1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
|
IO Tile Documentation
=====================
Span-4 and Span-12 Wires
------------------------
|IO Tile Span-Wires|
The image on the right shows the span-wires of a left (or right) io cell
(click to enlarge).
A left/right io cell has 16 connections named span4_vert_t_0 to
span4_vert_t_15 on its top edge and 16 connections named span4_vert_b_0
to span4_vert_b_15 on its bottom edge. The nets span4_vert_t_0 to
span4_vert_t_11 are connected to span4_vert_b_4 to span4_vert_b_15. The
span-4 and span-12 wires of the adjacent logic cell are connected to the
nets span4_horz_0 to span4_horz_47 and span12_horz_0 to span12_horz_23.
A top/bottom io cell has 16 connections named span4_horz_l_0 to
span4_horz_l_15 on its left edge and 16 connections named span4_horz_r_0
to span4_horz_r_15 on its right edge. The nets span4_horz_l_0 to
span4_horz_l_11 are connected to span4_horz_r_4 to span4_horz_r_15. The
span-4 and span-12 wires of the adjacent logic cell are connected to the
nets span4_vert_0 to span4_vert_47 and span12_vert_0 to span12_vert_23.
The vertical span4 wires of left/right io cells are connected "around
the corner" to the horizontal span4 wires of the top/bottom io cells.
For example span4_vert_b_0 of IO cell (0 1) is connected to
span4_horz_l_0 (span4_horz_r_4) of IO cell (1 0).
Note that unlike the span-wires connection LOGIC and RAM tiles, the
span-wires connecting IO tiles to each other are not pairwise crossed
out.
IO Blocks
---------
Each IO tile contains two IO blocks. Each IO block essentially
implements the SB_IO primitive from the Lattice iCE Technology Library.
Some inputs are shared between the two IO blocks. The following table
lists how the wires in the logic tile map to the SB_IO primitive ports:
================= ================ ============
SB_IO Port IO Block 0 IO Block 1
================= ================ ============
D_IN_0 io_0/D_IN_0 io_1/D_IN_0
D_IN_1 io_0/D_IN_1 io_1/D_IN_1
D_OUT_0 io_0/D_OUT_0 io_1/D_OUT_0
D_OUT_1 io_0/D_OUT_1 io_1/D_OUT_1
OUTPUT_ENABLE io_0/OUT_ENB io_1/OUT_ENB
CLOCK_ENABLE io_global/cen
INPUT_CLK io_global/inclk
OUTPUT_CLK io_global/outclk
LATCH_INPUT_VALUE io_global/latch
================= ================ ============
Like the inputs to logic cells, the inputs to IO blocks are routed to
the IO block via a two-stage process. A signal is first routed to one of
16 local tracks in the IO tile and then from the local track to the IO
block.
The io_global/latch signal is shared among all IO tiles on an edge of
the chip and is driven by fabout from one dedicated IO tile on that
edge. For the HX1K chips the tiles driving the io_global/latch signal
are: (0, 7), (13, 10), (5, 0), and (8, 17)
A logic tile sends the output of its eight logic cells to its neighbour
tiles. An IO tile does the same thing with the four D_IN signals created
by its two IO blocks. The D_IN signals map to logic function indices as
follows:
============== ===========
Function Index D_IN Wire
============== ===========
0 io_0/D_IN_0
1 io_0/D_IN_1
2 io_1/D_IN_0
3 io_1/D_IN_1
4 io_0/D_IN_0
5 io_0/D_IN_1
6 io_1/D_IN_0
7 io_1/D_IN_1
============== ===========
For example the signal io_1/D_IN_0 in IO tile (0, 5) can be seen as
neigh_op_lft_2 and neigh_op_lft_6 in LOGIC tile (1, 5).
Each IO Tile has 2 NegClk configuration bits, suggesting that the clock
signals can be inverted independently for the the two IO blocks in the
tile. However, the Lattice tools refuse to pack two IO blocks with
different clock polarity into the same IO tile. In our tests we only
managed to either set or clear both NegClk bits.
Each IO block has two IoCtrl IE bits that enable the input buffers and
two IoCtrl REN bits that enable the pull up resistors. Both bits are
active low, i.e. an unused IO tile will have both IE bits set and both
REN bits cleared (the default behavior is to enable pullup resistors on
all unused pins). Note that icebox_explain.py will ignore all IO tiles
that only have the two IoCtrl IE bits set.
However, the IoCtrl IE_0/IE_1 and IoCtrl REN_0/REN_1 do not necessarily
configure the IO PIN that are connected to the IO block in the same
tile, and if they do the numbers (0/1) do not necessarily match. As a
general rule, the pins on the right and bottom side of the chips match
up with the IO blocks and for the pins on the left and top side the
numbers must be swapped. But in some cases the IO block and the set of
IE/REN are not even located in the same tile. The following table lists
the correlation between IO blocks and IE/REN bits for the 1K chip:
======== ============
IO Block IE/REN Block
======== ============
0 14 1 0 14 0
0 14 0 0 14 1
0 13 1 0 13 0
0 13 0 0 13 1
0 12 1 0 12 0
0 12 0 0 12 1
0 11 1 0 11 0
0 11 0 0 11 1
0 10 1 0 10 0
0 10 0 0 10 1
0 9 1 0 9 0
0 9 0 0 9 1
0 8 1 0 8 0
0 8 0 0 8 1
0 6 1 0 6 0
0 6 0 0 6 1
0 5 1 0 5 0
0 5 0 0 5 1
0 4 1 0 4 0
0 4 0 0 4 1
0 3 1 0 3 0
0 3 0 0 3 1
0 2 1 0 2 0
0 2 0 0 2 1
======== ============
======== ============
IO Block IE/REN Block
======== ============
1 0 0 1 0 0
1 0 1 1 0 1
2 0 0 2 0 0
2 0 1 2 0 1
3 0 0 3 0 0
3 0 1 3 0 1
4 0 0 4 0 0
4 0 1 4 0 1
5 0 0 5 0 0
5 0 1 5 0 1
6 0 1 6 0 0
7 0 0 6 0 1
6 0 0 7 0 0
7 0 1 7 0 1
8 0 0 8 0 0
8 0 1 8 0 1
9 0 0 9 0 0
9 0 1 9 0 1
10 0 0 10 0 0
10 0 1 10 0 1
11 0 0 11 0 0
11 0 1 11 0 1
12 0 0 12 0 0
12 0 1 12 0 1
======== ============
======== ============
IO Block IE/REN Block
======== ============
13 1 0 13 1 0
13 1 1 13 1 1
13 2 0 13 2 0
13 2 1 13 2 1
13 3 1 13 3 1
13 4 0 13 4 0
13 4 1 13 4 1
13 6 0 13 6 0
13 6 1 13 6 1
13 7 0 13 7 0
13 7 1 13 7 1
13 8 0 13 8 0
13 8 1 13 8 1
13 9 0 13 9 0
13 9 1 13 9 1
13 11 0 13 10 0
13 11 1 13 10 1
13 12 0 13 11 0
13 12 1 13 11 1
13 13 0 13 13 0
13 13 1 13 13 1
13 14 0 13 14 0
13 14 1 13 14 1
13 15 0 13 15 0
13 15 1 13 15 1
======== ============
======== ============
IO Block IE/REN Block
======== ============
12 17 1 12 17 1
12 17 0 12 17 0
11 17 1 11 17 1
11 17 0 11 17 0
10 17 1 9 17 1
10 17 0 9 17 0
9 17 1 10 17 1
9 17 0 10 17 0
8 17 1 8 17 1
8 17 0 8 17 0
7 17 1 7 17 1
7 17 0 7 17 0
6 17 1 6 17 1
5 17 1 5 17 1
5 17 0 5 17 0
4 17 1 4 17 1
4 17 0 4 17 0
3 17 1 3 17 1
3 17 0 3 17 0
2 17 1 2 17 1
2 17 0 2 17 0
1 17 1 1 17 1
1 17 0 1 17 0
======== ============
When an input pin pair is used as LVDS pair (IO standard SB_LVDS_INPUT,
bank 3 / left edge only), then the four bits IoCtrl IE_0/IE_1 and IoCtrl
REN_0/REN_1 are all set, as well as the IoCtrl LVDS bit.
In the iCE 8k devices the IoCtrl IE bits are active high. So an unused
IO tile on an 8k chip has all bits cleared.
Global Nets
-----------
iCE40 FPGAs have 8 global nets. Each global net can be driven directly
from an IO pin. In the FPGA bitstream, routing of external signals to
global nets is not controlled by bits in the IO tile. Instead bits that
do not belong to any tile are used. In IceBox nomenclature such bits are
called "extra bits".
The following table lists which pins / IO blocks may be used to drive
which global net, and what .extra statements in the IceStorm ASCII file
format to represent the corresponding configuration bits:
+-----------------+-----------------+-----------------+-----------------+
| Glb Net | Pin | IO Tile + | IceBox |
| | (HX1K-TQ144) | Block # | Statement |
+=================+=================+=================+=================+
| 0 | 93 | 13 8 1 | .extra_bit 0 |
| | | | 330 142 |
+-----------------+-----------------+-----------------+-----------------+
| 1 | 21 | 0 8 1 | .extra_bit 0 |
| | | | 331 142 |
+-----------------+-----------------+-----------------+-----------------+
| 2 | 128 | 7 17 0 | .extra_bit 1 |
| | | | 330 143 |
+-----------------+-----------------+-----------------+-----------------+
| 3 | 50 | 7 0 0 | .extra_bit 1 |
| | | | 331 143 |
+-----------------+-----------------+-----------------+-----------------+
| 4 | 20 | 0 9 0 | .extra_bit 1 |
| | | | 330 142 |
+-----------------+-----------------+-----------------+-----------------+
| 5 | 94 | 13 9 0 | .extra_bit 1 |
| | | | 331 142 |
+-----------------+-----------------+-----------------+-----------------+
| 6 | 49 | 6 0 1 | .extra_bit 0 |
| | | | 330 143 |
+-----------------+-----------------+-----------------+-----------------+
| 7 | 129 | 6 17 1 | .extra_bit 0 |
| | | | 331 143 |
+-----------------+-----------------+-----------------+-----------------+
Signals internal to the FPGA can also be routed to the global nets. This
is done by routing the signal to the fabout net on an IO tile. The same
set of I/O tiles is used for this, but in this case each of the I/O
tiles corresponds to a different global net:
======= === ==== ==== === ==== === === ====
Glb Net 0 1 2 3 4 5 6 7
IO Tile 7 0 7 17 13 9 0 9 6 17 6 0 0 8 13 8
======= === ==== ==== === ==== === === ====
|Column Buffers|
Column Buffer Control Bits
~~~~~~~~~~~~~~~~~~~~~~~~~~
Each LOGIC, IO, and RAMB tile has 8 ColBufCtrl bits, one for each global
net. In most tiles this bits have no function, but in tiles in rows 4,
5, 12, and 13 (for RAM columns: rows 3, 5, 11, and 13) this bits control
which global nets are driven to the column of tiles below and/or above
that tile (including that tile), as illustrated in the image to the
right (click to enlarge).
In 8k chips the rows 8, 9, 24, and 25 contain the column buffers. 8k
RAMB and RAMT tiles can control column buffers, so the pattern looks the
same for RAM, LOGIC, and IO columns.
Warmboot
--------
The SB_WARMBOOT primitive in iCE40 FPGAs has three inputs and no
outputs. The three inputs of that cell are driven by the fabout signal
from three IO tiles. In HX1K chips the tiles connected to the
SB_WARMBOOT primitive are:
============ =======
Warmboot Pin IO Tile
============ =======
BOOT 12 0
S0 13 1
S1 13 2
============ =======
PLL Cores
---------
The PLL primitives in iCE40 FPGAs are configured using the PLLCONFIG\_\*
bits in the IO tiles. The configuration for a single PLL cell is spread
out over many IO tiles. For example, the PLL cell in the 1K chip are
configured as follows (bits listed from LSB to MSB):
+-----------------------+-----------------------+-----------------------+
| IO Tile | Config Bit | SB_PLL40\_\* |
| | | Parameter |
+=======================+=======================+=======================+
| 0 3 | PLLCONFIG_5 | Select PLL Type: |
| | +-----------------------+
| | | 000 = DISABLED |
| | +-----------------------+
| | | 010 = SB_PLL40_PAD |
| | +-----------------------+
| | | 100 = SB_PLL40_2_PAD |
| | +-----------------------+
| | | 110 = SB_PLL40_2F_PAD |
| | +-----------------------+
| | | 011 = SB_PLL40_CORE |
| | +-----------------------+
| | | 111 = |
| | | SB_PLL40_2F_CORE |
+-----------------------+-----------------------+-----------------------+
| 0 5 | PLLCONFIG_1 | |
+-----------------------+-----------------------+-----------------------+
| 0 5 | PLLCONFIG_3 | |
+-----------------------+-----------------------+-----------------------+
| 0 5 | PLLCONFIG_5 | FEEDBACK_PATH |
| | +-----------------------+
| | | 000 = "DELAY" |
| | +-----------------------+
| | | 001 = "SIMPLE" |
| | +-----------------------+
| | | 010 = |
| | | "PHASE_AND_DELAY" |
| | +-----------------------+
| | | 110 = "EXTERNAL" |
+-----------------------+-----------------------+-----------------------+
| 0 2 | PLLCONFIG_9 | |
+-----------------------+-----------------------+-----------------------+
| 0 3 | PLLCONFIG_1 | |
+-----------------------+-----------------------+-----------------------+
| 0 4 | PLLCONFIG_4 | DELAY_ADJ |
| | | USTMENT_MODE_FEEDBACK |
| | +-----------------------+
| | | 0 = "FIXED" |
| | +-----------------------+
| | | 1 = "DYNAMIC" |
+-----------------------+-----------------------+-----------------------+
| 0 4 | PLLCONFIG_9 | DELAY_ADJ |
| | | USTMENT_MODE_RELATIVE |
| | +-----------------------+
| | | 0 = "FIXED" |
| | +-----------------------+
| | | 1 = "DYNAMIC" |
+-----------------------+-----------------------+-----------------------+
| 0 3 | PLLCONFIG_6 | PLLOUT_SELECT |
| | | PLLOUT_SELECT_PORTA |
| | +-----------------------+
| | | 00 = "GENCLK" |
| | +-----------------------+
| | | 01 = "GENCLK_HALF" |
| | +-----------------------+
| | | 10 = "SHIFTREG_90deg" |
| | +-----------------------+
| | | 11 = "SHIFTREG_0deg" |
+-----------------------+-----------------------+-----------------------+
| 0 3 | PLLCONFIG_7 | |
+-----------------------+-----------------------+-----------------------+
| 0 3 | PLLCONFIG_2 | PLLOUT_SELECT_PORTB |
| | +-----------------------+
| | | 00 = "GENCLK" |
| | +-----------------------+
| | | 01 = "GENCLK_HALF" |
| | +-----------------------+
| | | 10 = "SHIFTREG_90deg" |
| | +-----------------------+
| | | 11 = "SHIFTREG_0deg" |
+-----------------------+-----------------------+-----------------------+
| 0 3 | PLLCONFIG_3 | |
+-----------------------+-----------------------+-----------------------+
| 0 3 | PLLCONFIG_4 | SHIFTREG_DIV_MODE |
+-----------------------+-----------------------+-----------------------+
| 0 3 | PLLCONFIG_8 | TEST_MODE |
+-----------------------+-----------------------+-----------------------+
| 0 5 | PLLCONFIG_2 | Enable ICEGATE for |
| | | PLLOUTGLOBALA |
+-----------------------+-----------------------+-----------------------+
| 0 5 | PLLCONFIG_4 | Enable ICEGATE for |
| | | PLLOUTGLOBALB |
+-----------------------+-----------------------+-----------------------+
======= =========== ======================
IO Tile Config Bit SB_PLL40\_\* Parameter
======= =========== ======================
0 3 PLLCONFIG_9 FDA_FEEDBACK
0 4 PLLCONFIG_1
0 4 PLLCONFIG_2
0 4 PLLCONFIG_3
0 5 PLLCONFIG_5 FDA_RELATIVE
0 4 PLLCONFIG_6
0 4 PLLCONFIG_7
0 4 PLLCONFIG_8
0 1 PLLCONFIG_1 DIVR
0 1 PLLCONFIG_2
0 1 PLLCONFIG_3
0 1 PLLCONFIG_4
0 1 PLLCONFIG_5 DIVF
0 1 PLLCONFIG_6
0 1 PLLCONFIG_7
0 1 PLLCONFIG_8
0 1 PLLCONFIG_9
0 2 PLLCONFIG_1
0 2 PLLCONFIG_2
0 2 PLLCONFIG_3 DIVQ
0 2 PLLCONFIG_4
0 2 PLLCONFIG_5
0 2 PLLCONFIG_6 FILTER_RANGE
0 2 PLLCONFIG_7
0 2 PLLCONFIG_8
======= =========== ======================
The PLL inputs are routed to the PLL via the fabout signal from various
IO tiles. The non-clock PLL outputs are routed via otherwise unused
neigh_op\_\* signals in fabric corners. For example in case of the 1k
chip:
==== ============== ======================
Tile Net-Segment SB_PLL40\_\* Port Name
==== ============== ======================
0 1 fabout REFERENCECLK
0 2 fabout EXTFEEDBACK
0 4 fabout DYNAMICDELAY
0 5 fabout
0 6 fabout
0 10 fabout
0 11 fabout
0 12 fabout
0 13 fabout
0 14 fabout
1 1 neigh_op_bnl_1 LOCK
1 0 fabout BYPASS
2 0 fabout RESETB
5 0 fabout LATCHINPUTVALUE
12 1 neigh_op_bnr_3 SDO
4 0 fabout SDI
3 0 fabout SCLK
==== ============== ======================
The PLL clock outputs are fed directly into the input path of certain IO
tiles. In case of the 1k chip the PORTA clock is fed into PIO 1 of IO
Tile (6 0) and the PORTB clock is fed into PIO 0 of IO Tile (7 0).
Because of this, those two PIOs can only be used as output Pins by the
FPGA fabric when the PLL ports are being used.
The input path that are stolen are also used to implement the ICEGATE
function. If the input pin type of the input path being stolen is set to
PIN_INPUT_LATCH, then the ICEGATE function is enabled for the
corresponding CORE output of the PLL.
.. |IO Tile Span-Wires| image:: _static/images/iosp.svg
:height: 200px
:target: _static/images/iosp.svg
.. |Column Buffers| image:: _static/images/colbuf.svg
:height: 200px
:target: _static/images/colbuf.svg
|