1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
|
# -*- coding: utf-8 -*-
import sys
import pytest
from fpylll import GSO, IntegerMatrix, LLL
from fpylll.config import float_types, int_types
from copy import copy
import tools
if sys.maxsize >= 2**62:
dimensions = ((0, 0), (2, 2), (3, 3), (10, 10), (30, 30), (50, 50), (60, 60))
else:
dimensions = ((0, 0), (2, 2), (3, 3), (10, 10), (30, 30))
def make_integer_matrix(m, n, int_type="mpz"):
A = IntegerMatrix(m, n, int_type=int_type)
A.randomize("qary", k=m//2, bits=max(1, m))
return A
def test_gso_init():
for int_type in int_types:
for m, n in dimensions:
A = make_integer_matrix(m, n, int_type=int_type)
for float_type in float_types:
M = GSO.Mat(copy(A), float_type=float_type)
del M
U = IntegerMatrix(m, m, int_type=int_type)
M = GSO.Mat(copy(A), U=U, float_type=float_type)
del M
UinvT = IntegerMatrix(m, m, int_type=int_type)
M = GSO.Mat(copy(A), U=U, UinvT=UinvT, float_type=float_type)
del M
def test_gso_d():
for int_type in int_types:
for m, n in dimensions:
A = make_integer_matrix(m, n, int_type=int_type)
for float_type in float_types:
M = GSO.Mat(copy(A), float_type=float_type)
assert M.d == m
def test_gso_int_gram_enabled():
for int_type in int_types:
for m, n in dimensions:
A = make_integer_matrix(m, n, int_type=int_type)
for float_type in float_types:
M = GSO.Mat(copy(A), float_type=float_type)
assert M.int_gram_enabled is False
assert M.transform_enabled is False
M = GSO.Mat(copy(A), float_type=float_type, flags=GSO.INT_GRAM)
assert M.int_gram_enabled is True
assert M.transform_enabled is False
if m and n:
U = IntegerMatrix(m, m, int_type=int_type)
M = GSO.Mat(copy(A), U=U, float_type=float_type)
assert M.transform_enabled is True
assert M.inverse_transform_enabled is False
UinvT = IntegerMatrix(m, m, int_type=int_type)
M = GSO.Mat(copy(A), U=U, UinvT=UinvT, float_type=float_type)
assert M.transform_enabled is True
assert M.inverse_transform_enabled is True
def test_gso_update_gso():
EPSILON = 0.0001
for int_type in int_types:
for m, n in dimensions:
A = make_integer_matrix(m, n, int_type=int_type)
LLL.reduction(A)
r00 = []
re00 = []
g00 = []
for float_type in float_types:
M = GSO.Mat(copy(A), float_type=float_type)
M.update_gso()
if (m, n) == (0, 0):
continue
r00.append(M.get_r(0, 0))
re00.append(M.get_r_exp(0, 0)[0])
g00.append(M.get_gram(0, 0))
for i in range(1, len(r00)):
assert r00[0] == pytest.approx(r00[i], rel=EPSILON)
assert re00[0] == pytest.approx(re00[i], rel=EPSILON)
assert g00[0] == pytest.approx(g00[i], rel=EPSILON)
def test_gso_babai():
for int_type in int_types:
for m, n in ((0, 0), (2, 2), (3, 3), (10, 10), (30, 30)):
if m <= 2 or n <= 2:
continue
A = make_integer_matrix(m, n, int_type=int_type)
v = list(A[0])
LLL.reduction(A)
for float_type in float_types:
M = GSO.Mat(copy(A), update=True, float_type=float_type)
try:
w = M.babai(v)
v_ = IntegerMatrix.from_iterable(1, m, w) * A
v_ = list(v_[0])
assert v == v_
except NotImplementedError:
pass
def test_gso_conversion():
for int_type in int_types:
for m, n in ((0, 0), (2, 2), (3, 3), (10, 10), (30, 30)):
if m <= 2 or n <= 2:
continue
A = make_integer_matrix(m, n, int_type=int_type)
v = list(A[0])
LLL.reduction(A)
for float_type in float_types:
M = GSO.Mat(copy(A), update=True, float_type=float_type)
try:
w = M.from_canonical(v)
v_ = [int(round(v__)) for v__ in M.to_canonical(w)]
assert v == v_
except NotImplementedError:
pass
def test_gso_coherence_gram_matrix():
"""
Test if the GSO is coherent if it is given a matrix A or its associated
Gram matrix A*A^T
"""
EPSILON = 0.0001
for int_type in int_types:
for m, n in dimensions:
# long is not tested for high dimensions because of integer overflow
if m > 20 and int_type == "long":
continue
A = make_integer_matrix(m, n, int_type=int_type).transpose()
G = tools.compute_gram(A)
for float_type in float_types:
M_A = GSO.Mat(copy(A), float_type=float_type, gram=False, flags=GSO.INT_GRAM)
M_A.update_gso()
M_G = GSO.Mat(copy(G), float_type=float_type, gram=True, flags=GSO.INT_GRAM)
M_G.update_gso()
# Check that the gram matrix coincide
for i in range(m):
for j in range(i):
assert M_A.get_int_gram(i, j) == G[i, j]
# Check if computations coincide
for i in range(m):
assert M_A.get_r(i, i) == pytest.approx(M_G.get_r(i, i), rel=EPSILON)
for j in range(i):
assert M_A.get_r(i, j) == pytest.approx(M_G.get_r(i, j), rel=EPSILON)
assert M_A.get_mu(i, j) == pytest.approx(M_G.get_mu(i, j), rel=EPSILON)
|