File: svpcvp.cpp

package info (click to toggle)
fplll 5.2.1-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 5,780 kB
  • sloc: cpp: 17,882; sh: 1,050; makefile: 170; perl: 46; python: 42
file content (464 lines) | stat: -rw-r--r-- 15,534 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
/* Copyright (C) 2008-2011 Xavier Pujol.
    (C) 2015 Michael Walter.

   This file is part of fplll. fplll is free software: you
   can redistribute it and/or modify it under the terms of the GNU Lesser
   General Public License as published by the Free Software Foundation,
   either version 2.1 of the License, or (at your option) any later version.

   fplll is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
   GNU Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public License
   along with fplll. If not, see <http://www.gnu.org/licenses/>. */

#include "svpcvp.h"
#include "enum/enumerate.h"
#include "enum/topenum.h"

FPLLL_BEGIN_NAMESPACE

/* Shortest vector problem
   ======================= */

/* Returns i such that the shortest vector of L(b) belongs to
   L(b_0,...,b_(i-1)), assuming that the error on rdiag's is less than 100%.
   If b is LLL-reduced, then for any reasonnable dimension,
   max(rdiag[0],...,rdiag[i-1]) / min(rdiag[0],...,rdiag[i-1])
   is much smaller than numeric_limits<double>::max */
static int last_useful_index(const Matrix<FP_NR<mpfr_t>> &r)
{
  int i;
  FP_NR<mpfr_t> rdiag_min_value;
  rdiag_min_value.mul_2si(r(0, 0), 1);
  for (i = r.get_rows() - 1; i > 0; i--)
  {
    if (r(i, i) <= rdiag_min_value)
      break;
  }
  return i + 1;
}

/* Finds the shortest vector of the basis b and returns its squared norm in
   basisMin */
static void get_basis_min(Z_NR<mpz_t> &basis_min, const ZZ_mat<mpz_t> &b, int first, int last)
{
  Z_NR<mpz_t> sq_norm;
  int n = b.get_cols();
  b[first].dot_product(basis_min, b[first], n);

  for (int i = first + 1; i < last; i++)
  {
    b[i].dot_product(sq_norm, b[i], n);
    if (sq_norm < basis_min)
      basis_min = sq_norm;
  }
}

static bool enumerate_svp(int d, MatGSO<Z_NR<mpz_t>, FP_NR<mpfr_t>> &gso, FP_NR<mpfr_t> &max_dist,
                          ErrorBoundedEvaluator &evaluator, const vector<enumf> &pruning, int flags)
{
  Enumeration<Z_NR<mpz_t>, FP_NR<mpfr_t>> enumobj(gso, evaluator);
  bool dual = (flags & SVP_DUAL);
  if (d == 1 || !pruning.empty() || dual)
  {
    enumobj.enumerate(0, d, max_dist, 0, vector<FP_NR<mpfr_t>>(), vector<enumxt>(), pruning, dual);
  }
  else
  {
    Enumerator enumerator(d, gso.get_mu_matrix(), gso.get_r_matrix());
    FP_NR<mpfr_t> bestdist = -1;
    while (enumerator.enum_next(max_dist))
    {
      if (flags & SVP_VERBOSE)
      {
        cerr << enumerator.get_sub_tree();
        if (evaluator.eval_mode != EVALMODE_SV)
          cerr << " (count=2*" << evaluator.size() << ")";
      }

      /* Enumerates short vectors only in enumerator.get_sub_tree()
        (about maxVolume iterations or less) */
      enumobj.enumerate(0, d, max_dist, 0, vector<FP_NR<mpfr_t>>(), enumerator.get_sub_tree(),
                        pruning);

      if (flags & SVP_VERBOSE)
      {
        cerr << "\r" << (char)27 << "[K";
        if (evaluator.eval_mode == EVALMODE_SV && !evaluator.empty() &&
            evaluator.begin()->first != bestdist)
        {
          bestdist = evaluator.begin()->first;
          cerr << "Solution norm^2=" << bestdist << " value=" << evaluator.begin()->second << endl;
        }
      }
    }
  }
  return !evaluator.empty();
}

static int shortest_vector_ex(ZZ_mat<mpz_t> &b, vector<Z_NR<mpz_t>> &sol_coord, SVPMethod method,
                              const vector<double> &pruning, int flags, EvaluatorMode eval_mode,
                              long long &sol_count,
                              vector<vector<Z_NR<mpz_t>>> *subsol_coord = nullptr,
                              vector<enumf> *subsol_dist                = nullptr,
                              vector<vector<Z_NR<mpz_t>>> *auxsol_coord = nullptr,
                              vector<enumf> *auxsol_dist = nullptr, int max_aux_sols = 0)
{
  bool findsubsols = (subsol_coord != nullptr) && (subsol_dist != nullptr);
  bool findauxsols = (auxsol_coord != nullptr) && (auxsol_dist != nullptr) && (max_aux_sols != 0);

  // d = lattice dimension (note that it might decrease during preprocessing)
  int d = b.get_rows();
  // n = dimension of the space
  int n = b.get_cols();

  FPLLL_CHECK(d > 0 && n > 0, "shortestVector: empty matrix");
  FPLLL_CHECK(d <= n, "shortestVector: number of vectors > size of the vectors");

  // Sets the floating-point precision
  // Error bounds on GSO are valid if prec >= minprec
  double rho;
  int min_prec = gso_min_prec(rho, d, LLL_DEF_DELTA, LLL_DEF_ETA);
  int prec     = max(53, min_prec + 10);
  int old_prec = FP_NR<mpfr_t>::set_prec(prec);

  // Allocates space for vectors and matrices in constructors
  ZZ_mat<mpz_t> empty_mat;
  MatGSO<Z_NR<mpz_t>, FP_NR<mpfr_t>> gso(b, empty_mat, empty_mat, GSO_INT_GRAM);
  FP_NR<mpfr_t> max_dist;
  Z_NR<mpz_t> int_max_dist;
  Z_NR<mpz_t> itmp1;

  // Computes the Gram-Schmidt orthogonalization in floating-point
  gso.update_gso();
  gen_zero_vect(sol_coord, d);

  // If the last b_i* are too large, removes them to avoid an underflow
  int new_d = last_useful_index(gso.get_r_matrix());
  if (new_d < d)
  {
    // FPLLL_TRACE("Ignoring the last " << d - new_d << " vector(s)");
    d = new_d;
  }

  if (flags & SVP_DUAL)
  {
    max_dist = 1.0 / gso.get_r_exp(d - 1, d - 1);
    if (flags & SVP_VERBOSE)
    {
      cout << "max_dist = " << max_dist << endl;
    }
  }
  else
  {
    /* Computes a bound for the enumeration. This bound would work for an
       exact algorithm, but we will increase it later to ensure that the fp
       algorithm finds a solution */
    get_basis_min(int_max_dist, b, 0, d);
    max_dist.set_z(int_max_dist, GMP_RNDU);
  }

  // Initializes the evaluator of solutions
  ErrorBoundedEvaluator *evaluator;
  if (method == SVPM_FAST)
  {
    evaluator =
        new FastErrorBoundedEvaluator(d, gso.get_mu_matrix(), gso.get_r_matrix(), eval_mode,
                                      max_aux_sols + 1, EVALSTRATEGY_BEST_N_SOLUTIONS, findsubsols);
  }
  else if (method == SVPM_PROVED)
  {
    ExactErrorBoundedEvaluator *p = new ExactErrorBoundedEvaluator(
        d, b, gso.get_mu_matrix(), gso.get_r_matrix(), eval_mode, max_aux_sols + 1,
        EVALSTRATEGY_BEST_N_SOLUTIONS, findsubsols);
    p->int_max_dist = int_max_dist;
    evaluator       = p;
  }
  else
  {
    FPLLL_ABORT("shortestVector: invalid evaluator type");
  }
  evaluator->init_delta_def(prec, rho, true);

  if (!(flags & SVP_OVERRIDE_BND) && (eval_mode == EVALMODE_SV || method == SVPM_PROVED))
  {
    FP_NR<mpfr_t> ftmp1;
    bool result = evaluator->get_max_error_aux(max_dist, true, ftmp1);
    FPLLL_CHECK(result, "shortestVector: cannot compute an initial bound");
    max_dist.add(max_dist, ftmp1, GMP_RNDU);
  }

  // Main loop of the enumeration
  enumerate_svp(d, gso, max_dist, *evaluator, pruning, flags);

  int result = RED_ENUM_FAILURE;
  if (eval_mode != EVALMODE_SV)
  {
    result    = RED_SUCCESS;
    sol_count = evaluator->sol_count * 2;
  }
  else if (!evaluator->empty())
  {
    /*FP_NR<mpfr_t> fMaxError;
    validMaxError = evaluator->get_max_error(fMaxError);
    max_error = fMaxError.get_d(GMP_RNDU);*/
    for (int i = 0; i < d; i++)
    {
      itmp1.set_f(evaluator->begin()->second[i]);
      sol_coord[i].add(sol_coord[i], itmp1);
    }
    result = RED_SUCCESS;
  }

  if (findsubsols)
  {
    subsol_coord->clear();
    subsol_dist->clear();
    subsol_dist->resize(evaluator->sub_solutions.size());
    for (size_t i = 0; i < evaluator->sub_solutions.size(); ++i)
    {
      (*subsol_dist)[i] = evaluator->sub_solutions[i].first.get_d();

      vector<Z_NR<mpz_t>> ss_c;
      for (size_t j = 0; j < evaluator->sub_solutions[i].second.size(); ++j)
      {
        itmp1.set_f(evaluator->sub_solutions[i].second[j]);
        ss_c.emplace_back(itmp1);
      }
      subsol_coord->emplace_back(std::move(ss_c));
    }
  }
  if (findauxsols)
  {
    auxsol_coord->clear();
    auxsol_dist->clear();
    // iterators over all solutions
    auto it = evaluator->begin(), itend = evaluator->end();
    // skip shortest solution
    ++it;
    for (; it != itend; ++it)
    {
      auxsol_dist->push_back(it->first.get_d());

      vector<Z_NR<mpz_t>> as_c;
      for (size_t j = 0; j < it->second.size(); ++j)
      {
        itmp1.set_f(it->second[j]);
        as_c.emplace_back(itmp1);
      }
      auxsol_coord->emplace_back(std::move(as_c));
    }
  }

  delete evaluator;
  FP_NR<mpfr_t>::set_prec(old_prec);
  return result;
}

int shortest_vector(ZZ_mat<mpz_t> &b, vector<Z_NR<mpz_t>> &sol_coord, SVPMethod method, int flags)
{
  long long tmp;
  return shortest_vector_ex(b, sol_coord, method, vector<double>(), flags, EVALMODE_SV, tmp);
}

int shortest_vector_pruning(ZZ_mat<mpz_t> &b, vector<Z_NR<mpz_t>> &sol_coord,
                            const vector<double> &pruning, int flags)
{
  long long tmp;
  return shortest_vector_ex(b, sol_coord, SVPM_FAST, pruning, flags, EVALMODE_SV, tmp);
}

int shortest_vector_pruning(ZZ_mat<mpz_t> &b, vector<Z_NR<mpz_t>> &sol_coord,
                            vector<vector<Z_NR<mpz_t>>> &subsol_coord, vector<enumf> &subsol_dist,
                            const vector<double> &pruning, int flags)
{
  long long tmp;
  return shortest_vector_ex(b, sol_coord, SVPM_FAST, pruning, flags, EVALMODE_SV, tmp,
                            &subsol_coord, &subsol_dist);
}

int shortest_vector_pruning(ZZ_mat<mpz_t> &b, vector<Z_NR<mpz_t>> &sol_coord,
                            vector<vector<Z_NR<mpz_t>>> &auxsol_coord, vector<enumf> &auxsol_dist,
                            const int max_aux_sols, const vector<double> &pruning, int flags)
{
  long long tmp;
  return shortest_vector_ex(b, sol_coord, SVPM_FAST, pruning, flags, EVALMODE_SV, tmp, nullptr,
                            nullptr, &auxsol_coord, &auxsol_dist, max_aux_sols);
}
/* Closest vector problem
   ====================== */

static void get_gscoords(const Matrix<FP_NR<mpfr_t>> &matrix, const Matrix<FP_NR<mpfr_t>> &mu,
                         const Matrix<FP_NR<mpfr_t>> &r, const vector<FP_NR<mpfr_t>> &v,
                         vector<FP_NR<mpfr_t>> &vcoord)
{

  int n = matrix.get_rows(), m = matrix.get_cols();

  if (static_cast<int>(vcoord.size()) != n)
    vcoord.resize(n);
  FPLLL_DEBUG_CHECK(mu.get_rows() == n && mu.get_cols() == n && r.get_rows() == n &&
                    r.get_cols() == n && static_cast<int>(v.size()) == m);

  for (int i = 0; i < n; i++)
  {
    vcoord[i] = 0.0;
    for (int j = 0; j < m; j++)
      vcoord[i].addmul(v[j], matrix(i, j));
    for (int j = 0; j < i; j++)
      vcoord[i].submul(mu(i, j), vcoord[j]);
  }
  for (int i = 0; i < n; i++)
  {
    vcoord[i].div(vcoord[i], r(i, i));
  }
}

static void babai(const FP_mat<mpfr_t> &matrix, const Matrix<FP_NR<mpfr_t>> &mu,
                  const Matrix<FP_NR<mpfr_t>> &r, const vector<FP_NR<mpfr_t>> &target,
                  vector<FP_NR<mpfr_t>> &target_coord)
{

  int d = matrix.get_rows();
  get_gscoords(matrix, mu, r, target, target_coord);
  for (int i = d - 1; i >= 0; i--)
  {
    target_coord[i].rnd(target_coord[i]);
    for (int j = 0; j < i; j++)
      target_coord[j].submul(mu(i, j), target_coord[i]);
  }
}

int closest_vector(ZZ_mat<mpz_t> &b, const vector<Z_NR<mpz_t>> &int_target,
                   vector<Z_NR<mpz_t>> &sol_coord, int method, int flags)
{
  // d = lattice dimension (note that it might decrease during preprocessing)
  int d = b.get_rows();
  // n = dimension of the space
  int n = b.get_cols();

  FPLLL_CHECK(d > 0 && n > 0, "closestVector: empty matrix");
  FPLLL_CHECK(d <= n, "closestVector: number of vectors > size of the vectors");

  // Sets the floating-point precision
  // Error bounds on GSO are valid if prec >= minprec
  double rho;
  int min_prec = gso_min_prec(rho, d, LLL_DEF_DELTA, LLL_DEF_ETA);
  int prec     = max(53, min_prec + 10);
  int old_prec = FP_NR<mpfr_t>::set_prec(prec);

  // Allocates space for vectors and matrices in constructors
  ZZ_mat<mpz_t> empty_mat;
  MatGSO<Z_NR<mpz_t>, FP_NR<mpfr_t>> gso(b, empty_mat, empty_mat, GSO_INT_GRAM);
  vector<FP_NR<mpfr_t>> target_coord;
  FP_NR<mpfr_t> max_dist;
  Z_NR<mpz_t> itmp1;

  // Computes the Gram-Schmidt orthogonalization in floating-point
  gso.update_gso();
  gen_zero_vect(sol_coord, d);

  /* Applies Babai's algorithm. Because we use fp, it might be necessary to
      do it several times (if ||target|| >> ||b_i||) */
  FP_mat<mpfr_t> float_matrix(d, n);
  vector<FP_NR<mpfr_t>> target(n), babai_sol;
  vector<Z_NR<mpz_t>> int_new_target = int_target;

  for (int i = 0; i < d; i++)
    for (int j = 0; j < n; j++)
      float_matrix(i, j).set_z(b(i, j));

  for (int loop_idx = 0;; loop_idx++)
  {
    if (loop_idx >= 0x100 && ((loop_idx & (loop_idx - 1)) == 0))
      FPLLL_INFO("warning: possible infinite loop in Babai's algorithm");

    for (int i = 0; i < n; i++)
    {
      target[i].set_z(int_new_target[i]);
    }
    babai(float_matrix, gso.get_mu_matrix(), gso.get_r_matrix(), target, babai_sol);
    int idx;
    for (idx = 0; idx < d && babai_sol[idx] >= -1 && babai_sol[idx] <= 1; idx++)
    {
    }
    if (idx == d)
      break;

    for (int i = 0; i < d; i++)
    {
      itmp1.set_f(babai_sol[i]);
      sol_coord[i].add(sol_coord[i], itmp1);
      for (int j = 0; j < n; j++)
        int_new_target[j].submul(itmp1, b(i, j));
    }
  }
  // FPLLL_TRACE("BabaiSol=" << sol_coord);
  get_gscoords(float_matrix, gso.get_mu_matrix(), gso.get_r_matrix(), target, target_coord);

  /* Computes a very large bound to make the algorithm work
      until the first solution is found */
  max_dist = 0.0;
  for (int i = 1; i < d; i++)
  {
    // get_r_exp(i, i) = r(i, i) because gso is initialized without GSO_ROW_EXPO
    max_dist.add(max_dist, gso.get_r_exp(i, i));
  }

  vector<int> max_indices;
  if (method & CVPM_PROVED)
  {
    // For Exact CVP, we need to reset enum below depth with maximal r_i
    max_indices = vector<int>(d);
    int cur, max_index, previous_max_index;
    previous_max_index = max_index = d - 1;
    FP_NR<mpfr_t> max_val;

    while (max_index > 0)
    {
      max_val = gso.get_r_exp(max_index, max_index);
      for (cur = previous_max_index - 1; cur >= 0; --cur)
      {
        if (max_val <= gso.get_r_exp(cur, cur))
        {
          max_val   = gso.get_r_exp(cur, cur);
          max_index = cur;
        }
      }
      for (cur                        = max_index; cur < previous_max_index; ++cur)
        max_indices[cur]              = max_index;
      max_indices[previous_max_index] = previous_max_index;
      previous_max_index              = max_index;
      --max_index;
    }
  }
  FPLLL_TRACE("max_indices " << max_indices);

  FastErrorBoundedEvaluator evaluator(n, gso.get_mu_matrix(), gso.get_r_matrix(), EVALMODE_CV);

  // Main loop of the enumeration
  Enumeration<Z_NR<mpz_t>, FP_NR<mpfr_t>> enumobj(gso, evaluator, max_indices);
  enumobj.enumerate(0, d, max_dist, 0, target_coord);

  int result = RED_ENUM_FAILURE;
  if (!evaluator.empty())
  {
    FPLLL_TRACE("evaluator.bestsol_coord=" << evaluator.begin()->second);
    if (flags & CVP_VERBOSE)
      FPLLL_INFO("max_dist=" << max_dist);
    for (int i = 0; i < d; i++)
    {
      itmp1.set_f(evaluator.begin()->second[i]);
      sol_coord[i].add(sol_coord[i], itmp1);
    }
    result = RED_SUCCESS;
  }

  FP_NR<mpfr_t>::set_prec(old_prec);
  return result;
}

FPLLL_END_NAMESPACE