1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
|
/*
* coord.c - Coordinate representation and basic operations
*
* Written 2009, 2010 by Werner Almesberger
* Copyright 2009, 2010 by Werner Almesberger
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <math.h>
#include "util.h"
#include "coord.h"
/* ----- unit conversion --------------------------------------------------- */
double mm_to_mil(double mm, int exponent)
{
return mm*pow(MIL_IN_MM, -exponent);
}
double mil_to_mm(double mil, int exponent)
{
return mil*pow(MIL_IN_MM, exponent);
}
/* ----- convert internal units to best external unit ---------------------- */
double units_to_best(unit_type u, int *mm)
{
/*
* For finding the best choice, we work with deci-micrometers and
* micro-inches. The conversion to "dum" is actually a no-op, but that
* may change if we ever pick a different internal unit than 0.1 um.
*/
long dum = round(units_to_mm(u)*10000.0);
long uin = round(units_to_mil(u)*1000.0);
/* remove trailing zeroes */
while (dum && !(dum % 10))
dum /= 10;
while (uin && !(uin % 10))
uin /= 10;
/* ceil(log10(dum)) <= ceil(log10(uin)) ? */
while (dum && uin) {
dum /= 10;
uin /= 10;
}
if (!dum) {
*mm = 1;
return units_to_mm(u);
} else {
*mm = 0;
return units_to_mil(u);
}
}
/* ----- vector operations ------------------------------------------------- */
struct coord normalize(struct coord v, unit_type len)
{
double f;
f = len/hypot(v.x, v.y);
v.x *= f;
v.y *= f;
return v;
}
struct coord rotate(struct coord v, double angle)
{
double rad = M_PI*angle/180.0;
struct coord res;
res.x = v.x*cos(rad)-v.y*sin(rad);
res.y = v.y*cos(rad)+v.x*sin(rad);
return res;
}
struct coord add_vec(struct coord a, struct coord b)
{
a.x += b.x;
a.y += b.y;
return a;
}
struct coord sub_vec(struct coord a, struct coord b)
{
a.x -= b.x;
a.y -= b.y;
return a;
}
struct coord neg_vec(struct coord v)
{
v.x = -v.x;
v.y = -v.y;
return v;
}
/* ----- point on circle --------------------------------------------------- */
struct coord rotate_r(struct coord c, unit_type r, double angle)
{
struct coord p;
angle = angle/180.0*M_PI;
p.x = c.x+r*cos(angle);
p.y = c.y+r*sin(angle);
return p;
}
double theta_vec(struct coord v)
{
double a;
a = atan2(v.y, v.x)/M_PI*180.0;
if (a < 0)
a += 360.0;
return a;
}
double theta(struct coord c, struct coord p)
{
p.x -= c.x;
p.y -= c.y;
return theta_vec(p);
}
/* ----- sorting coordinates ----------------------------------------------- */
void sort_coord(struct coord *min, struct coord *max)
{
if (min->x > max->x)
SWAP(min->x, max->x);
if (min->y > max->y)
SWAP(min->y, max->y);
}
/* ----- distance calculations --------------------------------------------- */
unit_type dist_point(struct coord a, struct coord b)
{
return hypot(a.x-b.x, a.y-b.y);
}
static unit_type dist_line_xy(unit_type px, unit_type py,
unit_type ax, unit_type ay, unit_type bx, unit_type by)
{
unit_type d_min, d;
double a, f;
d_min = hypot(ax-px, ay-py);
d = hypot(bx-px, by-py);
if (d < d_min)
d_min = d;
if (ax != bx || ay != by) {
/*
* We make a the line vector from point B and b the vector from
* B to point P. Then we calculate the projection of b on a.
*/
ax -= bx;
ay -= by;
bx = px-bx;
by = py-by;
a = hypot(ax, ay);
f = ((double) ax*bx+(double) ay*by)/a/a;
if (f >= 0 && f <= 1) {
bx -= f*ax;
by -= f*ay;
d = hypot(bx, by);
if (d < d_min)
d_min = d;
}
}
return d_min;
}
unit_type dist_line(struct coord p, struct coord a, struct coord b)
{
return dist_line_xy(p.x, p.y, a.x, a.y, b.x, b.y);
}
unit_type dist_rect(struct coord p, struct coord a, struct coord b)
{
unit_type d_min, d;
d_min = dist_line_xy(p.x, p.y, a.x, a.y, b.x, a.y);
d = dist_line_xy(p.x, p.y, a.x, a.y, a.x, b.y);
if (d < d_min)
d_min = d;
d = dist_line_xy(p.x, p.y, a.x, b.y, b.x, b.y);
if (d < d_min)
d_min = d;
d = dist_line_xy(p.x, p.y, b.x, a.y, b.x, b.y);
if (d < d_min)
d_min = d;
return d_min;
}
int inside_rect(struct coord p, struct coord a, struct coord b)
{
sort_coord(&a, &b);
if (p.x < a.x || p.x > b.x)
return 0;
if (p.y < a.y || p.y > b.y)
return 0;
return 1;
}
unit_type dist_circle(struct coord p, struct coord c, unit_type r)
{
unit_type d;
d = hypot(p.x-c.x, p.y-c.y);
return fabs(d-r);
}
|