File: nlminb2.Rd

package info (click to toggle)
fportfolio 4023.84-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,876 kB
  • sloc: makefile: 2
file content (123 lines) | stat: -rw-r--r-- 3,253 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
\name{nlminb2}


\alias{nlminb2}


\title{Constrained nonlinear minimization}
    
    
\description{

    Solve constrained nonlinear minimization 
    problem with nonlinear constraints using 
    a penalty and barrier approach.
    
}


\usage{
nlminb2(start, objective, eqFun = NULL, leqFun = NULL,  
    lower = -Inf, upper = Inf, gradient = NULL, hessian = NULL, 
    control = list(), env = .GlobalEnv)
}


\arguments{

    \item{start}{
        a numeric vector, initial values for the parameters to be 
        optimized.}
  
    \item{objective}{
        function to be minimized. Must return a scalar value (possibly 
        NA/Inf). The first argument to objective is the vector of 
        parameters to be optimized, whose initial values are supplied 
        through \code{start}. Further arguments (fixed during the course 
        of the optimization) to objective may be specified as well.
        see \code{env}. }
  
    \item{eqFun}{
        a list of functions describing equal constraints.}
  
    \item{leqFun}{
        a list of functions describing less equal constraints.}
  
    \item{lower, upper}{
        two vectors of lower and upper bounds, replicated to be as long 
        as \code{start}. If unspecified, all parameters are assumed to 
        be unconstrained.}
 
    \item{gradient}{
        an optional function that takes the same arguments as \code{objective} 
        and evaluates the gradient of \code{objective} at its first argument. 
        Must return a vector as long as \code{start}.}

    \item{hessian}{
        an optional function that takes the same arguments as \code{objective} 
        and evaluates the hessian of \code{objective} at its first argument. 
        Must return a square matrix of order \code{length(start)}. Only the 
        lower triangle is used.}
 
    \item{control}{
        a list of control parameters. See below for details.}

    \item{env}{
        the environment in which objective, constraint, control
        functions are evaluated.}
 
}


\value{

    A list with following elements:
  
    \item{par}{
        a numeric vector, the best set of parameters found.}
    
    \item{objective}{
        a numeric value, the value of \code{objective} corresponding 
        to \code{par}.}
  
    \item{convergence}{
        an integer code, 0 indicates successful convergence.}
  
    \item{message}{
        a character string giving any additional information returned 
        by the optimizer, or NULL. For details, see PORT documentation.}

    \item{iterations}{
        am integer value, the number of iterations performed.}

    \item{evaluations}{
        an integer value, the number of objective function and gradient 
        function evaluations.}
        
}


\author{ 

    For the R port of \code{nlminb} Douglas Bates and Deepayan Sarkar,
    for the R/Rmetrics port of \code{nlminb2} Diethelm Wuertz,
    for the PORT library netlib.bell-labs.com.
    
}


\references{

Paul A. Jensen & Jonathan F. Bard, 
Operations Research Models and Methods, 2001
Appendix A, Algorithms for Constrained Optimization,
\url{https://www.me.utexas.edu/~jensen/ORMM/supplements/index.html}.

PORT Library,
\url{https://netlib.org/port/}.

}


\keyword{optimize}