1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
|
<!DOCTYPE html>
<html><head><meta charset="UTF-8">
<style>
.multitab {
margin-left: auto;
margin-right: auto;
border: 0px;
}
.multitab td {
padding-left: 10px;
padding-right: 10px;
vertical-align: top;
}
.ctab {
margin-left: auto;
margin-right: auto;
border: 1px solid gray;
}
.cstab {
border: 1px solid gray;
}
.ctab td, .ctab th, .cstab th, .cstab td {
padding: 3px;
border: 1px solid gray;
}
.ctab td, .cstab td {
font-family:monospace;
}
</style>
<title>Project IceStorm – UltraPlus Features Documentation</title>
</head><body>
<h1>Project IceStorm – UltraPlus Features Documentation</h1>
<p>
<i><a href=".">Project IceStorm</a> aims at documenting the bitstream format of Lattice iCE40
FPGAs and providing simple tools for analyzing and creating bitstream files.
This is work in progress.</i>
</p>
<p>The ice40 UltraPlus devices have a number of new features compared to the older LP/HX series
devices, in particular:
<ul>
<li>Internal DSP units, capable of 16-bit multiply and 32-bit accumulate.</li>
<li>1Mbit of extra single-ported RAM, in addition to the usual BRAM</li>
<li>Internal hard IP cores for I2C and SPI</li>
<li>2 internal oscillators, 48MHz (with divider) and 10kHz</li>
<li>24mA constant current LED ouputs and PWM hard IP</li>
</ul>
In order to implement these new features, a significant architecural change has been made: the
left and right sides of the device are no longer IO, but instead DSP and IPConnect tiles.
</p>
<p>Currently icestorm and arachne-pnr support the DSPs (except for cascading), SPRAM , internal oscillators and constant current
LED drivers. Work to support the remaining features is underway.</p>
<h2>DSP Tiles</h2>
<p>Each MAC16 DSP comprises of 4 DSP tiles, all of which perform part of the DSP function and have
different routing bit configurations. Structually they are similar to logic tiles, but with the DSP
function wired into where the LUTs and DFFs would be. The four types of DSP tiles will be referred to
as DSP0 through DSP3, with DSP0 at the lowest y-position. One signal CO, is also routed through the
IPConnect tile above the DSP tile, referred to as IPCON4 in this context.
The location of signals and configuration bits is documented below.</p>
<p>
<strong>Signal Assignments</strong><br/>
<table class="ctab">
<tr><th>SB_MAC16 port</th><th>DSP0</th><th>DSP1</th><th>DSP2</th><th>DSP3</th><th>IPCON4</th></tr>
<tr><td>CLK</td><td>-</td><td>-</td><td>lutff_global/clk</td><td>-</td><td>-</td></tr>
<tr><td>CE</td><td>-</td><td>-</td><td>lutff_global/cen</td><td>-</td><td>-</td></tr>
<tr><td>C[7:0]</td><td>-</td><td>-</td><td>-</td><td>lutff_[7:0]/in_3</td><td>-</td></tr>
<tr><td>C[15:8]</td><td>-</td><td>-</td><td>-</td><td>lutff_[7:0]/in_1</td><td>-</td></tr>
<tr><td>A[7:0]</td><td>-</td><td>-</td><td>lutff_[7:0]/in_3</td><td>-</td><td>-</td></tr>
<tr><td>A[15:8]</td><td>-</td><td>-</td><td>lutff_[7:0]/in_1</td><td>-</td><td>-</td></tr>
<tr><td>B[7:0]</td><td>-</td><td>lutff_[7:0]/in_3</td><td>-</td><td>-</td><td>-</td></tr>
<tr><td>B[15:8]</td><td>-</td><td>lutff_[7:0]/in_1</td><td>-</td><td>-</td><td>-</td></tr>
<tr><td>D[7:0]</td><td>lutff_[7:0]/in_3</td><td>-</td><td>-</td><td>-</td><td>-</td></tr>
<tr><td>D[15:8]</td><td>lutff_[7:0]/in_1</td><td>-</td><td>-</td><td>-</td><td>-</td></tr>
<tr><td>IRSTTOP</td><td>-</td><td>lutff_global/s_r</td><td>-</td><td>-</td><td>-</td></tr>
<tr><td>IRSTBOT</td><td>lutff_global/s_r</td><td>-</td><td>-</td><td>-</td><td>-</td></tr>
<tr><td>ORSTTOP</td><td>-</td><td>-</td><td>-</td><td>lutff_global/s_r</td><td>-</td></tr>
<tr><td>ORSTBOT</td><td>-</td><td>-</td><td>lutff_global/s_r</td><td>-</td><td>-</td></tr>
<tr><td>AHOLD</td><td>-</td><td>-</td><td>lutff_0/in_0</td><td>-</td><td>-</td></tr>
<tr><td>BHOLD</td><td>-</td><td>lutff_0/in_0</td><td>-</td><td>-</td><td>-</td></tr>
<tr><td>CHOLD</td><td>-</td><td>-</td><td>-</td><td>lutff_0/in_0</td><td>-</td></tr>
<tr><td>DHOLD</td><td>lutff_0/in_0</td><td>-</td><td>-</td><td>-</td><td>-</td></tr>
<tr><td>OHOLDTOP</td><td>-</td><td>-</td><td>-</td><td>lutff_1/in_0</td><td>-</td></tr>
<tr><td>OHOLDBOT</td><td>lutff_1/in_0</td><td>-</td><td>-</td><td>-</td><td>-</td></tr>
<tr><td>ADDSUBTOP</td><td>-</td><td>-</td><td>-</td><td>lutff_3/in_0</td><td>-</td></tr>
<tr><td>ADDSUBBOT</td><td>lutff_3/in_0</td><td>-</td><td>-</td><td>-</td><td>-</td></tr>
<tr><td>OLOADTOP</td><td>-</td><td>-</td><td>-</td><td>lutff_2/in_0</td><td>-</td></tr>
<tr><td>OLOADBOT</td><td>lutff_2/in_0</td><td>-</td><td>-</td><td>-</td><td>-</td></tr>
<tr><td>CI</td><td>lutff_4/in_0</td><td>-</td><td>-</td><td>-</td><td>-</td></tr>
<tr><td>O[31:0]</td><td>mult/O_[7:0]</td><td>mult/O_[15:8]</td><td>mult/O_[23:16]</td><td>mult/O_[31:24]</td><td>-</td></tr>
<tr><td>CO</td><td>-</td><td>-</td><td>-</td><td>-</td><td>slf_op_0</td></tr>
</table>
</p>
<p>
<strong>Configuration Bits</strong><br/>
<p>The DSP configuration bits mostly follow the order stated in the ICE Technology Library document, where they are described as <span style="font-family:monospace">CBIT[24:0]</span>. For most DSP tiles,
these follow a logical order where <span style="font-family:monospace">CBIT[7:0]</span> maps to DSP0 <span style="font-family:monospace">CBIT[7:0]</span>; <span style="font-family:monospace">CBIT[15:8]</span>
to DSP1 <span style="font-family:monospace">CBIT[7:0]</span>, <span style="font-family:monospace">CBIT[23:16]</span> to DSP2 <span style="font-family:monospace">CBIT[7:0]</span>
and <span style="font-family:monospace">CBIT[24]</span> to DSP3 <span style="font-family:monospace">CBIT0</span>.
</p>
<p>However, there is one location where configuration bits are swapped between DSP tiles and IPConnect tiles. In DSP1 (0, 16) <span style="font-family:monospace">CBIT[4:1]</span> are used
for IP such as the internal oscillator, and the DSP configuration bits are then located in IPConnect tile (0, 19) <span style="font-family:monospace">CBIT[6:3]</span>.</p>
<p>The full list of configuration bits, including the changes for the DSP at (0, 15) are described in the table below.</p>
<table class="ctab">
<tr><th>Parameter</th><th>Normal Position</th><th>DSP (0, 15)<br/>Changes</th></tr>
<tr><td>C_REG</td><td>DSP0.CBIT_0</td><td></td></tr>
<tr><td>A_REG</td><td>DSP0.CBIT_1</td><td></td></tr>
<tr><td>B_REG</td><td>DSP0.CBIT_2</td><td></td></tr>
<tr><td>D_REG</td><td>DSP0.CBIT_3</td><td></td></tr>
<tr><td>TOP_8x8_MULT_REG</td><td>DSP0.CBIT_4</td><td></td></tr>
<tr><td>BOT_8x8_MULT_REG</td><td>DSP0.CBIT_5</td><td></td></tr>
<tr><td>PIPELINE_16x16_MULT_REG1</td><td>DSP0.CBIT_6</td><td></td></tr>
<tr><td>PIPELINE_16x16_MULT_REG2</td><td>DSP0.CBIT_7</td><td></td></tr>
<tr><td>TOPOUTPUT_SELECT[0]</td><td>DSP1.CBIT_0</td><td></td></tr>
<tr><td>TOPOUTPUT_SELECT[1]</td><td>DSP1.CBIT_1</td><td>(0, 19).CBIT_3</td></tr>
<tr><td>TOPADDSUB_LOWERINPUT[1:0]</td><td>DSP1.CBIT_[3:2]</td><td>(0, 19).CBIT_[5:4]</td></tr>
<tr><td>TOPADDSUB_UPPERINUT</td><td>DSP1.CBIT_4</td><td>(0, 19).CBIT_6</td></tr>
<tr><td>TOPADDSUB_CARRYSELECT[1:0]</td><td>DSP1.CBIT_[6:5]</td><td></td></tr>
<tr><td>BOTOUTPUT_SELECT[0]</td><td>DSP1.CBIT_7</td><td></td></tr>
<tr><td>BOTOUTPUT_SELECT[1]</td><td>DSP2.CBIT_0</td><td></td></tr>
<tr><td>BOTADDSUB_LOWERINPUT[1:0]</td><td>DSP2.CBIT_[2:1]</td><td></td></tr>
<tr><td>BOTADDSUB_UPPERINPUT</td><td>DSP2.CBIT_3</td><td></td></tr>
<tr><td>BOTADDSUB_CARRYSELECT[1:0]</td><td>DSP2.CBIT_[5:4]</td><td></td></tr>
<tr><td>MODE_8x8</td><td>DSP2.CBIT_6</td><td></td></tr>
<tr><td>A_SIGNED</td><td>DSP2.CBIT_7</td><td></td></tr>
<tr><td>B_SIGNED</td><td>DSP3.CBIT_0</td><td></td></tr>
</table>
<p>Lattice document a limited number of supported configurations in the ICE Technology Library document, and Lattice's EDIF parser will
reject designs not following a supported configuration. It is not yet known whether unsupported configurations (such as mixed
signed and unsigned) function correctly or not.
<p>
<strong>Other Implementation Notes</strong><br/>
<p>
All active DSP tiles, and all IPConnect tiles whether used or not, have some bits set which reflect their logic tile heritage. The <span style="font-family:monospace">LC_<em>x</em></span>
bits which would be used to configure the logic cell, are set to the below pattern for each "logic cell" (interpreting them like a logic tile):<br/>
<br><span style="font-family:monospace">0000111100001111 0000</span><br/><br/>
Coincidentally or not, this corresponds to a buffer passing through input 2 to the output. For each "cell" the cascade bit <span style="font-family:monospace">LC0<em>x</em>_inmux02_5</span> is
also set, effectively creating one large chain, as this connects input 2 to the output of the previous LUT. The DSPs at least will not function unless these bits are set correctly, so they <!DOCTYPE html>
have some purpose and presumably indicate that the remains of a LUT are still present. There does not seem to be any case under which iCEcube generates a pattern other than this though.
</p>
</p>
<h2>IPConnect Tiles</h2>
<p>IPConnect tiles are used for connections to all of the other UltraPlus features, such as I2C/SPI, SPRAM, RGB and oscillators. Like DSP tiles,
they are structually similar to logic tiles. The outputs of IP functions are connected to nets named <span style="font-family:monospace">slf_op_0</span> through <span style="font-family:monospace">slf_op_7</span>,
and the inputs use the LUT/FF inputs in the same way as DSP tiles.</p>
<h2>Internal Oscillators</h2>
Both of the internal oscillators are connected through IPConnect tiles, with their outputs optionally connected to the global networks,
by setting the "padin" extra bit (the used global networks 4 and 5 don't have physical pins on UltraPlus devices).
<h3>SB_HFOSC</h3>
<p>The <span style="font-family:monospace">CLKHFPU</span> input connects through IPConnect tile (0, 29) input <span style="font-family:monospace">lutff_0/in_1</span>;
and the <span style="font-family:monospace">CLKHFEN</span> input connects through input <span style="font-family:monospace">lutff_7/in_3</span> of the same tile.<br/>
The <span style="font-family:monospace">CLKHF</span> output of SB_HFOSC is connected to both IPConnect tile (0, 28) output <span style="font-family:monospace">slf_op_7</span> and to the <span style="font-family:monospace">padin</span>
of <span style="font-family:monospace">glb_netwk_4</span>.</p>
<p>Configuration bit <span style="font-family:monospace">CLKHF_DIV[1]</span> maps to DSP1 tile (0, 16) config bit <span style="font-family:monospace">CBIT_4</span>, and
<span style="font-family:monospace">CLKHF_DIV[0]</span> maps to DSP1 tile (0, 16) config bit <span style="font-family:monospace">CBIT_3</span>.</p>
<p>There is also an undocumented trimming function of the HFOSC, using the ports <span style="font-family:monospace">TRIM0</span> through <span style="font-family:monospace">TRIM9</span>. This can only be accessed directly in iCECUBE if you modify the standard cell library. However
if you set the attribute <span style="font-family:monospace">VPP_2V5_TO_1P8V</span> (which itself is not that well documented either) to 1 on the top level module, then the configuration bit
<span style="font-family:monospace">CBIT_5</span> of (0, 16) is set; and <span style="font-family:monospace">TRIM8</span> and <span style="font-family:monospace">TRIM4</span> are connected to
the same net as <span style="font-family:monospace">CLKHFPU</span>.</p>
<p><span style="font-family:monospace">TRIM[3:0]</span> connect to <span style="font-family:monospace">(25, 28, lutff_[7:4]/in_0)</span> and <span style="font-family:monospace">TRIM[9:4]</span>
connect to <span style="font-family:monospace">(25, 29, lutff_[5:0]/in_3)</span>. <span style="font-family:monospace">CBIT_5</span> of (0, 16) must be set to enable trimming. The trim range
on the device used for testing was from 30.1 to 75.9 MHz. TRIM9 seemed to have no effect, the other inputs could broadly be considered to form a binary word, however it appeared neither linear
nor even monotonic.</p>
<h3>SB_LFOSC</h3>
<p>The <span style="font-family:monospace">CLKLFPU</span> input connects through IPConnect tile (25, 29) input <span style="font-family:monospace">lutff_0/in_1</span>;
and the <span style="font-family:monospace">CLKLFEN</span> input connects through input <span style="font-family:monospace">lutff_7/in_3</span> of the same tile.<br/>
The <span style="font-family:monospace">CLKLF</span> output of SB_LFOSC is connected to both IPConnect tile (25, 29) output <span style="font-family:monospace">slf_op_0</span> and to the <span style="font-family:monospace">padin</span>
of <span style="font-family:monospace">glb_netwk_5</span>.</p>
<p>SB_LFOSC has no configuration bits.</p>
<h2>SPRAM</h2>
<p>The UltraPlus devices have 1Mbit of extra single-ported RAM, split into 4 256kbit blocks. The full list of connections for each SPRAM block in the 5k device is shown below,
as well as the location of the 1 configuration bit which is set to enable use of that SPRAM block.</p>
<table class="ctab">
<tr><th>Signal</th><th>SPRAM (0, 0, 1)</th><th>SPRAM (0, 0, 2)</th><th>SPRAM (25, 0, 3)</th><th>SPRAM (25, 0, 4)</th></tr>
<tr><td>ADDRESS[1:0]</td><td>(0, 2, lutff_[1:0]/in_1)</td><td>(0, 2, lutff_[7:6]/in_0)</td><td>(25, 2, lutff_[1:0]/in_1)</td><td>(25, 2, lutff_[7:6]/in_0)</td></tr>
<tr><td>ADDRESS[7:2]</td><td>(0, 2, lutff_[7:2]/in_1)</td><td>(0, 3, lutff_[5:0]/in_3)</td><td>(25, 2, lutff_[7:2]/in_1)</td><td>(25, 3, lutff_[5:0]/in_3)</td></tr>
<tr><td>ADDRESS[9:8]</td><td>(0, 2, lutff_[1:0]/in_0)</td><td>(0, 3, lutff_[7:6]/in_3)</td><td>(25, 2, lutff_[1:0]/in_0)</td><td>(25, 3, lutff_[7:6]/in_3)</td></tr>
<tr><td>ADDRESS[13:10]</td><td>(0, 2, lutff_[5:2]/in_0)</td><td>(0, 3, lutff_[3:0]/in_1)</td><td>(25, 2, lutff_[5:2]/in_0)</td><td>(25, 3, lutff_[3:0]/in_1)</td></tr>
<tr><td>DATAIN[7:0]</td><td>(0, 1, lutff_[7:0]/in_3)</td><td>(0, 1, lutff_[7:0]/in_0)</td><td>(25, 1, lutff_[7:0]/in_3)</td><td>(25, 1, lutff_[7:0]/in_0)</td></tr>
<tr><td>DATAIN[15:8]</td><td>(0, 1, lutff_[7:0]/in_1)</td><td>(0, 2, lutff_[7:0]/in_3)</td><td>(25, 1, lutff_[7:0]/in_1)</td><td>(25, 2, lutff_[7:0]/in_3)</td></tr>
<tr><td>MASKWREN[3:0]</td><td>(0, 3, lutff_[3:0]/in_0)</td><td>(0, 3, lutff_[7:4]/in_0)</td><td>(25, 3, lutff_[3:0]/in_0)</td><td>(25, 3, lutff_[7:4]/in_0)</td></tr>
<tr><td>WREN</td><td>(0, 3, lutff_4/in_1)</td><td>(0, 3, lutff_5/in_1)</td><td>(25, 3, lutff_4/in_1)</td><td>(25, 3, lutff_5/in_1)</td></tr>
<tr><td>CHIPSELECT</td><td>(0, 3, lutff_6/in_1)</td><td>(0, 3, lutff_7/in_1)</td><td>(25, 3, lutff_6/in_1)</td><td>(25, 3, lutff_7/in_1)</td></tr>
<tr><td>CLOCK</td><td>(0, 1, clk)</td><td>(0, 2, clk)</td><td>(25, 1, clk)</td><td>(25, 2, clk)</td></tr>
<tr><td>STANDBY</td><td>(0, 4, lutff_0/in_3)</td><td>(0, 4, lutff_1/in_3)</td><td>(25, 4, lutff_0/in_3)</td><td>(25, 4, lutff_1/in_3)</td></tr>
<tr><td>SLEEP</td><td>(0, 4, lutff_2/in_3)</td><td>(0, 4, lutff_3/in_3)</td><td>(25, 4, lutff_2/in_3)</td><td>(25, 4, lutff_3/in_3)</td></tr>
<tr><td>POWEROFF</td><td>(0, 4, lutff_4/in_3)</td><td>(0, 4, lutff_5/in_3)</td><td>(25, 4, lutff_4/in_3)</td><td>(25, 4, lutff_5/in_3)</td></tr>
<tr><td>DATAOUT[7:0]</td><td>(0, 1, slf_op_[7:0])</td><td>(0, 3, slf_op_[7:0])</td><td>(25, 1, slf_op_[7:0])</td><td>(25, 3, slf_op_[7:0])</td></tr>
<tr><td>DATAOUT[15:8]</td><td>(0, 2, slf_op_[7:0])</td><td>(0, 4, slf_op_[7:0])</td><td>(25, 2, slf_op_[7:0])</td><td>(25, 4, slf_op_[7:0])</td></tr>
<tr><td><em>SPRAM_ENABLE</em></td><td><em>(0, 1, CBIT_0)</em></td><td><em>(0, 1, CBIT_1)</em></td><td><em>(25, 1, CBIT_0)</em></td><td><em>(25, 1, CBIT_1)</em></td></tr>
</table>
<h2>RGB LED Driver</h2>
<p>The UltraPlus devices contain an internal 3-channel 2-24mA constant-current driver intended for RGB led driving (<span style="font-family:monospace">SB_RGBA_DRV</span>). It is broken out onto 3 pins: 39, 40 and 41 on the QFN48 package.
The LED driver is implemented using the IPConnect tiles and is entirely seperate to the IO cells, if the LED driver is ignored or disabled on a pin then the pin
can be used as an open-drain IO using the standard IO cell.</p>
<p>Note that the UltraPlus devices also have a seperate PWM generator IP core, which would often be connected to this one to create LED effects such as "breathing" without
involving FPGA resources.</p>
<p>The LED driver connections are shown in the label below.</p>
<table class="ctab">
<tr><th>Signal</th><th>Net</th></tr>
<tr><td>CURREN</td><td>(25, 29, lutff_6/in_3)</td></tr>
<tr><td>RGBLEDEN</td><td>(0, 30, lutff_1/in_1)</td></tr>
<tr><td>RGB0PWM</td><td>(0, 30, lutff_2/in_1)</td></tr>
<tr><td>RGB1PWM</td><td>(0, 30, lutff_3/in_1)</td></tr>
<tr><td>RGB2PWM</td><td>(0, 30, lutff_4/in_1)</td></tr>
</table>
<p>The configuration bits are as follows. As well as the documented bits, another bit <span style="font-family:monospace">RGBA_DRV_EN</span> is set if any of the channels are enabled.</p>
<table class="ctab">
<tr><th>Parameter</th><th>Bit</th></tr>
<tr><td>RGBA_DRV_EN</td><td>(0, 28, CBIT_5)</td></tr>
<tr><td>RGB0_CURRENT[1:0]</td><td>(0, 28, CBIT_[7:6])</td></tr>
<tr><td>RGB0_CURRENT[5:2]</td><td>(0, 29, CBIT_[3:0])</td></tr>
<tr><td>RGB1_CURRENT[3:0]</td><td>(0, 29, CBIT_[7:4])</td></tr>
<tr><td>RGB1_CURRENT[5:4]</td><td>(0, 30, CBIT_[1:0])</td></tr>
<tr><td>RGB2_CURRENT[5:0]</td><td>(0, 30, CBIT_[7:2])</td></tr>
<tr><td>CURRENT_MODE</td><td>(0, 28, CBIT_4)</td></tr>
</table>
<h2>IO Changes</h2>
<p>The IO tiles contain a few new bits compared to earlier ice40 devices.
The bits <span style="font-family:monospace">padeb_test_0</span> and
<span style="font-family:monospace">padeb_test_1</span> are set for all pins,
even unused ones, unless set as an output.</p>
<p>There are also some new bits used to control the pullup strength:</p>
<table class="ctab">
<tr><th>Strength</th><th>Cell 0</th><th>Cell 1</th></tr>
<tr><td>3.3kΩ</td><td>cf_bit_32<br/>B7[10]</td><td>cf_bit_36<br/>B13[10]</td></tr>
<tr><td>6.8kΩ</td><td>cf_bit_33<br/>B6[10]</td><td>cf_bit_37<br/>B12[10]</td></tr>
<tr><td>10kΩ</td><td>cf_bit_34<br/>B7[15]</td><td>cf_bit_38<br/>B13[15]</td></tr>
<tr><td>100kΩ<br/>(default)</td><td>!cf_bit_35<br/>!B6[15]</td><td>!cf_bit_39<br/>!B12[15]</td></tr>
</table>
<h3>I<sup>3</sup>C capable IO</h3>
<p>The UltraPlus devices have two IO pins designed for the new MIPI I<sup>3</sup>C standard (pins 23 and 25 in the SG48 package),
compared to normal IO pins they have two switchable pullups each. One of these pullups, the weak pullup, is fixed at 100k and the
other can be set to 3.3k, 6.8k or 10k using the mechanism above. The pullup control signals do not
connect directly to the IO tile, but instead connect through an IPConnect tile.</p>
<p>The connections are listed below:</p>
<table class="ctab">
<tr><th>Signal</th><th>Pin 23<br/>(19, 31, 0)</th><th>Pin 25<br/>(19, 31, 1)</th></tr>
<tr><td>PU_ENB</td><td>(25, 27, lutff_6/in_0)</td><td>(25, 27, lutff_7/in_0)</td></tr>
<tr><td>WEAK_PU_ENB</td><td>(25, 27, lutff_4/in_0)</td><td>(25, 27, lutff_5/in_0)</td></tr>
</table>
<h2>Hard IP</h2>
<p>The UltraPlus devices contain three types of Hard IP: I<sup>2</sup>C (<span style="font-family:monospace">SB_I2C</span>), SPI (<span style="font-family:monospace">SB_SPI</span>), and LED PWM generation
(<span style="font-family:monospace">SB_LEDDA_IP</span>). The connections and configurations for each of these blocks are documented below. Names in italics are parameters rather than actual bits,
where multiple bits are used to enable an IP they are labeled as <span style="font-family:monospace"><em>_ENABLE_0</em></span>, <span style="font-family:monospace"><em>_ENABLE_1</em></span>, etc. </p>
<table class="multitab"><tr><td>
<table class="cstab">
<tr><th>Signal</th><th>I2C<br/>(0, 31, 0)</th><th>I2C<br/>(25, 31, 0)</th></tr>
<tr><td>SBACKO</td><td>(0, 30, slf_op_6)</td><td>(25, 30, slf_op_6)</td></tr>
<tr><td>SBADRI0</td><td>(0, 30, lutff_1/in_0)</td><td>(25, 30, lutff_1/in_0)</td></tr>
<tr><td>SBADRI1</td><td>(0, 30, lutff_2/in_0)</td><td>(25, 30, lutff_2/in_0)</td></tr>
<tr><td>SBADRI2</td><td>(0, 30, lutff_3/in_0)</td><td>(25, 30, lutff_3/in_0)</td></tr>
<tr><td>SBADRI3</td><td>(0, 30, lutff_4/in_0)</td><td>(25, 30, lutff_4/in_0)</td></tr>
<tr><td>SBADRI4</td><td>(0, 30, lutff_5/in_0)</td><td>(25, 30, lutff_5/in_0)</td></tr>
<tr><td>SBADRI5</td><td>(0, 30, lutff_6/in_0)</td><td>(25, 30, lutff_6/in_0)</td></tr>
<tr><td>SBADRI6</td><td>(0, 30, lutff_7/in_0)</td><td>(25, 30, lutff_7/in_0)</td></tr>
<tr><td>SBADRI7</td><td>(0, 29, lutff_2/in_0)</td><td>(25, 29, lutff_2/in_0)</td></tr>
<tr><td>SBCLKI</td><td>(0, 30, clk)</td><td>(25, 30, clk)</td></tr>
<tr><td>SBDATI0</td><td>(0, 29, lutff_5/in_0)</td><td>(25, 29, lutff_5/in_0)</td></tr>
<tr><td>SBDATI1</td><td>(0, 29, lutff_6/in_0)</td><td>(25, 29, lutff_6/in_0)</td></tr>
<tr><td>SBDATI2</td><td>(0, 29, lutff_7/in_0)</td><td>(25, 29, lutff_7/in_0)</td></tr>
<tr><td>SBDATI3</td><td>(0, 30, lutff_0/in_3)</td><td>(25, 30, lutff_0/in_3)</td></tr>
<tr><td>SBDATI4</td><td>(0, 30, lutff_5/in_1)</td><td>(25, 30, lutff_5/in_1)</td></tr>
<tr><td>SBDATI5</td><td>(0, 30, lutff_6/in_1)</td><td>(25, 30, lutff_6/in_1)</td></tr>
<tr><td>SBDATI6</td><td>(0, 30, lutff_7/in_1)</td><td>(25, 30, lutff_7/in_1)</td></tr>
<tr><td>SBDATI7</td><td>(0, 30, lutff_0/in_0)</td><td>(25, 30, lutff_0/in_0)</td></tr>
<tr><td>SBDATO0</td><td>(0, 29, slf_op_6)</td><td>(25, 29, slf_op_6)</td></tr>
<tr><td>SBDATO1</td><td>(0, 29, slf_op_7)</td><td>(25, 29, slf_op_7)</td></tr>
<tr><td>SBDATO2</td><td>(0, 30, slf_op_0)</td><td>(25, 30, slf_op_0)</td></tr>
<tr><td>SBDATO3</td><td>(0, 30, slf_op_1)</td><td>(25, 30, slf_op_1)</td></tr>
<tr><td>SBDATO4</td><td>(0, 30, slf_op_2)</td><td>(25, 30, slf_op_2)</td></tr>
<tr><td>SBDATO5</td><td>(0, 30, slf_op_3)</td><td>(25, 30, slf_op_3)</td></tr>
<tr><td>SBDATO6</td><td>(0, 30, slf_op_4)</td><td>(25, 30, slf_op_4)</td></tr>
<tr><td>SBDATO7</td><td>(0, 30, slf_op_5)</td><td>(25, 30, slf_op_5)</td></tr>
<tr><td>SBRWI</td><td>(0, 29, lutff_4/in_0)</td><td>(25, 29, lutff_4/in_0)</td></tr>
<tr><td>SBSTBI</td><td>(0, 29, lutff_3/in_0)</td><td>(25, 29, lutff_3/in_0)</td></tr>
<tr><td>I2CIRQ</td><td>(0, 30, slf_op_7)</td><td>(25, 30, slf_op_7)</td></tr>
<tr><td>I2CWKUP</td><td>(0, 29, slf_op_5)</td><td>(25, 29, slf_op_5)</td></tr>
<tr><td>SCLI</td><td>(0, 29, lutff_2/in_1)</td><td>(25, 29, lutff_2/in_1)</td></tr>
<tr><td>SCLO</td><td>(0, 29, slf_op_3)</td><td>(25, 29, slf_op_3)</td></tr>
<tr><td>SCLOE</td><td>(0, 29, slf_op_4)</td><td>(25, 29, slf_op_4)</td></tr>
<tr><td>SDAI</td><td>(0, 29, lutff_1/in_1)</td><td>(25, 29, lutff_1/in_1)</td></tr>
<tr><td>SDAO</td><td>(0, 29, slf_op_1)</td><td>(25, 29, slf_op_1)</td></tr>
<tr><td>SDAOE</td><td>(0, 29, slf_op_2)</td><td>(25, 29, slf_op_2)</td></tr>
<tr><td><em>I2C_ENABLE_0</em></td><td><em>(13, 31, cbit2usealt_in_0)</em></td><td><em>(19, 31, cbit2usealt_in_0)</em></td></tr>
<tr><td><em>I2C_ENABLE_1</em></td><td><em>(12, 31, cbit2usealt_in_1)</em></td><td><em>(19, 31, cbit2usealt_in_1)</em></td></tr>
<tr><td><em>SDA_INPUT_DELAYED</em></td><td><em>(12, 31, SDA_input_delay)</em></td><td><em>(19, 31, SDA_input_delay)</em></td></tr>
<tr><td><em>SDA_OUTPUT_DELAYED</em></td><td><em>(12, 31, SDA_output_delay)</em></td><td><em>(19, 31, SDA_output_delay)</em></td></tr>
</table>
</td><td>
<table class="cstab">
<tr><th>Signal</th><th>SPI<br/>(0, 0, 0)</th><th>SPI<br/>(25, 0, 1)</th></tr>
<tr><td>SBACKO</td><td>(0, 20, slf_op_1)</td><td>(25, 20, slf_op_1)</td></tr>
<tr><td>SBADRI0</td><td>(0, 19, lutff_1/in_1)</td><td>(25, 19, lutff_1/in_1)</td></tr>
<tr><td>SBADRI1</td><td>(0, 19, lutff_2/in_1)</td><td>(25, 19, lutff_2/in_1)</td></tr>
<tr><td>SBADRI2</td><td>(0, 20, lutff_0/in_3)</td><td>(25, 20, lutff_0/in_3)</td></tr>
<tr><td>SBADRI3</td><td>(0, 20, lutff_1/in_3)</td><td>(25, 20, lutff_1/in_3)</td></tr>
<tr><td>SBADRI4</td><td>(0, 20, lutff_2/in_3)</td><td>(25, 20, lutff_2/in_3)</td></tr>
<tr><td>SBADRI5</td><td>(0, 20, lutff_3/in_3)</td><td>(25, 20, lutff_3/in_3)</td></tr>
<tr><td>SBADRI6</td><td>(0, 20, lutff_4/in_3)</td><td>(25, 20, lutff_4/in_3)</td></tr>
<tr><td>SBADRI7</td><td>(0, 20, lutff_5/in_3)</td><td>(25, 20, lutff_5/in_3)</td></tr>
<tr><td>SBCLKI</td><td>(0, 20, clk)</td><td>(25, 20, clk)</td></tr>
<tr><td>SBDATI0</td><td>(0, 19, lutff_1/in_3)</td><td>(25, 19, lutff_1/in_3)</td></tr>
<tr><td>SBDATI1</td><td>(0, 19, lutff_2/in_3)</td><td>(25, 19, lutff_2/in_3)</td></tr>
<tr><td>SBDATI2</td><td>(0, 19, lutff_3/in_3)</td><td>(25, 19, lutff_3/in_3)</td></tr>
<tr><td>SBDATI3</td><td>(0, 19, lutff_4/in_3)</td><td>(25, 19, lutff_4/in_3)</td></tr>
<tr><td>SBDATI4</td><td>(0, 19, lutff_5/in_3)</td><td>(25, 19, lutff_5/in_3)</td></tr>
<tr><td>SBDATI5</td><td>(0, 19, lutff_6/in_3)</td><td>(25, 19, lutff_6/in_3)</td></tr>
<tr><td>SBDATI6</td><td>(0, 19, lutff_7/in_3)</td><td>(25, 19, lutff_7/in_3)</td></tr>
<tr><td>SBDATI7</td><td>(0, 19, lutff_0/in_1)</td><td>(25, 19, lutff_0/in_1)</td></tr>
<tr><td>SBDATO0</td><td>(0, 19, slf_op_1)</td><td>(25, 19, slf_op_1)</td></tr>
<tr><td>SBDATO1</td><td>(0, 19, slf_op_2)</td><td>(25, 19, slf_op_2)</td></tr>
<tr><td>SBDATO2</td><td>(0, 19, slf_op_3)</td><td>(25, 19, slf_op_3)</td></tr>
<tr><td>SBDATO3</td><td>(0, 19, slf_op_4)</td><td>(25, 19, slf_op_4)</td></tr>
<tr><td>SBDATO4</td><td>(0, 19, slf_op_5)</td><td>(25, 19, slf_op_5)</td></tr>
<tr><td>SBDATO5</td><td>(0, 19, slf_op_6)</td><td>(25, 19, slf_op_6)</td></tr>
<tr><td>SBDATO6</td><td>(0, 19, slf_op_7)</td><td>(25, 19, slf_op_7)</td></tr>
<tr><td>SBDATO7</td><td>(0, 20, slf_op_0)</td><td>(25, 20, slf_op_0)</td></tr>
<tr><td>SBRWI</td><td>(0, 19, lutff_0/in_3)</td><td>(25, 19, lutff_0/in_3)</td></tr>
<tr><td>SBSTBI</td><td>(0, 20, lutff_6/in_3)</td><td>(25, 20, lutff_6/in_3)</td></tr>
<tr><td>MCSNO0</td><td>(0, 21, slf_op_2)</td><td>(25, 21, slf_op_2)</td></tr>
<tr><td>MCSNO1</td><td>(0, 21, slf_op_4)</td><td>(25, 21, slf_op_4)</td></tr>
<tr><td>MCSNO2</td><td>(0, 21, slf_op_7)</td><td>(25, 21, slf_op_7)</td></tr>
<tr><td>MCSNO3</td><td>(0, 22, slf_op_1)</td><td>(25, 22, slf_op_1)</td></tr>
<tr><td>MCSNOE0</td><td>(0, 21, slf_op_3)</td><td>(25, 21, slf_op_3)</td></tr>
<tr><td>MCSNOE1</td><td>(0, 21, slf_op_5)</td><td>(25, 21, slf_op_5)</td></tr>
<tr><td>MCSNOE2</td><td>(0, 22, slf_op_0)</td><td>(25, 22, slf_op_0)</td></tr>
<tr><td>MCSNOE3</td><td>(0, 22, slf_op_2)</td><td>(25, 22, slf_op_2)</td></tr>
<tr><td>MI</td><td>(0, 22, lutff_0/in_1)</td><td>(25, 22, lutff_0/in_1)</td></tr>
<tr><td>MO</td><td>(0, 20, slf_op_6)</td><td>(25, 20, slf_op_6)</td></tr>
<tr><td>MOE</td><td>(0, 20, slf_op_7)</td><td>(25, 20, slf_op_7)</td></tr>
<tr><td>SCKI</td><td>(0, 22, lutff_1/in_1)</td><td>(25, 22, lutff_1/in_1)</td></tr>
<tr><td>SCKO</td><td>(0, 21, slf_op_0)</td><td>(25, 21, slf_op_0)</td></tr>
<tr><td>SCKOE</td><td>(0, 21, slf_op_1)</td><td>(25, 21, slf_op_1)</td></tr>
<tr><td>SCSNI</td><td>(0, 22, lutff_2/in_1)</td><td>(25, 22, lutff_2/in_1)</td></tr>
<tr><td>SI</td><td>(0, 22, lutff_7/in_3)</td><td>(25, 22, lutff_7/in_3)</td></tr>
<tr><td>SO</td><td>(0, 20, slf_op_4)</td><td>(25, 20, slf_op_4)</td></tr>
<tr><td>SOE</td><td>(0, 20, slf_op_5)</td><td>(25, 20, slf_op_5)</td></tr>
<tr><td>SPIIRQ</td><td>(0, 20, slf_op_2)</td><td>(25, 20, slf_op_2)</td></tr>
<tr><td>SPIWKUP</td><td>(0, 20, slf_op_3)</td><td>(25, 20, slf_op_3)</td></tr>
<tr><td><em>SPI_ENABLE_0</em></td><td><em>(7, 0, cbit2usealt_in_0)</em></td><td><em>(23, 0, cbit2usealt_in_0)</em></td></tr>
<tr><td><em>SPI_ENABLE_1</em></td><td><em>(7, 0, cbit2usealt_in_1)</em></td><td><em>(24, 0, cbit2usealt_in_0)</em></td></tr>
<tr><td><em>SPI_ENABLE_2</em></td><td><em>(6, 0, cbit2usealt_in_0)</em></td><td><em>(23, 0, cbit2usealt_in_1)</em></td></tr>
<tr><td><em>SPI_ENABLE_3</em></td><td><em>(6, 0, cbit2usealt_in_1)</em></td><td><em>(24, 0, cbit2usealt_in_1)</em></td></tr>
</table>
</td><td>
<table class="cstab">
<tr><th>Signal</th><th>LEDDA_IP<br/>(0, 31, 2)</th></tr>
<tr><td>LEDDADDR0</td><td>(0, 28, lutff_4/in_0)</td></tr>
<tr><td>LEDDADDR1</td><td>(0, 28, lutff_5/in_0)</td></tr>
<tr><td>LEDDADDR2</td><td>(0, 28, lutff_6/in_0)</td></tr>
<tr><td>LEDDADDR3</td><td>(0, 28, lutff_7/in_0)</td></tr>
<tr><td>LEDDCLK</td><td>(0, 29, clk)</td></tr>
<tr><td>LEDDCS</td><td>(0, 28, lutff_2/in_0)</td></tr>
<tr><td>LEDDDAT0</td><td>(0, 28, lutff_2/in_1)</td></tr>
<tr><td>LEDDDAT1</td><td>(0, 28, lutff_3/in_1)</td></tr>
<tr><td>LEDDDAT2</td><td>(0, 28, lutff_4/in_1)</td></tr>
<tr><td>LEDDDAT3</td><td>(0, 28, lutff_5/in_1)</td></tr>
<tr><td>LEDDDAT4</td><td>(0, 28, lutff_6/in_1)</td></tr>
<tr><td>LEDDDAT5</td><td>(0, 28, lutff_7/in_1)</td></tr>
<tr><td>LEDDDAT6</td><td>(0, 28, lutff_0/in_0)</td></tr>
<tr><td>LEDDDAT7</td><td>(0, 28, lutff_1/in_0)</td></tr>
<tr><td>LEDDDEN</td><td>(0, 28, lutff_1/in_1)</td></tr>
<tr><td>LEDDEXE</td><td>(0, 28, lutff_0/in_1)</td></tr>
<tr><td>LEDDON</td><td>(0, 29, slf_op_0)</td></tr>
<tr><td>PWMOUT0</td><td>(0, 28, slf_op_4)</td></tr>
<tr><td>PWMOUT1</td><td>(0, 28, slf_op_5)</td></tr>
<tr><td>PWMOUT2</td><td>(0, 28, slf_op_6)</td></tr>
</table>
</td></tr></table>
</p>
<p>The I<sup>2</sup>C "glitch filter" (referred to as <span style="font-family:monospace">SB_FILTER_50NS</span>) is a seperate module from the I<sup>2</sup>C interface IP, with connections as shown below:
<table class="ctab">
<tr><th>Signal</th><th>SB_FILTER_50NS<br/>(25, 31, 2)</th><th>SB_FILTER_50NS<br/>(25, 31, 3)</th></tr>
<tr><td>FILTERIN</td><td>(25, 27, lutff_1/in_0)</td><td>(25, 27, lutff_0/in_0)</td></tr>
<tr><td>FILTEROUT</td><td>(25, 27, slf_op_2)</td><td>(25, 27, slf_op_1)</td></tr>
<tr><td>ENABLE_0</td><td>(25, 30, CBIT_2)</td><td>(25, 30, CBIT_5)</td></tr>
<tr><td>ENABLE_1</td><td>(25, 30, CBIT_3)</td><td>(25, 30, CBIT_6)</td></tr>
<tr><td>ENABLE_2</td><td>(25, 30, CBIT_4)</td><td>(25, 30, CBIT_7)</td></tr>
</table>
</body></html>
|