File: coord.c

package info (click to toggle)
fped 0.0%2Br5986-1
  • links: PTS
  • area: main
  • in suites: wheezy
  • size: 900 kB
  • sloc: ansic: 12,009; yacc: 1,088; sh: 688; lex: 197; makefile: 132
file content (250 lines) | stat: -rw-r--r-- 4,551 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
/*
 * coord.c - Coordinate representation and basic operations
 *
 * Written 2009, 2010 by Werner Almesberger
 * Copyright 2009, 2010 by Werner Almesberger
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */


#include <math.h>

#include "util.h"
#include "coord.h"


/* ----- unit conversion --------------------------------------------------- */


double mm_to_mil(double mm, int exponent)
{
	return mm*pow(MIL_IN_MM, -exponent);
}


double mil_to_mm(double mil, int exponent)
{
	return mil*pow(MIL_IN_MM, exponent);
}


/* ----- convert internal units to best external unit ---------------------- */


double units_to_best(unit_type u, int *mm)
{
	/*
	 * For finding the best choice, we work with deci-micrometers and
	 * micro-inches. The conversion to "dum" is actually a no-op, but that
	 * may change if we ever pick a different internal unit than 0.1 um.
	 */

	long dum = round(units_to_mm(u)*10000.0);
	long uin = round(units_to_mil(u)*1000.0);

	/* remove trailing zeroes */

	while (dum && !(dum % 10))
		dum /= 10;
	while (uin && !(uin % 10))
		uin /= 10;

	/* ceil(log10(dum)) <= ceil(log10(uin)) ? */

	while (dum && uin) {
		dum /= 10;
		uin /= 10;
	}
	if (!dum) {
		*mm = 1;
		return units_to_mm(u);
	} else {
		*mm = 0;
		return units_to_mil(u);
	}
}


/* ----- vector operations ------------------------------------------------- */


struct coord normalize(struct coord v, unit_type len)
{
	double f;

	f = len/hypot(v.x, v.y);
	v.x *= f;
	v.y *= f;
	return v;
}


struct coord rotate(struct coord v, double angle)
{
	double rad = M_PI*angle/180.0;
	struct coord res;

	res.x = v.x*cos(rad)-v.y*sin(rad);
	res.y = v.y*cos(rad)+v.x*sin(rad);
	return res;
}


struct coord add_vec(struct coord a, struct coord b)
{
	a.x += b.x;
	a.y += b.y;
	return a;
}


struct coord sub_vec(struct coord a, struct coord b)
{
	a.x -= b.x;
	a.y -= b.y;
	return a;
}


struct coord neg_vec(struct coord v)
{
	v.x = -v.x; 
	v.y = -v.y;
	return v;
}


/* ----- point on circle --------------------------------------------------- */


struct coord rotate_r(struct coord c, unit_type r, double angle)
{
	struct coord p;

	angle = angle/180.0*M_PI;
	p.x = c.x+r*cos(angle);
	p.y = c.y+r*sin(angle);
	return p;
}


double theta_vec(struct coord v)
{
	double a;

	a = atan2(v.y, v.x)/M_PI*180.0;
	if (a < 0)
		a += 360.0;
	return a;
}


double theta(struct coord c, struct coord p)
{
	p.x -= c.x;
	p.y -= c.y;
	return theta_vec(p);
}


/* ----- sorting coordinates ----------------------------------------------- */


void sort_coord(struct coord *min, struct coord *max)
{
	if (min->x > max->x)
		SWAP(min->x, max->x);
	if (min->y > max->y)
		SWAP(min->y, max->y);

}


/* ----- distance calculations --------------------------------------------- */


unit_type dist_point(struct coord a, struct coord b)
{
	return hypot(a.x-b.x, a.y-b.y);
}


static unit_type dist_line_xy(unit_type px, unit_type py,
    unit_type ax, unit_type ay, unit_type bx, unit_type by)
{
	unit_type d_min, d;
	double a, f;

	d_min = hypot(ax-px, ay-py);
	d = hypot(bx-px, by-py);
	if (d < d_min)
		d_min = d;
	if (ax != bx || ay != by) {
		/*
		 * We make a the line vector from point B and b the vector from
		 * B to point P. Then we calculate the projection of b on a.
		 */
		ax -= bx;
		ay -= by;
		bx = px-bx;
		by = py-by;
		a = hypot(ax, ay);
		f = ((double) ax*bx+(double) ay*by)/a/a;
		if (f >= 0 && f <= 1) {
			bx -= f*ax;
			by -= f*ay;
			d = hypot(bx, by);
			if (d < d_min)
				d_min = d;
		}
	}
	return d_min;
}


unit_type dist_line(struct coord p, struct coord a, struct coord b)
{
	return dist_line_xy(p.x, p.y, a.x, a.y, b.x, b.y);
}


unit_type dist_rect(struct coord p, struct coord a, struct coord b)
{
	unit_type d_min, d;

	d_min = dist_line_xy(p.x, p.y, a.x, a.y, b.x, a.y);
	d = dist_line_xy(p.x, p.y, a.x, a.y, a.x, b.y);
	if (d < d_min)
		d_min = d;
	d = dist_line_xy(p.x, p.y, a.x, b.y, b.x, b.y);
	if (d < d_min)
		d_min = d;
	d = dist_line_xy(p.x, p.y, b.x, a.y, b.x, b.y);
	if (d < d_min)
		d_min = d;
	return d_min;
}


int inside_rect(struct coord p, struct coord a, struct coord b)
{
	sort_coord(&a, &b);
	if (p.x < a.x || p.x > b.x)
		return 0;
	if (p.y < a.y || p.y > b.y)
		return 0;
	return 1;
}


unit_type dist_circle(struct coord p, struct coord c, unit_type r)
{
	unit_type d;

	d = hypot(p.x-c.x, p.y-c.y);
	return fabs(d-r);
}