1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
|
# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Library General Public
# License as published by the Free Software Foundation; either
# version 2 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR Description. See the
# GNU Library General Public License for more details.
#
# You should have received a copy of the GNU Library General
# Public License along with this library; if not, write to the
# Free Foundation, Inc., 59 Temple Place, Suite 330, Boston,
# MA 02111-1307 USA
################################################################################
# FUNCTION: DESCRIPTION:
# solveRquadprog Portfolio interface to solver Rquadprog
# .rquadprogArguments Returns arguments for solver
# .rquadprog Wrapper to solver function
################################################################################
solveRquadprog <-
function(data, spec, constraints)
{
# A function implemented by Diethelm Wuertz
# Description:
# Portfolio interface to solver Rquadprog
# FUNCTION:
# Transform Data:
Data <- portfolioData(data, spec)
data <- getSeries(Data)
nAssets <- getNAssets(Data)
# Compile Arguments for Solver:
args <- .rquadprogArguments(Data, spec, constraints)
# Solve Multiassets Portfolio:
ans <- .rquadprog(
Dmat = args$Dmat,
dvec = args$dvec,
Amat = args$Amat,
bvec = args$bvec,
meq = args$meq)
# Save Arguments:
ans$optim$args <- args
# class:
class(ans) = c("solver", "list")
# Return Value:
ans
}
################################################################################
.rquadprogArguments <-
function(data, spec, constraints)
{
# A function implemented by Diethelm Wuertz
# Description:
# Returns quadprog conform arguments for the solver
# FUNCTION:
# Data and Constraints as S4 Objects:
Data <- portfolioData(data, spec)
data <- getSeries(Data)
Sigma <- getSigma(Data)
nAssets <- getNAssets(Data)
# Set up A_mat of Constraints:
eqsumW <- eqsumWConstraints(Data, spec, constraints)
minsumW <- minsumWConstraints(Data, spec, constraints)
maxsumW <- maxsumWConstraints(Data, spec, constraints)
Amat = rbind(eqsumW[, -1], diag(nAssets), -diag(nAssets))
if(!is.null(minsumW)) Amat = rbind(Amat, minsumW[, -1])
if(!is.null(maxsumW)) Amat = rbind(Amat, -maxsumW[, -1])
# Set up Vector A_mat >= bvec of Constraints:
minW <- minWConstraints(Data, spec, constraints)
maxW <- maxWConstraints(Data, spec, constraints)
bvec <- c(eqsumW[, 1], minW, -maxW)
if(!is.null(minsumW)) bvec = c(bvec, minsumW[, 1])
if(!is.null(maxsumW)) bvec = c(bvec, -maxsumW[, 1])
# Part (meq=1) or Full (meq=2) Investment, the Default ?
meq <- nrow(eqsumW)
# Directions:
dir <- c(
rep("==", times = meq),
rep(">=", times = length(bvec) - meq))
# Return Value:
list(
Dmat = Sigma,
dvec = rep(0, nAssets),
Amat = t(Amat),
bvec = bvec,
meq = meq,
dir = dir)
}
################################################################################
.rquadprog <-
function(Dmat, dvec, Amat, bvec, meq)
{
# A function implemented by Diethelm Wuertz
# Description:
# Goldfarb and Idnani's quadprog solver function
# Note:
# Requires to load contributed R package quadprog from which we use
# the Fortran subroutine of the quadratic solver.
# Package: quadprog
# Title: Functions to solve Quadratic Programming Problems.
# Author: S original by Berwin A. Turlach <berwin.turlach@anu.edu.au>
# R port by Andreas Weingessel <Andreas.Weingessel@ci.tuwien.ac.at>
# Maintainer: Andreas Weingessel <Andreas.Weingessel@ci.tuwien.ac.at>
# Description: This package contains routines and documentation for
# solving quadratic programming problems.
# License: GPL-2
# Value of slove.QP():
# solution - vector containing the solution of the quadratic
# programming problem.
# value - scalar, the value of the quadratic function at the
# solution
# unconstrained.solution - vector containing the unconstrained
# minimizer of the quadratic function.
# iterations - vector of length 2, the first component contains
# the number of iterations the algorithm needed, the second
# indicates how often constraints became inactive after
# becoming active first. vector with the indices of the
# active constraints at the solution.
# FUNCTION:
# Optimize:
optim <- try(quadprog::solve.QP(Dmat, dvec, Amat, bvec, meq), silent = TRUE)
if (inherits(optim, "try-error")) {
weights <- rep(0, length(dvec))
optim <- list()
status <- 1
} else {
# Set Tiny Weights to Zero:
weights <- .checkWeights(optim$solution)
attr(weights, "invest") = sum(weights)
status <- 0
}
# Compose Output List:
ans <- list(
type = "MV",
solver = "solveRquadprog",
optim = optim,
weights = weights,
targetReturn = bvec[1],
targetRisk = sqrt(weights %*% Dmat %*% weights)[[1, 1]],
objective = sqrt(weights %*% Dmat %*% weights)[[1, 1]],
status = status,
message = NA)
# Return Value:
ans
}
################################################################################
|