1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
|
//
// Author: Wolfgang Spraul
//
// This is free and unencumbered software released into the public domain.
// For details see the UNLICENSE file at the root of the source tree.
//
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "helper.h"
#define LINE_LENGTH 1024
static int s_numlines;
static char s_lines[1000][LINE_LENGTH];
// returns 0 if no number found
static int find_rightmost_num(const char* s, int s_len,
int* dig_start, int* dig_end)
{
int i;
if (s_len < 2) return 0;
i = s_len;
while (i > 0 && (s[i-1] < '0' || s[i-1] > '9'))
i--;
if (!i) return 0;
*dig_end = i;
while (i > 0 && s[i-1] >= '0' && s[i-1] <= '9')
i--;
if (!i) return 0;
if ((s[i-1] < 'A' || s[i-1] > 'Z') && s[i-1] != '_')
return 0;
*dig_start = i;
return 1;
}
// Finds the position of a number in a string, searching from
// the right, meeting:
// - not part of a known suffix if there is another number to
// the left of it
// - prefixed by at least one capital 'A'-'Z' or '_'
// If none is found, both *num_start and *num_end will be returned as 0.
static void find_number(const char* s, int s_len, int* num_start, int* num_end)
{
int result, dig_start, dig_end, found_num, search_more;
int next_dig_start, next_dig_end;
*num_start = 0;
*num_end = 0;
if (s_len >= 13 && !strncmp("_DSP48A1_SITE", &s[s_len-13], 13))
s_len -= 13;
else if (s_len >= 15 && !strncmp("_DSP48A1_B_SITE", &s[s_len-15], 15))
s_len -= 15;
result = find_rightmost_num(s, s_len, &dig_start, &dig_end);
if (!result) return;
// If the found number is not part of a potential
// suffix, we can take it.
found_num = to_i(&s[dig_start], dig_end-dig_start);
// The remaining suffixes all reach the right end of
// the string, so if our digits don't, we can take them.
if (dig_end < s_len) {
*num_start = dig_start;
*num_end = dig_end;
return;
}
search_more = 0;
// _
if (dig_start >= 2
&& s[dig_start-1] == '_'
&& ((s[dig_start-2] >= 'A' && s[dig_start-2] <= 'Z')
|| (s[dig_start-2] >= '0' && s[dig_start-2] <= '9')))
search_more = 1;
// _S0
else if (found_num == 0 && dig_start >= 3
&& s[dig_start-1] == 'S' && s[dig_start-2] == '_'
&& ((s[dig_start-3] >= 'A' && s[dig_start-3] <= 'Z')
|| (s[dig_start-3] >= '0' && s[dig_start-3] <= '9')))
search_more = 1;
// _N3
else if (found_num == 3 && dig_start >= 3
&& s[dig_start-1] == 'N' && s[dig_start-2] == '_'
&& ((s[dig_start-3] >= 'A' && s[dig_start-3] <= 'Z')
|| (s[dig_start-3] >= '0' && s[dig_start-3] <= '9')))
search_more = 1;
// _INT0 _INT1 _INT2 _INT3
else if ((found_num >= 0 && found_num <= 3) && dig_start >= 5
&& s[dig_start-1] == 'T' && s[dig_start-2] == 'N'
&& s[dig_start-3] == 'I' && s[dig_start-4] == '_'
&& ((s[dig_start-5] >= 'A' && s[dig_start-5] <= 'Z')
|| (s[dig_start-5] >= '0' && s[dig_start-5] <= '9')))
search_more = 1;
if (!search_more
|| !find_rightmost_num(s, dig_start, &next_dig_start, &next_dig_end)) {
*num_start = dig_start;
*num_end = dig_end;
} else {
*num_start = next_dig_start;
*num_end = next_dig_end;
}
}
static int is_known_suffix(const char* str, int str_len)
{
int i;
if (str_len < 1) return 0;
if (str[0] != '_') return 0;
if (str_len < 2) return 0;
// Special case _<digits> - we detect this as a
// known suffix here because our number finding
// function already found a better match to the
// left of it, so we can assume the _<digits> to
// be a suffix.
i = 1;
while (i < str_len) {
if (str[i] < '0' || str[i] > '9')
break;
i++;
}
if (i >= str_len)
return 1;
if (str_len == 2) {
// _E _W _S _N _M
if (str[1] == 'E' || str[1] == 'W' || str[2] == 'S'
|| str[1] == 'N' || str[1] == 'M')
return 1;
}
if (str_len < 3) return 0;
if (str_len == 3) {
// _S0 _N3 _UP
if ((str[1] == 'S' && str[2] == '0')
|| (str[1] == 'N' && str[2] == '3')
|| (str[1] == 'U' && str[2] == 'P'))
return 1;
}
if (str_len < 4) return 0;
if (str_len == 4) {
// _CLB _DSP _EXT _INT _MCP _BRK _BUF
if ((str[1] == 'C' && str[2] == 'L' && str[3] == 'B')
|| (str[1] == 'D' && str[2] == 'S' && str[3] == 'P')
|| (str[1] == 'E' && str[2] == 'X' && str[3] == 'T')
|| (str[1] == 'I' && str[2] == 'N' && str[3] == 'T')
|| (str[1] == 'M' && str[2] == 'C' && str[3] == 'B')
|| (str[1] == 'B' && str[2] == 'R' && str[3] == 'K')
|| (str[1] == 'B' && str[2] == 'U' && str[3] == 'F'))
return 1;
}
if (str_len < 5) return 0;
if (str_len == 5) {
// _INT0 _INT1 _INT2 _INT3 _TEST _FOLD _BRAM _DOWN _PINW
if ((str[1] == 'I' && str[2] == 'N' && str[3] == 'T'
&& str[4] >= '0' && str[4] <= '3')
|| (str[1] == 'T' && str[2] == 'E' && str[3] == 'S'
&& str[4] == 'T')
|| (str[1] == 'F' && str[2] == 'O' && str[3] == 'L'
&& str[4] == 'D')
|| (str[1] == 'B' && str[2] == 'R' && str[3] == 'A'
&& str[4] == 'M')
|| (str[1] == 'D' && str[2] == 'O' && str[3] == 'W'
&& str[4] == 'N')
|| (str[1] == 'P' && str[2] == 'I' && str[3] == 'N'
&& str[4] == 'W'))
return 1;
}
if (str_len < 11) return 0;
if (str_len == 11) {
// _BRAM_INTER
if (str[1] == 'B' && str[2] == 'R' && str[3] == 'A'
&& str[4] == 'M' && str[5] == '_' && str[6] == 'I'
&& str[7] == 'N' && str[8] == 'T' && str[9] == 'E'
&& str[10] == 'R')
return 1;
}
return 0;
}
static void next_unequal_word(
const char* a, int a_start, int* a_beg, int* a_end,
const char* b, int b_start, int* b_beg, int* b_end)
{
*a_beg = a_start;
*a_end = a_start;
*b_beg = b_start;
*b_end = b_start;
// find the first non-matching word
while (1) {
next_word(a, *a_beg, a_beg, a_end);
next_word(b, *b_beg, b_beg, b_end);
if (*a_end-*a_beg <= 0
|| *b_end-*b_beg <= 0)
return;
if (str_cmp(&a[*a_beg], *a_end-*a_beg, &b[*b_beg], *b_end-*b_beg))
return;
*a_beg = *a_end;
*b_beg = *b_end;
}
}
static int sort_lines(const void* a, const void* b)
{
const char* _a, *_b;
int a_word_beg, a_word_end, b_word_beg, b_word_end;
int a_num, b_num, a_num_start, b_num_start, a_num_end, b_num_end;
int num_result, result, suffix_result;
_a = a;
_b = b;
// find the first non-matching word
a_word_beg = 0;
b_word_beg = 0;
next_unequal_word(_a, a_word_beg, &a_word_beg, &a_word_end,
_b, b_word_beg, &b_word_beg, &b_word_end);
if (a_word_end-a_word_beg <= 0) {
if (b_word_end-b_word_beg <= 0)
return 0;
return -1;
}
if (b_word_end-b_word_beg <= 0) {
if (a_word_end-a_word_beg <= 0)
return 0;
return 1;
}
// first try to find 2 numbers
find_number(&_a[a_word_beg], a_word_end-a_word_beg,
&a_num_start, &a_num_end);
find_number(&_b[b_word_beg], b_word_end-b_word_beg,
&b_num_start, &b_num_end);
// if we cannot find both numbers, return a regular
// string comparison over the entire word
if (a_num_end <= a_num_start
|| b_num_end <= b_num_start) {
result = str_cmp(&_a[a_word_beg], a_word_end-a_word_beg,
&_b[b_word_beg], b_word_end-b_word_beg);
if (!result) {
fprintf(stderr, "Internal error in %s:%i\n",
__FILE__, __LINE__);
exit(0);
}
return result;
}
// A number must always be prefixed by at least one character.
if (!a_num_start || !b_num_start) {
fprintf(stderr, "Internal error in %s:%i\n",
__FILE__, __LINE__);
exit(0);
}
// otherwise compare the string up to the 2 numbers,
// if it does not match return that result
result = str_cmp(&_a[a_word_beg], a_num_start,
&_b[b_word_beg], b_num_start);
if (result)
return result;
a_num_start += a_word_beg;
a_num_end += a_word_beg;
b_num_start += b_word_beg;
b_num_end += b_word_beg;
if (a_num_end > a_word_end
|| b_num_end > b_word_end) {
fprintf(stderr, "Internal error in %s:%i\n",
__FILE__, __LINE__);
fprintf(stderr, "sort_line_a: %s", _a);
fprintf(stderr, "sort_line_b: %s", _b);
exit(1);
}
if ((a_word_end-a_num_end == 0
|| is_known_suffix(&_a[a_num_end],
a_word_end-a_num_end))
&& (b_word_end-b_num_end == 0
|| is_known_suffix(&_b[b_num_end],
b_word_end-b_num_end))) {
// known suffix comes before number
suffix_result = str_cmp(&_a[a_num_end],
a_word_end-a_num_end,
&_b[b_num_end], b_word_end-b_num_end);
if (suffix_result)
return suffix_result;
}
a_num = to_i(&_a[a_num_start], a_num_end-a_num_start);
b_num = to_i(&_b[b_num_start], b_num_end-b_num_start);
num_result = a_num-b_num;
// if the non-known suffixes don't match, return numeric result
// if numbers are not equal, otherwise suffix result
suffix_result = str_cmp(&_a[a_num_end], a_word_end-a_num_end,
&_b[b_num_end], b_word_end-b_num_end);
if (suffix_result) {
if (num_result) return num_result;
return suffix_result;
}
// Should be impossible that both the number result and
// suffix result are equal. How can the entire word then
// be unequal?
if (!num_result) {
fprintf(stderr, "Internal error in %s:%i\n",
__FILE__, __LINE__);
fprintf(stderr, "sort_line_a: %s", _a);
fprintf(stderr, "sort_line_b: %s", _b);
exit(1);
}
// find second non-equal word
next_unequal_word(_a, a_word_end, &a_word_beg, &a_word_end,
_b, b_word_end, &b_word_beg, &b_word_end);
if (a_word_end <= a_word_beg
|| b_word_end <= b_word_beg)
return num_result;
// if no numbers in second non-equal words, fall back
// to numeric result of first word
find_number(&_a[a_word_beg], a_word_end-a_word_beg,
&a_num_start, &a_num_end);
find_number(&_b[b_word_beg], b_word_end-b_word_beg,
&b_num_start, &b_num_end);
if (a_num_end <= a_num_start
|| b_num_end <= b_num_start)
return num_result;
// A number must always be prefixed by at least one character.
if (!a_num_start || !b_num_start) {
fprintf(stderr, "Internal error in %s:%i\n",
__FILE__, __LINE__);
exit(0);
}
// If the prefix string of the second word does not
// match, fall back to numeric result of first word.
result = str_cmp(&_a[a_word_beg], a_num_start,
&_b[b_word_beg], b_num_start);
if (result)
return num_result;
a_num_start += a_word_beg;
a_num_end += a_word_beg;
b_num_start += b_word_beg;
b_num_end += b_word_beg;
if (a_num_end > a_word_end
|| b_num_end > b_word_end) {
fprintf(stderr, "Internal error in %s:%i\n",
__FILE__, __LINE__);
exit(0);
}
// if there are known suffixes in second non-equal
// words, compare those first
if ((a_word_end-a_num_end == 0
|| is_known_suffix(&_a[a_num_end],
a_word_end-a_num_end))
&& (b_word_end-b_num_end == 0
|| is_known_suffix(&_b[b_num_end],
b_word_end-b_num_end))) {
// known suffix comes before number
suffix_result = str_cmp(&_a[a_num_end],
a_word_end-a_num_end,
&_b[b_num_end], b_word_end-b_num_end);
if (suffix_result)
return suffix_result;
}
// otherwise fall back to numeric result of first word
return num_result;
}
int main(int argc, char** argv)
{
FILE* fp = 0;
int i;
if (argc < 2) {
fprintf(stderr,
"sort_seq - sort by sequence\n"
"Usage: %s <data_file> | - for stdin\n", argv[0]);
goto xout;
}
if (!strcmp(argv[1], "-"))
fp = stdin;
else {
fp = fopen(argv[1], "r");
if (!fp) {
fprintf(stderr, "Error opening %s.\n", argv[1]);
goto xout;
}
}
s_numlines = 0;
// read 200 lines to beginning of buffer
while (s_numlines < 200
&& fgets(s_lines[s_numlines], sizeof(s_lines[0]), fp))
s_numlines++;
while (1) {
// read another 800 lines
while (s_numlines < 1000
&& fgets(s_lines[s_numlines], sizeof(s_lines[0]), fp))
s_numlines++;
if (!s_numlines) break;
// sort 1000 lines
qsort(s_lines, s_numlines, sizeof(s_lines[0]), sort_lines);
// print first 800 lines
for (i = 0; i < 800; i++) {
if (i >= s_numlines) break;
printf(s_lines[i]);
}
// move up last 200 lines to beginning of buffer
if (s_numlines > i) {
memmove(s_lines[0], s_lines[i],
(s_numlines-i)*sizeof(s_lines[0]));
s_numlines -= i;
} else
s_numlines = 0;
}
return EXIT_SUCCESS;
xout:
return EXIT_FAILURE;
}
|