File: backtest-rollingStats.R

package info (click to toggle)
fportfolio 4023.84-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,876 kB
  • sloc: makefile: 2
file content (258 lines) | stat: -rw-r--r-- 7,567 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258

# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Library General Public
# License as published by the Free Software Foundation; either
# version 2 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Library General Public License for more details.
#
# You should have received a copy of the GNU Library General
# Public License along with this library; if not, write to the
# Free Foundation, Inc., 59 Temple Place, Suite 330, Boston,
# MA  02111-1307  US


################################################################################
# FUNCTION:              DESCRIPTION:
#  backtestStats          Wrapper function for calculating rolling statistics
# FUNCTION:              DESCRIPTION:
#  rollingSigma           Rolling portfolio Sigma risk
#  rollingVaR             Rolling Value at Risk
#  rollingCVaR            Rolling Conditional Value at Risk
#  rollingDar             Rolling Drawdowns at Risk
#  rollingCDaR            Rolling Conditional Drawdowns at Risk
################################################################################


backtestStats <- 
  function(object, FUN = "rollingSigma", ...)
  {
    # A function implemented by William Chen
    
    # Description:
    #   Wrapper function for calculating rolling statistics
    
    # Arguments:
    #   object - a list as returned by the function portfolioBacktesting()
    #   FUN - a character string, the name of the statistics function
    
    # Example:
    #   data = returns(align(SPISECTOR))
    #   formula <- SPI ~ BASI+INDU+CONG+HLTH+CONS+TELE+UTIL+FINA+TECH
    #   backtests <- portfolioBacktesting(formula, data, trace = FALSE) 
    #   portfolios <- portfolioSmoothing(backtests, portfolioBacktest())
    
    # FUNCTION:
    
    # Perform Statistics:
    statsFun <- match.fun(FUN)
    ans <- statsFun(object, ...)
    
    # Return Value
    ans
  }

# ------------------------------------------------------------------------------


rollingSigma <-
  function(object)
  {
    # A function implemented by William Chen and Diethelm Wuertz
    
    # Description:
    #   Returns rolling sigmas from an object of class fPFOLIOBACKTEST
    
    # Arguments:
    #   object - a list as returned by the function portfolioBacktesting()
    
    # Example:
    #   rollingSigma(object)
    
    # FUNCTION:
    
    # quick fix ... there is some confusion with getTargetRisk of
    # @portfolio and @spec
    portfolios <- object$strategyList
    prtval <- lapply(portfolios, slot, "portfolio")
    ans <- sapply(prtval, function(x) getTargetRisk(x)["Sigma"])
    dates <- sapply(portfolios, function(x) rev(rownames(getSeries(x)))[1])
    
    # Return Value:
    timeSeries(ans, charvec = dates, units = "Sigma")
  }


# ------------------------------------------------------------------------------


rollingVaR <-
  function(object)
  {
    # A function implemented by William Chen
    
    # Description:
    #   Returns rolling VaR from an object of class fPFOLIOBACKTEST
    
    # Arguments:
    #   object - a list as returned by the function portfolioBacktesting()
    
    # Example:
    #   rollingVaR(object)
    
    # FUNCTION:
    
    # calculate VaR for one portfolio:
    .var <- function(x) {
      alpha <- getAlpha(x)
      R <- as.numeric(getSeries(x) %*% getWeights(x))
      quantile(R, probs = alpha)
    }
    
    # Get Portfolios:
    portfolios <- object$strategyList
    
    # Calculates VaR for all portfolios:
    ans <- sapply(portfolios, FUN = .var)
    
    # Extracts the dates:
    dates <- sapply(portfolios, function(x) rev(rownames(getSeries(x)))[1])
    
    # Return Value:
    alpha <- getAlpha(portfolios[[1]])
    timeSeries(ans, charvec = dates, units = paste("VaR", alpha, sep = "."))
  }


# ------------------------------------------------------------------------------


rollingCVaR <- 
  function(object)
  {
    # A function implemented by William Chen
    
    # Description:
    #   Returns rolling DVaR from an object of class fPFOLIOBACKTEST
    
    # Arguments:
    #   object - a list as returned by the function portfolioBacktesting()
    
    # Example:
    #   rollingCVaR(object)
    
    # FUNCTION:
    
    # Calculate CVaR for one portfolio:
    .cvar <- function(x) {
      alpha <- getAlpha(x)
      R <- as.numeric(getSeries(x) %*% getWeights(x))
      z <- quantile(R, probs = alpha)
      mean(R[R <= z], na.rm = TRUE)
    }
    
    # Get Portfolios:
    portfolios <- object$strategyList
    
    # Calculate CVaR for all portfolios:
    ans <- sapply(portfolios, FUN = .cvar)
    
    # Extract the Dates:
    dates <- sapply(portfolios, function(x) rev(rownames(getSeries(x)))[1])
    
    # Return:
    alpha <- getAlpha(portfolios[[1]])
    timeSeries(ans, charvec = dates, units = paste("CVaR", alpha, sep = "."))
  }


# ------------------------------------------------------------------------------


rollingDaR <-
  function(object)
  {
    # A function implemented by William Chen
    
    # Description:
    #   Returns rolling DaR from an object of class fPFOLIOBACKTEST
    
    # Arguments:
    #   object - a list as returned by the function portfolioBacktesting()
    
    # Example:
    #   rollingDaR(object)
    
    # FUNCTION:
    
    # calculate DaR for one portfolio:
    .dar <- function(x) {
      alpha <- getAlpha(x)
      R <- as.numeric(getSeries(x) %*% getWeights(x))
      dd <- 100 * drawdowns(as.timeSeries(R)/100)
      quantile(dd, probs = alpha)
    }
    
    # Get Portfolios:
    portfolios <- object$strategyList
    
    # Calculates DaR for all portfolios:
    ans <- sapply(portfolios, FUN = .dar)
    
    # Extracts the dates:
    dates <- sapply(portfolios, function(x) rev(rownames(getSeries(x)))[1])
    
    # Return:
    alpha <- getAlpha(portfolios[[1]])
    timeSeries(ans, charvec = dates, units = paste("DaR", alpha, sep = "."))
  }


# ------------------------------------------------------------------------------


rollingCDaR <- 
  function(object)
  {
    # A function implemented by William Chen
    
    # Description:
    #   Returns rolling CDaR from an object of class fPFOLIOBACKTEST
    
    # Arguments:
    #   object - a list as returned by the function portfolioBacktesting()
    
    # Example:
    #   rollingCDaR(object)
    
    # FUNCTION:
    
    # Calculate CDaR for one portfolio:
    .cdar <- function(x){
      alpha <- getAlpha(x)
      R <- as.numeric(getSeries(x) %*% getWeights(x))
      dd <- 100 * drawdowns(as.timeSeries(R)/100)
      z <- quantile(as.numeric(dd), probs = alpha)
      mean(dd[dd <= z])
    }
    
    # Get Portfolios:
    portfolios <- object$strategyList
    
    # Calculate CVaR for all portfolios:
    ans <- sapply(portfolios, FUN = .cdar)
    
    # Extract the dates:
    dates <- sapply(portfolios, function(x) rev(rownames(getSeries(x)))[1])
    
    # Return:
    alpha <- getAlpha(portfolios[[1]])
    timeSeries(ans, charvec = dates, units = paste("CDaR", alpha, sep = "."))
  }


################################################################################