraydef(def_to).elementdef.typ) and
equal_defs(def_from,tarraydef(def_to).elementdef) then
begin
doconv:=tc_elem_2_openarray;
{ also update in htypechk.pas/var_para_allowed if changed
here }
eq:=te_convert_l3;
end
else
begin
case def_from.typ of
arraydef :
begin
{ from/to packed array -- packed chararrays are }
{ strings in ISO Pascal (at least if the lower bound }
{ is 1, but GPC makes all equal-length chararrays }
{ compatible), so treat those the same as regular }
{ char arrays -- except if they use subrange types }
if (is_packed_array(def_from) and
(not is_chararray(def_from) or
(tarraydef(def_from).elementdef.packedbitsize<>8)) and
not is_widechararray(def_from)) xor
(is_packed_array(def_to) and
(not is_chararray(def_to) or
(tarraydef(def_to).elementdef.packedbitsize<>8)) and
not is_widechararray(def_to)) then
{ both must be packed }
begin
compare_defs_ext:=te_incompatible;
exit;
end
{ to dynamic array }
else if is_dynamic_array(def_to) then
begin
if is_array_constructor(def_from) then
begin
{ array constructor -> dynamic array }
if is_void(tarraydef(def_from).elementdef) then
begin
{ only needs to loose to [] -> open array }
eq:=te_convert_l2;
doconv:=tc_arrayconstructor_2_dynarray;
end
else
begin
{ this should loose to the array constructor -> open array conversions,
but it might happen that the end of the convert levels is reached :/ }
subeq:=compare_defs_ext(tarraydef(def_from).elementdef,
tarraydef(def_to).elementdef,
{ reason for cdo_allow_variant: see webtbs/tw7070a and webtbs/tw7070b }
arrayconstructorn,hct,hpd,[cdo_check_operator,cdo_allow_variant]);
if (subeq>=te_equal) then
begin
eq:=te_convert_l2;
end
else
{ an array constructor is not a dynamic array, so
use a lower level of compatibility than that one of
of the elements }
if subeq>te_convert_l5 then
begin
eq:=pred(pred(subeq));
end
else if subeq>te_convert_l6 then
eq:=pred(subeq)
else if subeq=te_convert_operator then
{ the operater needs to be applied by element, so we tell
the caller that it's some unpreffered conversion and let
it handle the per-element stuff }
eq:=te_convert_l6
else
eq:=subeq;
doconv:=tc_arrayconstructor_2_dynarray;
end;
end
else if equal_defs(tarraydef(def_from).elementdef,tarraydef(def_to).elementdef) then
begin
{ dynamic array -> dynamic array }
if is_dynamic_array(def_from) then
eq:=te_equal
{ fpc modes only: array -> dyn. array }
else if (current_settings.modeswitches*[m_objfpc,m_fpc]<>[]) and
not(is_special_array(def_from)) and
is_zero_based_array(def_from) then
begin
eq:=te_convert_l2;
doconv:=tc_array_2_dynarray;
end;
end
end
else
{ to open array }
if is_open_array(def_to) then
begin
{ array constructor -> open array }
if is_array_constructor(def_from) then
begin
if is_void(tarraydef(def_from).elementdef) then
begin
doconv:=tc_equal;
eq:=te_convert_l1;
end
else
begin
subeq:=compare_defs_ext(tarraydef(def_from).elementdef,
tarraydef(def_to).elementdef,
{ reason for cdo_allow_variant: see webtbs/tw7070a and webtbs/tw7070b }
arrayconstructorn,hct,hpd,[cdo_check_operator,cdo_allow_variant]);
if (subeq>=te_equal) then
begin
doconv:=tc_equal;
eq:=te_convert_l1;
end
else
{ an array constructor is not an open array, so
use a lower level of compatibility than that one of
of the elements }
if subeq>te_convert_l6 then
begin
doconv:=hct;
eq:=pred(subeq);
end
else
eq:=subeq;
end;
end
else
{ dynamic array -> open array }
if is_dynamic_array(def_from) and
equal_defs(tarraydef(def_from).elementdef,tarraydef(def_to).elementdef) then
begin
doconv:=tc_dynarray_2_openarray;
eq:=te_convert_l2;
end
else
{ open array -> open array }
if is_open_array(def_from) and
equal_defs(tarraydef(def_from).elementdef,tarraydef(def_to).elementdef) then
if tarraydef(def_from).elementdef=tarraydef(def_to).elementdef then
eq:=te_exact
else
eq:=te_equal
else
{ array -> open array }
if not(cdo_parameter in cdoptions) and
equal_defs(tarraydef(def_from).elementdef,tarraydef(def_to).elementdef) then
begin
if fromtreetype=stringconstn then
eq:=te_convert_l1
else
eq:=te_equal;
end;
end
else
{ to array of const }
if is_array_of_const(def_to) then
begin
if is_array_of_const(def_from) or
is_array_constructor(def_from) then
begin
eq:=te_equal;
end
else
{ array of tvarrec -> array of const }
if equal_defs(tarraydef(def_to).elementdef,tarraydef(def_from).elementdef) then
begin
doconv:=tc_equal;
eq:=te_convert_l1;
end;
end
else
{ to array of char, from "Untyped" stringconstn (array of char) }
if (fromtreetype=stringconstn) and
((is_chararray(def_to) and
{ bitpacked arrays of char whose element bitsize is not
8 cannot be auto-converted from strings }
(not is_packed_array(def_to) or
(tarraydef(def_to).elementdef.packedbitsize=8))) or
is_widechararray(def_to)) then
begin
eq:=te_convert_l1;
doconv:=tc_string_2_chararray;
end
else
{ other arrays }
begin
{ open array -> array }
if not(cdo_parameter in cdoptions) and
is_open_array(def_from) and
equal_defs(tarraydef(def_from).elementdef,tarraydef(def_to).elementdef) then
begin
eq:=te_equal
end
else
{ array -> array }
if not(m_tp7 in current_settings.modeswitches) and
not(m_delphi in current_settings.modeswitches) and
(tarraydef(def_from).lowrange=tarraydef(def_to).lowrange) and
(tarraydef(def_from).highrange=tarraydef(def_to).highrange) and
equal_defs(tarraydef(def_from).elementdef,tarraydef(def_to).elementdef) and
equal_defs(tarraydef(def_from).rangedef,tarraydef(def_to).rangedef) then
begin
eq:=te_equal
end;
end;
end;
pointerdef :
begin
{ nil and voidpointers are compatible with dyn. arrays }
if is_dynamic_array(def_to) and
((fromtreetype=niln) or
is_voidpointer(def_from)) then
begin
doconv:=tc_equal;
eq:=te_convert_l1;
end
else
if is_zero_based_array(def_to) and
equal_defs(tpointerdef(def_from).pointeddef,tarraydef(def_to).elementdef) then
begin
doconv:=tc_pointer_2_array;
eq:=te_convert_l1;
end;
end;
stringdef :
begin
{ string to char array }
if not is_special_array(def_to) and
((is_char(tarraydef(def_to).elementdef) and
{ bitpacked arrays of char whose element bitsize is not
8 cannot be auto-converted from strings }
(not is_packed_array(def_to) or
(tarraydef(def_to).elementdef.packedbitsize=8))) or
is_widechar(tarraydef(def_to).elementdef)) then
begin
doconv:=tc_string_2_chararray;
eq:=te_convert_l1;
end;
end;
orddef:
begin
if is_chararray(def_to) and
is_char(def_from) then
begin
doconv:=tc_char_2_chararray;
eq:=te_convert_l2;
end;
end;
recorddef :
begin
{ tvarrec -> array of const }
if is_array_of_const(def_to) and
equal_defs(def_from,tarraydef(def_to).elementdef) then
begin
doconv:=tc_equal;
eq:=te_convert_l1;
end;
end;
variantdef :
begin
if is_dynamic_array(def_to) then
begin
doconv:=tc_variant_2_dynarray;
eq:=te_convert_l1;
end;
end;
end;
end;
end;
variantdef :
begin
if (cdo_allow_variant in cdoptions) then
begin
case def_from.typ of
enumdef :
begin
doconv:=tc_enum_2_variant;
eq:=te_convert_l1;
end;
arraydef :
begin
if is_dynamic_array(def_from) then
begin
doconv:=tc_dynarray_2_variant;
eq:=te_convert_l1;
end;
end;
objectdef :
begin
{ corbainterfaces not accepted, until we have
runtime support for them in Variants (sergei) }
if is_interfacecom_or_dispinterface(def_from) then
begin
doconv:=tc_interface_2_variant;
eq:=te_convert_l1;
end;
end;
variantdef :
begin
{ doing this in the compiler avoids a lot of unncessary
copying }
if (tvariantdef(def_from).varianttype=vt_olevariant) and
(tvariantdef(def_to).varianttype=vt_normalvariant) then
begin
doconv:=tc_equal;
eq:=te_convert_l1;
end;
end;
end;
end;
end;
pointerdef :
begin
case def_from.typ of
stringdef :
begin
{ string constant (which can be part of array constructor)
to zero terminated string constant }
if (fromtreetype = stringconstn) and
(is_pchar(def_to) or is_pwidechar(def_to)) then
begin
doconv:=tc_cstring_2_pchar;
if is_pwidechar(def_to)=(m_default_unicodestring in current_settings.modeswitches) then
eq:=te_convert_l2
else
eq:=te_convert_l3
end
else
if (cdo_explicit in cdoptions) or (fromtreetype = arrayconstructorn) then
begin
{ pchar(ansistring) }
if is_pchar(def_to) and
is_ansistring(def_from) then
begin
doconv:=tc_ansistring_2_pchar;
eq:=te_convert_l1;
end
else
{ pwidechar(widestring) }
if is_pwidechar(def_to) and
is_wide_or_unicode_string(def_from) then
begin
doconv:=tc_ansistring_2_pchar;
eq:=te_convert_l1;
end;
end;
end;
orddef :
begin
{ char constant to zero terminated string constant }
if (fromtreetype in [ordconstn,arrayconstructorn]) then
begin
if (is_char(def_from) or is_widechar(def_from)) and
(is_pchar(def_to) or is_pwidechar(def_to)) then
begin
doconv:=tc_cchar_2_pchar;
if is_pwidechar(def_to)=(m_default_unicodestring in current_settings.modeswitches) then
eq:=te_convert_l1
else
eq:=te_convert_l2
end
else
if (m_delphi in current_settings.modeswitches) and is_integer(def_from) then
begin
doconv:=tc_cord_2_pointer;
eq:=te_convert_l5;
end;
end;
{ allow explicit typecasts from ordinals to pointer.
Support for delphi compatibility
Support constructs like pointer(cardinal-cardinal) or pointer(longint+cardinal) where
the result of the ordinal operation is int64 also on 32 bit platforms.
It is also used by the compiler internally for inc(pointer,ordinal) }
if (eq=te_incompatible) and
not is_void(def_from) and
(
(
(cdo_explicit in cdoptions) and
(
(m_delphi in current_settings.modeswitches) or
{ Don't allow pchar(char) in fpc modes }
is_integer(def_from)
)
) or
(cdo_internal in cdoptions)
) then
begin
doconv:=tc_int_2_int;
eq:=te_convert_l1;
end;
end;
enumdef :
begin
{ allow explicit typecasts from enums to pointer.
Support for delphi compatibility
}
{Â in Java enums /are/ class instances, and hence such
typecasts must not be treated as integer-like conversions
}
if (((cdo_explicit in cdoptions) and
((m_delphi in current_settings.modeswitches) or
(target_info.system in systems_jvm)
)
) or
(cdo_internal in cdoptions)
) then
begin
{Â in Java enums /are/ class instances, and hence such
typecasts must not be treated as integer-like
conversions
}
if target_info.system in systems_jvm then
begin
doconv:=tc_equal;
eq:=te_convert_l1;
end
else if m_delphi in current_settings.modeswitches then
begin
doconv:=tc_int_2_int;
eq:=te_convert_l1;
end;
end;
end;
arraydef :
begin
{ string constant (which can be part of array constructor)
to zero terminated string constant }
if (((fromtreetype = arrayconstructorn) and
{ can't use is_chararray, because returns false for }
{ array constructors }
is_char(tarraydef(def_from).elementdef)) or
(fromtreetype = stringconstn)) and
(is_pchar(def_to) or is_pwidechar(def_to)) then
begin
doconv:=tc_cstring_2_pchar;
if ((m_default_unicodestring in current_settings.modeswitches) xor
is_pchar(def_to)) then
eq:=te_convert_l2
else
eq:=te_convert_l3;
end
else
{ chararray to pointer }
if (is_zero_based_array(def_from) or
is_open_array(def_from)) and
equal_defs(tarraydef(def_from).elementdef,tpointerdef(def_to).pointeddef) then
begin
doconv:=tc_array_2_pointer;
{ don't prefer the pchar overload when a constant
string was passed }
if fromtreetype=stringconstn then
eq:=te_convert_l2
else
eq:=te_convert_l1;
end
else
{ dynamic array to pointer, delphi only }
if (m_delphi in current_settings.modeswitches) and
is_dynamic_array(def_from) and
is_voidpointer(def_to) then
begin
eq:=te_equal;
end;
end;
pointerdef :
begin
{ check for far pointers }
if not tpointerdef(def_from).compatible_with_pointerdef_size(tpointerdef(def_to)) then
begin
if fromtreetype=niln then
eq:=te_equal
else
eq:=te_incompatible;
end
{ the types can be forward type, handle before normal type check !! }
else
if assigned(def_to.typesym) and
((tpointerdef(def_to).pointeddef.typ=forwarddef) or
(tpointerdef(def_from).pointeddef.typ=forwarddef)) then
begin
if (def_from.typesym=def_to.typesym) or
(fromtreetype=niln) then
eq:=te_equal
end
else
{ same types }
if equal_defs(tpointerdef(def_from).pointeddef,tpointerdef(def_to).pointeddef) then
begin
eq:=te_equal
end
else
{ child class pointer can be assigned to anchestor pointers }
if (
(tpointerdef(def_from).pointeddef.typ=objectdef) and
(tpointerdef(def_to).pointeddef.typ=objectdef) and
def_is_related(tobjectdef(tpointerdef(def_from).pointeddef),
tobjectdef(tpointerdef(def_to).pointeddef))
) then
begin
doconv:=tc_equal;
eq:=te_convert_l1;
end
else
{ all pointers can be assigned to void-pointer }
if is_void(tpointerdef(def_to).pointeddef) then
begin
doconv:=tc_equal;
{ give pwidechar,pchar a penalty so it prefers
conversion to ansistring }
if is_pchar(def_from) or
is_pwidechar(def_from) then
eq:=te_convert_l2
else
eq:=te_convert_l1;
end
else
{ all pointers can be assigned from void-pointer }
if is_void(tpointerdef(def_from).pointeddef) or
{ all pointers can be assigned from void-pointer or formaldef pointer, check
tw3777.pp if you change this }
(tpointerdef(def_from).pointeddef.typ=formaldef) then
begin
doconv:=tc_equal;
{ give pwidechar a penalty so it prefers
conversion to pchar }
if is_pwidechar(def_to) then
eq:=te_convert_l2
else
eq:=te_convert_l1;
end
{ id = generic class instance. metaclasses are also
class instances themselves. }
else if ((def_from=objc_idtype) and
(def_to=objc_metaclasstype)) or
((def_to=objc_idtype) and
(def_from=objc_metaclasstype)) then
begin
doconv:=tc_equal;
eq:=te_convert_l2;
end;
end;
procvardef :
begin
{ procedure variable can be assigned to an void pointer,
this is not allowed for complex procvars }
if (is_void(tpointerdef(def_to).pointeddef) or
(m_mac_procvar in current_settings.modeswitches)) and
tprocvardef(def_from).compatible_with_pointerdef_size(tpointerdef(def_to)) then
begin
doconv:=tc_equal;
eq:=te_convert_l1;
end;
end;
procdef :
begin
{ procedure variable can be assigned to an void pointer,
this not allowed for methodpointers }
if (m_mac_procvar in current_settings.modeswitches) and
tprocdef(def_from).compatible_with_pointerdef_size(tpointerdef(def_to)) then
begin
doconv:=tc_proc_2_procvar;
eq:=te_convert_l2;
end;
end;
classrefdef,
objectdef :
begin
{ implicit pointer object and class reference types
can be assigned to void pointers, but it is less
preferred than assigning to a related objectdef }
if (
is_implicit_pointer_object_type(def_from) or
(def_from.typ=classrefdef)
) and
(tpointerdef(def_to).pointeddef.typ=orddef) and
(torddef(tpointerdef(def_to).pointeddef).ordtype=uvoid) then
begin
doconv:=tc_equal;
eq:=te_convert_l2;
end
else if (is_objc_class_or_protocol(def_from) and
(def_to=objc_idtype)) or
{ classrefs are also instances in Objective-C,
hence they're also assignment-cpmpatible with
id }
(is_objcclassref(def_from) and
((def_to=objc_metaclasstype) or
(def_to=objc_idtype))) then
begin
doconv:=tc_equal;
eq:=te_convert_l2;
end;
end;
end;
end;
setdef :
begin
case def_from.typ of
setdef :
begin
if assigned(tsetdef(def_from).elementdef) and
assigned(tsetdef(def_to).elementdef) then
begin
{ sets with the same size (packset setting), element
base type and the same range are equal }
if equal_defs(tsetdef(def_from).elementdef,tsetdef(def_to).elementdef) and
(tsetdef(def_from).setbase=tsetdef(def_to).setbase) and
(tsetdef(def_from).setmax=tsetdef(def_to).setmax) and
(def_from.size=def_to.size) then
eq:=te_equal
else if is_subequal(tsetdef(def_from).elementdef,tsetdef(def_to).elementdef) then
begin
eq:=te_convert_l1;
doconv:=tc_set_to_set;
end;
end
else
begin
{ empty set is compatible with everything }
eq:=te_convert_l1;
doconv:=tc_set_to_set;
end;
end;
arraydef :
begin
{ automatic arrayconstructor -> set conversion }
if is_array_constructor(def_from) then
begin
doconv:=tc_arrayconstructor_2_set;
eq:=te_convert_l1;
end;
end;
end;
end;
procvardef :
begin
case def_from.typ of
procdef :
begin
{ proc -> procvar }
if (m_tp_procvar in current_settings.modeswitches) or
(m_mac_procvar in current_settings.modeswitches) then
begin
subeq:=proc_to_procvar_equal(tprocdef(def_from),tprocvardef(def_to),cdo_warn_incompatible_univ in cdoptions);
if subeq>te_incompatible then
begin
doconv:=tc_proc_2_procvar;
if subeq>te_convert_l5 then
eq:=pred(subeq)
else
eq:=subeq;
end;
end;
end;
procvardef :
begin
{ procvar -> procvar }
eq:=proc_to_procvar_equal(tprocvardef(def_from),tprocvardef(def_to),cdo_warn_incompatible_univ in cdoptions);
if eq<te_equal then
doconv:=tc_proc_2_procvar
else
doconv:=tc_equal;
end;
pointerdef :
begin
{ nil is compatible with procvars }
if (fromtreetype=niln) then
begin
if not Tprocvardef(def_to).is_addressonly then
{Nil to method pointers requires to convert a single
pointer nil value to a two pointer procvardef.}
doconv:=tc_nil_2_methodprocvar
else
doconv:=tc_equal;
eq:=te_convert_l1;
end
else
{ for example delphi allows the assignement from pointers }
{ to procedure variables }
if (m_pointer_2_procedure in current_settings.modeswitches) and
is_void(tpointerdef(def_from).pointeddef) and
tprocvardef(def_to).is_addressonly then
begin
doconv:=tc_equal;
eq:=te_convert_l1;
end;
end;
end;
end;
objectdef :
begin
{ object pascal objects }
if (def_from.typ=objectdef) and
(def_is_related(tobjectdef(def_from),tobjectdef(def_to))) then
begin
doconv:=tc_equal;
{ also update in htypechk.pas/var_para_allowed if changed
here }
eq:=te_convert_l3;
end
{ string -> java.lang.string }
else if (def_to=java_jlstring) and
((def_from.typ=stringdef) or
(fromtreetype=stringconstn)) then
begin
if is_wide_or_unicode_string(def_from) or
((fromtreetype=stringconstn) and
(cs_refcountedstrings in current_settings.localswitches) and
(m_default_unicodestring in current_settings.modeswitches)) then
begin
doconv:=tc_equal;
eq:=te_equal
end
else
begin
doconv:=tc_string_2_string;
eq:=te_convert_l2;
end;
end
else if (def_to=java_jlstring) and
is_anychar(def_from) then
begin
doconv:=tc_char_2_string;
eq:=te_convert_l2
end
else
{ specific to implicit pointer object types }
if is_implicit_pointer_object_type(def_to) then
begin
{ void pointer also for delphi mode }
if (m_delphi in current_settings.modeswitches) and
is_voidpointer(def_from) then
begin
doconv:=tc_equal;
{ prefer pointer-pointer assignments }
eq:=te_convert_l2;
end
else
{ nil is compatible with class instances and interfaces }
if (fromtreetype=niln) then
begin
doconv:=tc_equal;
eq:=te_convert_l1;
end
{ All Objective-C classes are compatible with ID }
else if is_objc_class_or_protocol(def_to) and
(def_from=objc_idtype) then
begin
doconv:=tc_equal;
eq:=te_convert_l2;
end
{ classes can be assigned to interfaces
(same with objcclass and objcprotocol) }
else if ((is_interface(def_to) and
is_class(def_from)) or
(is_objcprotocol(def_to) and
is_objcclass(def_from)) or
(is_javainterface(def_to) and
is_javaclass(def_from))) and
assigned(tobjectdef(def_from).ImplementedInterfaces) then
begin
{ we've to search in parent classes as well }
hobjdef:=tobjectdef(def_from);
while assigned(hobjdef) do
begin
if find_implemented_interface(hobjdef,tobjectdef(def_to))<>nil then
begin
if is_interface(def_to) then
doconv:=tc_class_2_intf
else
{ for Objective-C, we don't have to do anything special }
doconv:=tc_equal;
{ don't prefer this over objectdef->objectdef }
eq:=te_convert_l2;
break;
end;
hobjdef:=hobjdef.childof;
end;
end
{ Interface 2 GUID handling }
else if (def_to=tdef(rec_tguid)) and
(fromtreetype=typen) and
is_interface(def_from) and
assigned(tobjectdef(def_from).iidguid) then
begin
eq:=te_convert_l1;
doconv:=tc_equal;
end
else if (def_from.typ=variantdef) and is_interfacecom_or_dispinterface(def_to) then
begin
{ corbainterfaces not accepted, until we have
runtime support for them in Variants (sergei) }
doconv:=tc_variant_2_interface;
eq:=te_convert_l2;
end
{ ugly, but delphi allows it (enables typecasting ordinals/
enums of any size to pointer-based object defs) }
{Â in Java enums /are/ class instances, and hence such
typecasts must not be treated as integer-like conversions;
arbitrary constants cannot be converted into classes/
pointer-based values either on the JVM -> always return
false and let it be handled by the regular explicit type
casting code
}
else if (not(target_info.system in systems_jvm) and
((def_from.typ=enumdef) or
(def_from.typ=orddef))) and
(m_delphi in current_settings.modeswitches) and
(cdo_explicit in cdoptions) then
begin
doconv:=tc_int_2_int;
eq:=te_convert_l1;
end;
end;
end;
classrefdef :
begin
{ similar to pointerdef wrt forwards }
if assigned(def_to.typesym) and
(tclassrefdef(def_to).pointeddef.typ=forwarddef) or
((def_from.typ=classrefdef) and
(tclassrefdef(def_from).pointeddef.typ=forwarddef)) then
begin
if (def_from.typesym=def_to.typesym) or
(fromtreetype=niln) then
eq:=te_equal;
end
else
{ class reference types }
if (def_from.typ=classrefdef) then
begin
if equal_defs(tclassrefdef(def_from).pointeddef,tclassrefdef(def_to).pointeddef) then
begin
eq:=te_equal;
end
else
begin
doconv:=tc_equal;
if (cdo_explicit in cdoptions) or
def_is_related(tobjectdef(tclassrefdef(def_from).pointeddef),
tobjectdef(tclassrefdef(def_to).pointeddef)) then
eq:=te_convert_l1;
end;
end
else
if (m_delphi in current_settings.modeswitches) and
is_voidpointer(def_from) then
begin
doconv:=tc_equal;
{ prefer pointer-pointer assignments }
eq:=te_convert_l2;
end
else
{ nil is compatible with class references }
if (fromtreetype=niln) then
begin
doconv:=tc_equal;
eq:=te_convert_l1;
end
else
{ id is compatible with all classref types }
if (def_from=objc_idtype) then
begin
doconv:=tc_equal;
eq:=te_convert_l1;
end;
end;
filedef :
begin
{ typed files are all equal to the abstract file type
name TYPEDFILE in system.pp in is_equal in types.pas
the problem is that it sholud be also compatible to FILE
but this would leed to a problem for ASSIGN RESET and REWRITE
when trying to find the good overloaded function !!
so all file function are doubled in system.pp
this is not very beautiful !!}
if (def_from.typ=filedef) then
begin
if (tfiledef(def_from).filetyp=tfiledef(def_to).filetyp) then
begin
if
(
(tfiledef(def_from).typedfiledef=nil) and
(tfiledef(def_to).typedfiledef=nil)
) or
(
(tfiledef(def_from).typedfiledef<>nil) and
(tfiledef(def_to).typedfiledef<>nil) and
equal_defs(tfiledef(def_from).typedfiledef,tfiledef(def_to).typedfiledef)
) or
(
(tfiledef(def_from).filetyp = ft_typed) and
(tfiledef(def_to).filetyp = ft_typed) and
(
(tfiledef(def_from).typedfiledef = tdef(voidtype)) or
(tfiledef(def_to).typedfiledef = tdef(voidtype))
)
) then
begin
eq:=te_equal;
end;
end
else
if ((tfiledef(def_from).filetyp = ft_untyped) and
(tfiledef(def_to).filetyp = ft_typed)) or
((tfiledef(def_from).filetyp = ft_typed) and
(tfiledef(def_to).filetyp = ft_untyped)) then
begin
doconv:=tc_equal;
eq:=te_convert_l1;
end;
end;
end;
recorddef :
begin
{ interface -> guid }
if (def_to=rec_tguid) and
(is_interfacecom_or_dispinterface(def_from)) then
begin
doconv:=tc_intf_2_guid;
eq:=te_convert_l1;
end;
end;
formaldef :
begin
doconv:=tc_equal;
if (def_from.typ=formaldef) then
eq:=te_equal
else
{ Just about everything can be converted to a formaldef...}
if not (def_from.typ in [abstractdef,errordef]) then
eq:=te_convert_l6;
end;
end;
{ if we didn't find an appropriate type conversion yet
then we search also the := operator }
if (eq=te_incompatible) and
{ make sure there is not a single variant if variants }
{ are not allowed (otherwise if only cdo_check_operator }
{ and e.g. fromdef=stringdef and todef=variantdef, then }
{ the test will still succeed }
((cdo_allow_variant in cdoptions) or
((def_from.typ<>variantdef) and
(def_to.typ<>variantdef) and
{ internal typeconversions always have to be bitcasts (except for
variants) }
not(cdo_internal in cdoptions)
)
) and
(
{ Check for variants? }
(
(cdo_allow_variant in cdoptions) and
((def_from.typ=variantdef) or (def_to.typ=variantdef))
) or
{ Check for operators? }
(
(cdo_check_operator in cdoptions) and
((def_from.typ<>variantdef) or (def_to.typ<>variantdef))
)
) then
begin
operatorpd:=search_assignment_operator(def_from,def_to,cdo_explicit in cdoptions);
if assigned(operatorpd) then
eq:=te_convert_operator;
end;
{ update convtype for te_equal when it is not yet set }
if (eq=te_equal) and
(doconv=tc_not_possible) then
doconv:=tc_equal;
compare_defs_ext:=eq;
end;
function equal_defs(def_from,def_to:tdef):boolean;
var
convtyp : tconverttype;
pd : tprocdef;
begin
{ Compare defs with nothingn and no explicit typecasts and
searching for overloaded operators is not needed }
equal_defs:=(compare_defs_ext(def_from,def_to,nothingn,convtyp,pd,[])>=te_equal);
end;
function compare_defs(def_from,def_to:tdef;fromtreetype:tnodetype):tequaltype;
var
doconv : tconverttype;
pd : tprocdef;
begin
compare_defs:=compare_defs_ext(def_from,def_to,fromtreetype,doconv,pd,[cdo_check_operator,cdo_allow_variant]);
end;
function is_subequal(def1, def2: tdef): boolean;
var
basedef1,basedef2 : tenumdef;
Begin
is_subequal := false;
if assigned(def1) and assigned(def2) then
Begin
if (def1.typ = orddef) and (def2.typ = orddef) then
Begin
{ see p.47 of Turbo Pascal 7.01 manual for the separation of types }
{ range checking for case statements is done with adaptrange }
case torddef(def1).ordtype of
u8bit,u16bit,u32bit,u64bit,
s8bit,s16bit,s32bit,s64bit :
is_subequal:=(torddef(def2).ordtype in [s64bit,u64bit,s32bit,u32bit,u8bit,s8bit,s16bit,u16bit]);
pasbool1,pasbool8,pasbool16,pasbool32,pasbool64,
bool8bit,bool16bit,bool32bit,bool64bit :
is_subequal:=(torddef(def2).ordtype in [pasbool1,pasbool8,pasbool16,pasbool32,pasbool64,bool8bit,bool16bit,bool32bit,bool64bit]);
uchar :
is_subequal:=(torddef(def2).ordtype=uchar);
uwidechar :
is_subequal:=(torddef(def2).ordtype=uwidechar);
end;
end
else
Begin
{ Check if both basedefs are equal }
if (def1.typ=enumdef) and (def2.typ=enumdef) then
Begin
{ get both basedefs }
basedef1:=tenumdef(def1);
while assigned(basedef1.basedef) do
basedef1:=basedef1.basedef;
basedef2:=tenumdef(def2);
while assigned(basedef2.basedef) do
basedef2:=basedef2.basedef;
is_subequal:=(basedef1=basedef2);
end;
end;
end;
end;
function potentially_incompatible_univ_paras(def1, def2: tdef): boolean;
begin
result :=
{ not entirely safe: different records can be passed differently
depending on the types of their fields, but they're hard to compare
(variant records, bitpacked vs non-bitpacked) }
((def1.typ in [floatdef,recorddef,arraydef,filedef,variantdef]) and
(def1.typ<>def2.typ)) or
{ pointers, ordinals and small sets are all passed the same}
(((def1.typ in [orddef,enumdef,pointerdef,procvardef,classrefdef]) or
(is_class_or_interface_or_objc(def1)) or
is_dynamic_array(def1) or
is_smallset(def1) or
is_ansistring(def1) or
is_unicodestring(def1)) <>
(def2.typ in [orddef,enumdef,pointerdef,procvardef,classrefdef]) or
(is_class_or_interface_or_objc(def2)) or
is_dynamic_array(def2) or
is_smallset(def2) or
is_ansistring(def2) or
is_unicodestring(def2)) or
{ shortstrings }
(is_shortstring(def1)<>
is_shortstring(def2)) or
{ winlike widestrings }
(is_widestring(def1)<>
is_widestring(def2)) or
{ TP-style objects }
(is_object(def1) <>
is_object(def2));
end;
function compare_paras(para1,para2 : TFPObjectList; acp : tcompare_paras_type; cpoptions: tcompare_paras_options):tequaltype;
var
currpara1,
currpara2 : tparavarsym;
eq,lowesteq : tequaltype;
hpd : tprocdef;
convtype : tconverttype;
cdoptions : tcompare_defs_options;
i1,i2 : byte;
begin
compare_paras:=te_incompatible;
cdoptions:=[cdo_parameter,cdo_check_operator,cdo_allow_variant,cdo_strict_undefined_check];
{ we need to parse the list from left-right so the
not-default parameters are checked first }
lowesteq:=high(tequaltype);
i1:=0;
i2:=0;
if cpo_ignorehidden in cpoptions then
begin
while (i1<para1.count) and
(vo_is_hidden_para in tparavarsym(para1[i1]).varoptions) do
inc(i1);
while (i2<para2.count) and
(vo_is_hidden_para in tparavarsym(para2[i2]).varoptions) do
inc(i2);
end;
if cpo_ignoreframepointer in cpoptions then
begin
if (i1<para1.count) and
(vo_is_parentfp in tparavarsym(para1[i1]).varoptions) then
inc(i1);
if (i2<para2.count) and
(vo_is_parentfp in tparavarsym(para2[i2]).varoptions) then
inc(i2);
end;
while (i1<para1.count) and (i2<para2.count) do
begin
eq:=te_incompatible;
currpara1:=tparavarsym(para1[i1]);
currpara2:=tparavarsym(para2[i2]);
{ Unique types must match exact }
if ((df_unique in currpara1.vardef.defoptions) or (df_unique in currpara2.vardef.defoptions)) and
(currpara1.vardef<>currpara2.vardef) then
exit;
{ Handle hidden parameters separately, because self is
defined as voidpointer for methodpointers }
if (vo_is_hidden_para in currpara1.varoptions) or
(vo_is_hidden_para in currpara2.varoptions) then
begin
{ both must be hidden }
if (vo_is_hidden_para in currpara1.varoptions)<>(vo_is_hidden_para in currpara2.varoptions) then
exit;
eq:=te_exact;
if (([vo_is_self,vo_is_vmt]*currpara1.varoptions)=[]) and
(([vo_is_self,vo_is_vmt]*currpara2.varoptions)=[]) then
begin
if not(cpo_ignorevarspez in cpoptions) and
(currpara1.varspez<>currpara2.varspez) then
exit;
eq:=compare_defs_ext(currpara1.vardef,currpara2.vardef,nothingn,
convtype,hpd,cdoptions);
end
else if ([vo_is_self,vo_is_vmt]*currpara1.varoptions)<>
([vo_is_self,vo_is_vmt]*currpara2.varoptions) then
eq:=te_incompatible;
end
else
begin
case acp of
cp_value_equal_const :
begin
{ this one is used for matching parameters from a call
statement to a procdef -> univ state can't be equal
in any case since the call statement does not contain
any information about that }
if (
not(cpo_ignorevarspez in cpoptions) and
(currpara1.varspez<>currpara2.varspez) and
((currpara1.varspez in [vs_var,vs_out,vs_constref]) or
(currpara2.varspez in [vs_var,vs_out,vs_constref]))
) then
exit;
eq:=compare_defs_ext(currpara1.vardef,currpara2.vardef,nothingn,
convtype,hpd,cdoptions);
end;
cp_all :
begin
{ used to resolve forward definitions -> headers must
match exactly, including the "univ" specifier }
if (not(cpo_ignorevarspez in cpoptions) and
(currpara1.varspez<>currpara2.varspez)) or
(currpara1.univpara<>currpara2.univpara) then
exit;
eq:=compare_defs_ext(currpara1.vardef,currpara2.vardef,nothingn,
convtype,hpd,cdoptions);
end;
cp_procvar :
begin
if not(cpo_ignorevarspez in cpoptions) and
(currpara1.varspez<>currpara2.varspez) then
exit;
{ "univ" state doesn't matter here: from univ to non-univ
matches if the types are compatible (i.e., as usual),
from from non-univ to univ also matches if the types
have the same size (checked below) }
eq:=compare_defs_ext(currpara1.vardef,currpara2.vardef,nothingn,
convtype,hpd,cdoptions);
{ Parameters must be at least equal otherwise the are incompatible }
if (eq<te_equal) then
eq:=te_incompatible;
end;
else
eq:=compare_defs_ext(currpara1.vardef,currpara2.vardef,nothingn,
convtype,hpd,cdoptions);
end;
end;
{ check type }
if eq=te_incompatible then
begin
{ special case: "univ" parameters match if their size is equal }
if not(cpo_ignoreuniv in cpoptions) and
currpara2.univpara and
is_valid_univ_para_type(currpara1.vardef) and
(currpara1.vardef.size=currpara2.vardef.size) then
begin
{ only pick as last choice }
eq:=te_convert_l5;
if (acp=cp_procvar) and
(cpo_warn_incompatible_univ in cpoptions) then
begin
{ if the types may be passed in different ways by the
calling convention then this can lead to crashes
(note: not an exhaustive check, and failing this
this check does not mean things will crash on all
platforms) }
if potentially_incompatible_univ_paras(currpara1.vardef,currpara2.vardef) then
Message2(type_w_procvar_univ_conflicting_para,currpara1.vardef.typename,currpara2.vardef.typename)
end;
end
else if (cpo_generic in cpoptions) then
begin
if equal_genfunc_paradefs(currpara1.vardef,currpara2.vardef,currpara1.owner,currpara2.owner) then
eq:=te_exact
else
exit;
end
else
exit;
end;
if (eq=te_equal) and
(cpo_generic in cpoptions) then
begin
if is_open_array(currpara1.vardef) and
is_open_array(currpara2.vardef) then
begin
if equal_genfunc_paradefs(tarraydef(currpara1.vardef).elementdef,tarraydef(currpara2.vardef).elementdef,currpara1.owner,currpara2.owner) then
eq:=te_exact;
end
else
{ for the purpose of forward declarations two equal specializations
are considered as exactly equal }
if (df_specialization in tstoreddef(currpara1.vardef).defoptions) and
(df_specialization in tstoreddef(currpara2.vardef).defoptions) then
eq:=te_exact;
end;
{ open strings can never match exactly, since you cannot define }
{ a separate "open string" type -> we have to be able to }
{ consider those as exact when resolving forward definitions. }
{ The same goes for array of const. Open arrays are handled }
{ already (if their element types match exactly, they are }
{ considered to be an exact match) }
{ And also for "inline defined" function parameter definitions }
{ (i.e., function types directly declared in a parameter list) }
if (is_array_of_const(currpara1.vardef) or
is_open_string(currpara1.vardef) or
((currpara1.vardef.typ = procvardef) and
not(assigned(currpara1.vardef.typesym)))) and
(eq=te_equal) and
(cpo_openequalisexact in cpoptions) then
eq:=te_exact;
if eq<lowesteq then
lowesteq:=eq;
{ also check default value if both have it declared }
if (cpo_comparedefaultvalue in cpoptions) then
begin
if assigned(currpara1.defaultconstsym) and
assigned(currpara2.defaultconstsym) then
begin
if not equal_constsym(tconstsym(currpara1.defaultconstsym),tconstsym(currpara2.defaultconstsym),true) then
exit;
end
{ cannot have that the second (= implementation) has a default value declared and the
other (interface) doesn't }
else if not assigned(currpara1.defaultconstsym) and assigned(currpara2.defaultconstsym) then
exit;
end;
if not(cpo_compilerproc in cpoptions) and
not(cpo_rtlproc in cpoptions) and
is_ansistring(currpara1.vardef) and
is_ansistring(currpara2.vardef) and
(tstringdef(currpara1.vardef).encoding<>tstringdef(currpara2.vardef).encoding) and
((tstringdef(currpara1.vardef).encoding=globals.CP_NONE) or
(tstringdef(currpara2.vardef).encoding=globals.CP_NONE)
) then
eq:=te_convert_l1;
if eq<lowesteq then
lowesteq:=eq;
inc(i1);
inc(i2);
if cpo_ignorehidden in cpoptions then
begin
while (i1<para1.count) and
(vo_is_hidden_para in tparavarsym(para1[i1]).varoptions) do
inc(i1);
while (i2<para2.count) and
(vo_is_hidden_para in tparavarsym(para2[i2]).varoptions) do
inc(i2);
end;
if cpo_ignoreframepointer in cpoptions then
begin
if (i1<para1.count) and
(vo_is_parentfp in tparavarsym(para1[i1]).varoptions) then
inc(i1);
if (i2<para2.count) and
(vo_is_parentfp in tparavarsym(para2[i2]).varoptions) then
inc(i2);
end;
end;
{ when both lists are empty then the parameters are equal. Also
when one list is empty and the other has a parameter with default
value assigned then the parameters are also equal }
if ((i1>=para1.count) and (i2>=para2.count)) or
((cpo_allowdefaults in cpoptions) and
(((i1<para1.count) and assigned(tparavarsym(para1[i1]).defaultconstsym)) or
((i2<para2.count) and assigned(tparavarsym(para2[i2]).defaultconstsym)))) then
compare_paras:=lowesteq;
end;
function proc_to_procvar_equal(def1:tabstractprocdef;def2:tprocvardef;checkincompatibleuniv: boolean):tequaltype;
var
eq: tequaltype;
po_comp: tprocoptions;
pa_comp: tcompare_paras_options;
begin
proc_to_procvar_equal:=te_incompatible;
if not(assigned(def1)) or not(assigned(def2)) then
exit;
{ check for method pointer and local procedure pointer:
a) anything but procvars can be assigned to blocks
b) if one is a procedure of object, the other also has to be one
("object static procedure" is equal to procedure as well)
(except for block)
c) if one is a pure address, the other also has to be one
except if def1 is a global proc and def2 is a nested procdef
(global procedures can be converted into nested procvars)
d) if def1 is a nested procedure, then def2 has to be a nested
procvar and def1 has to have the po_delphi_nested_cc option
e) if def1 is a procvar, def1 and def2 both have to be nested or
non-nested (we don't allow assignments from non-nested to
nested procvars to make sure that we can still implement
nested procvars using trampolines -- e.g., this would be
necessary for LLVM or CIL as long as they do not have support
for Delphi-style frame pointer parameter passing) }
if is_block(def2) then { a) }
{ can't explicitly check against procvars here, because
def1 may already be a procvar due to a proc_to_procvar;
this is checked in the type conversion node itself -> ok }
else if
((def1.is_methodpointer and not (po_staticmethod in def1.procoptions))<> { b) }
(def2.is_methodpointer and not (po_staticmethod in def2.procoptions))) or
((def1.is_addressonly<>def2.is_addressonly) and { c) }
(is_nested_pd(def1) or
not is_nested_pd(def2))) or
((def1.typ=procdef) and { d) }
is_nested_pd(def1) and
(not(po_delphi_nested_cc in def1.procoptions) or
not is_nested_pd(def2))) or
((def1.typ=procvardef) and { e) }
(is_nested_pd(def1)<>is_nested_pd(def2))) then
exit;
pa_comp:=[cpo_ignoreframepointer];
if is_block(def2) then
include(pa_comp,cpo_ignorehidden);
if checkincompatibleuniv then
include(pa_comp,cpo_warn_incompatible_univ);
{ check return value and options, methodpointer is already checked }
po_comp:=[po_interrupt,po_iocheck,po_varargs,po_far];
{ check static only if we compare method pointers }
if def1.is_methodpointer and def2.is_methodpointer then
include(po_comp,po_staticmethod);
if (m_delphi in current_settings.modeswitches) then
exclude(po_comp,po_varargs);
{ for blocks, the calling convention doesn't matter because we have to
generate a wrapper anyway }
if ((po_is_block in def2.procoptions) or
(def1.proccalloption=def2.proccalloption)) and
((po_comp * def1.procoptions)= (po_comp * def2.procoptions)) and
equal_defs(def1.returndef,def2.returndef) then
begin
{ return equal type based on the parameters, but a proc->procvar
is never exact, so map an exact match of the parameters to
te_equal }
eq:=compare_paras(def1.paras,def2.paras,cp_procvar,pa_comp);
if eq=te_exact then
eq:=te_equal;
if (eq=te_equal) then
begin
{ prefer non-nested to non-nested over non-nested to nested }
if (is_nested_pd(def1)<>is_nested_pd(def2)) then
eq:=te_convert_l1;
{ in case of non-block to block, we need a type conversion }
if (po_is_block in def1.procoptions) <> (po_is_block in def2.procoptions) then
eq:=te_convert_l1;
end;
proc_to_procvar_equal:=eq;
end;
end;
function compatible_childmethod_resultdef(parentretdef, childretdef: tdef): boolean;
begin
compatible_childmethod_resultdef :=
(equal_defs(parentretdef,childretdef)) or
((parentretdef.typ=objectdef) and
(childretdef.typ=objectdef) and
is_class_or_interface_or_objc_or_java(parentretdef) and
is_class_or_interface_or_objc_or_java(childretdef) and
(def_is_related(tobjectdef(childretdef),tobjectdef(parentretdef))))
end;
function find_implemented_interface(impldef,intfdef:tobjectdef):timplementedinterface;
var
implintf : timplementedinterface;
i : longint;
begin
if not assigned(impldef) then
internalerror(2013102301);
if not assigned(intfdef) then
internalerror(2013102302);
result:=nil;
if not assigned(impldef.implementedinterfaces) then
exit;
for i:=0 to impldef.implementedinterfaces.count-1 do
begin
implintf:=timplementedinterface(impldef.implementedinterfaces[i]);
if equal_defs(implintf.intfdef,intfdef) then
begin
result:=implintf;
exit;
end;
end;
end;
function stringdef_is_related(curdef:tstringdef;otherdef:tdef):boolean;
begin
result:=
(target_info.system in systems_jvm) and
(((curdef.stringtype in [st_unicodestring,st_widestring]) and
((otherdef=java_jlobject) or
(otherdef=java_jlstring))) or
((curdef.stringtype=st_ansistring) and
((otherdef=java_jlobject) or
(otherdef=java_ansistring))));
end;
function recorddef_is_related(curdef:trecorddef;otherdef:tdef):boolean;
begin
{ records are implemented via classes in the JVM target, and are
all descendents of the java_fpcbaserecordtype class }
result:=false;
if (target_info.system in systems_jvm) then
begin
if otherdef.typ=objectdef then
begin
otherdef:=find_real_class_definition(tobjectdef(otherdef),false);
if (otherdef=java_jlobject) or
(otherdef=java_fpcbaserecordtype) then
result:=true
end;
end;
end;
{ true if prot implements d (or if they are equal) }
function is_related_interface_multiple(prot:tobjectdef;d:tdef):boolean;
var
i : longint;
begin
{ objcprotocols have multiple inheritance, all protocols from which
the current protocol inherits are stored in implementedinterfaces }
result:=prot=d;
if result then
exit;
for i:=0 to prot.implementedinterfaces.count-1 do
begin
result:=is_related_interface_multiple(timplementedinterface(prot.implementedinterfaces[i]).intfdef,d);
if result then
exit;
end;
end;
function objectdef_is_related(curdef:tobjectdef;otherdef:tdef):boolean;
var
realself,
hp : tobjectdef;
begin
if (otherdef.typ=objectdef) then
otherdef:=find_real_class_definition(tobjectdef(otherdef),false);
realself:=find_real_class_definition(curdef,false);
if realself=otherdef then
begin
result:=true;
exit;
end;
if (realself.objecttype in [odt_objcclass,odt_objcprotocol]) and
(otherdef=objc_idtype) then
begin
result:=true;
exit;
end;
if (otherdef.typ<>objectdef) then
begin
result:=false;
exit;
end;
{ Objective-C protocols and Java interfaces can use multiple
inheritance }
if (realself.objecttype in [odt_objcprotocol,odt_interfacejava]) then
begin
result:=is_related_interface_multiple(realself,otherdef);
exit;
end;
{ formally declared Objective-C and Java classes match Objective-C/Java
classes with the same name. In case of Java, the package must also
match (still required even though we looked up the real definitions
above, because these may be two different formal declarations that
cannot be resolved yet) }
if (realself.objecttype in [odt_objcclass,odt_javaclass]) and
(tobjectdef(otherdef).objecttype=curdef.objecttype) and
((oo_is_formal in curdef.objectoptions) or
(oo_is_formal in tobjectdef(otherdef).objectoptions)) and
(curdef.objrealname^=tobjectdef(otherdef).objrealname^) then
begin
{ check package name for Java }
if curdef.objecttype=odt_objcclass then
result:=true
else
begin
result:=
assigned(curdef.import_lib)=assigned(tobjectdef(otherdef).import_lib);
if result and
assigned(curdef.import_lib) then
result:=curdef.import_lib^=tobjectdef(otherdef).import_lib^;
end;
exit;
end;
hp:=realself.childof;
while assigned(hp) do
begin
if equal_defs(hp,otherdef) then
begin
result:=true;
exit;
end;
hp:=hp.childof;
end;
result:=false;
end;
function def_is_related(curdef,otherdef:tdef):boolean;
begin
if not assigned(curdef) then
internalerror(2013102303);
case curdef.typ of
stringdef:
result:=stringdef_is_related(tstringdef(curdef),otherdef);
recorddef:
result:=recorddef_is_related(trecorddef(curdef),otherdef);
objectdef:
result:=objectdef_is_related(tobjectdef(curdef),otherdef);
else
result:=false;
end;
end;
function equal_genfunc_paradefs(fwdef,currdef:tdef;fwpdst,currpdst:tsymtable): boolean;
begin
result:=false;
{ for open array parameters, typesym might not be assigned }
if assigned(fwdef.typesym) and (sp_generic_para in fwdef.typesym.symoptions) and
assigned(currdef.typesym) and (sp_generic_para in currdef.typesym.symoptions) and
(fwdef.owner=fwpdst) and
(currdef.owner=currpdst) then
begin
{ the forward declaration may have constraints }
if not (df_genconstraint in currdef.defoptions) and (currdef.typ=undefineddef) and
((fwdef.typ=undefineddef) or (df_genconstraint in fwdef.defoptions)) then
result:=true;
end
end;
end.
|