1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
|
comment {
This Fractint formula file is by Bradley Beacham, (c) April 1994.
I encourage you to copy and distribute it, but only if it is unaltered.
If you make changes to any of these formulas, please put your changes in
a new '.FRM' file.
Early versions of most of these formulas have already been released in
either BLB.FRM or MONGO.FRM. This file collects them in an improved
format and adds ten new formulas.
The parameter file OVERKILL.PAR has many examples of the images I have
created with these formulas, as well as lots of other fractal types.
I welcome any comments. Reach me at:
CIS: 74223,2745 Internet: 74223,2745@compuserve.com
U.S. Mail: Bradley Beacham
1343 S. Tyler
Salt Lake City, Utah 84105
U.S.A.
NOTE: You'll usually get more interesting results by using floating-point
math.
}
{-------------------------------------------------------------------------}
comment {
Earlier versions of the formulas OK-01 to OK-22 appeared in the file
BLB.FRM (June 1993), where they were named BLB-1 to BLB-22. In these
'improved' versions, I added default values for any numeric parameters
you may supply, so you don't get a blank screen by leaving them at zero.
These were my first attempts at inventing new formulas. I basically used
the 'monkey-pounding-on-the-keyboard' technique, but still got some
interesting results.
}
OK-01 { ;TRY P1 REAL = 10000, FN1 = SQR
z = 0, c = pixel:
z = (c^z) + c;
z = fn1(z),
|z| <= (5 + p1)
}
OK-02 { ;TRY FN1 = COTAN
z = c = pixel, k = 1 + p1:
z = (c^z) + c;
z = fn1(z) * k,
|z| <= (5 + p2)
}
OK-03 { ;TRY P1 REAL = 500, FN1 = COS, FN2 = SQR
z = c = pixel:
z = fn1(z)/c;
z = fn2(z),
|z| <= (5 + p1)
}
OK-04 { ;TRY FN2 = SQR, DIFFERENT FUNCTIONS FOR FN1
z = 0, c = fn1(pixel):
z = fn2(z) + c,
|z| <= (5 + p1)
}
OK-05 {
z = pixel, k = -2,2 + p1:
z = (z^k + z) / k,
(1 + p2) <= |z|
}
OK-06 { ;TRY FN1 = SQR, FN2 = SQR
z = c = pixel, d = fn1(pixel):
z = fn2(z / d) + c
|z| <= (5 + p1)
}
OK-07 {
z = 0, c = pixel:
z = c * (z + c);
z = fn1(z + c),
|z| <= (5 + p1)
}
OK-08 {
z = pixel, c = fn1(pixel):
z = z^z / fn2(z);
z = c / z,
|z| <= (5 + p1)
}
OK-09 {
z = c = pixel, d = fn1(pixel), k = 1 + p1:
z = z^c * k;
z = d / z,
|z| <= (5 + p2)
}
OK-10 {
z = 0, c = pixel, k1 = 1 + p1, k2 = 1 + p2:
z = (z * k1) + c;
z = fn1(z) / (k2 + c),
|z| <= (k2)
}
OK-11 { ;TRY FN1 = SQR, FN2 = SQR
z = 0, v = pixel:
z = fn1(v) + z;
v = fn2(z) + v,
|z| <= (5 + p1)
}
OK-12 { ;TRY FN1 = SQR, FN2 = SQR
z = c = pixel:
z = fn1(z) + c;
z = fn2(z) / c,
|z| <= (5 + p1)
}
OK-13 { ;TRY FN1 = SQR, FN2 = SQR
z = 0, c = fn1(pixel) :
z = fn1(z) + c;
z = fn2(z),
|z| <= (5 + p1)
}
OK-14 { ;FOUR FUNCTIONS TO PLAY WITH HERE. GO CRAZY.
z = 0, c = pixel :
z = fn1(z+c) + c;
z = fn2(z-c) + c;
z = fn3(z*c) + c;
z = fn4(z/c) + c,
|z| <= (5 + p1)
}
OK-15 {
z = 0, v = pixel :
z = fn1(v*z) + v;
v = fn2(v/z),
|z| <= (5 + p1)
}
OK-16 {
z = v = pixel :
z = fn1(z)^v;
v = v + z,
|z| <= (5 + p1)
}
OK-17 {
z = c = pixel, r = real(pixel), i = imag(pixel):
z = z^r + z^i + c;
z = z + real(fn1(z)) + imag(fn2(z)),
|z| <= (5 + p1)
}
OK-18 {
z = v = pixel:
z = fn1(v) + real(z);
v = fn2(z) + imag(v),
|z| <= (5 + p1)
}
OK-19 {
a = b = z = pixel:
a = fn1(b) + fn2(z);
b = fn1(z) + fn2(a);
z = fn1(a) + fn2(b),
|z| <= (5 + p1)
}
OK-20 {
a = b = c = z = pixel:
a = fn1(b) + c^z;
b = fn2(a+c);
z = z + (a * b * c),
|z| <= (5 + p1)
}
OK-21 {
z = pixel, c = fn1(pixel):
z = fn2(z) + c,
fn3(z) <= p1
}
OK-22 {
z = v = pixel:
v = fn1(v) * fn2(z);
z = fn1(z) / fn2(v),
|z| <= (5 + p1)
}
{-------------------------------------------------------------------------}
comment {
Earlier versions of the formulas OK-23 to OK-35 appeared in the file
MONGO.FRM (August 1993), where they were named MONGO-01 to MONGO-13. In
these 'improved' versions, I added default values for any numeric
parameters you may supply, so you don't get a blank screen by leaving
them at zero.
Most of these formulas are experiments with a crude sort of IF/ELSE
logic (an idea I swiped from Jon Osuch's SELECT.FRM) and produce images
with interesting discontinuities.
}
OK-23 {
z = c = pixel, k = 1 + p1:
z = k * fn1(z^z + c) + c/z,
|z| <= (5 + p2)
}
OK-24 { ;TRY P1 REAL = -2, FN1 = SQR, FN2 = RECIP
z = 0, c = pixel, k = 1 + p1:
z = fn2(fn1(z) + c) + (k * z),
|z| <= (5 + p2)
}
OK-25 {
z = c = pixel, k = 1 + p1:
a = (abs(z) > k) * (fn1(z) + c);
b = (abs(z) <= k) * (fn2(z) + c);
z = a + b,
|z| <= (5 + p2)
}
OK-26 {
z = c = pixel, k = 2 + p1, test = k/(2 + p2):
a = fn1(z);
b = (|z| > test) * (a - c);
d = (|z| <= test) * (a + c);
z = b + d,
|z| <= k
}
OK-27 {
z = pixel, c = fn1(pixel), k = 1 + p1:
a = fn2(z);
b = (|z| >= k) * (a - c);
d = (|z| < k) * (a + c);
z = a + b + d,
|z| <= (10 + p2)
}
OK-28 {
z = c = pixel, d = fn1(pixel), k = p1:
a = fn2(z);
b = (z <= k) * (a + c + d);
e = (z > k) * (a + c - d);
z = z + b + e,
|z| <= (10 + p2)
}
OK-29 {
z = v = pixel, k = 1 + p1:
oldz = z;
z = fn1(z)^k + v;
v = oldz,
|z| <= (5 + p2)
}
OK-30 {
z = v = pixel, k = .5 + p1:
a = fn1(z);
b = (z <= k) * (a + v);
e = (z > k) * (a - v);
v = z;
z = b + e,
|z| <= (5 + p2)
}
OK-31 {
z = v = pixel, k = .1 + p1:
a = fn1(z);
b = (a <= k) * (a + v);
e = (a > k) * fn2(a);
v = z;
z = b + e,
|z| <= (5 + p2)
}
OK-32 {
z = y = x = pixel, k = 1 + p1:
a = fn1(z);
b = (a <= y) * ((a * k) + y);
e = (a > y) * ((a * k) + x);
x = y;
y = z;
z = b + e,
|z| <= (5 + p2)
}
OK-33 {
z = y = x = pixel, k = 1 + p1:
a = (|y| <= k) * fn1(y);
b = (|x| <= k) * fn2(x);
x = y;
y = z;
z = fn3(z) + a + b,
|z| <= (10 + p2)
}
OK-34 {
z = pixel, c = (fn1(pixel) * p1):
x = abs(real(z));
y = abs(imag(z));
a = (x <= y) * (fn2(z) + y + c);
b = (x > y) * (fn2(z) + x + c);
z = a + b,
|z| <= (10 + p2)
}
OK-35 {
z = pixel, k = 1 + p1:
v = fn1(z);
x = (z*v);
y = (z/v);
a = (|x| <= |y|) * ((z + y) * k);
b = (|x| > |y|) * ((z + x) * k);
z = fn2((a + b) * v) + v,
|z| <= (10 + p2)
}
{-------------------------------------------------------------------------}
comment {
The remaining formulas, OK-36 to OK-45, are new to OVERKILL.FRM. Some of
these formulas use an approach I call 'disection' (for lack of a better
term), and were inspired by a nifty CD-ROM called "Fractal Ecstasy".
(It's made by Deep River Publishing.)
Anyway, the idea is to calculate the real and imaginary parts of complex
numbers separately using standard algebra. The advantage is that
variables and functions can be applied in ways that would be difficult
using the conventional approach. The disadvantage is that the formula is
more complicated.
Suggestion: When you experiment with the 'disected' formulas, start by
setting all functions to IDENT. Then change one or two of the parameters
at a time.
}
OK-36 { ; DISECTED MANDELBROT
; TO GENERATE "STANDARD" MANDELBROT, SET P1 = 0,0 & ALL FN = IDENT
z = pixel, cx = fn1(real(z)), cy = fn2(imag(z)), k = 2 + p1:
zx = real(z), zy = imag(z);
x = fn3(zx*zx - zy*zy) + cx;
y = fn4(k * zx * zy) + cy;
z = x + flip(y),
|z| < (10 + p2)
}
OK-37 { ; ANOTHER DISECTED MANDELBROT
; TO GENERATE "STANDARD" MANDELBROT, SET P1 = 0,0 & ALL FN = IDENT
z = pixel, c = fn1(fn2(z)), cx = real(c), cy = imag(c), k = 2 + p1:
zx = fn3(real(z)), zy = fn4(imag(z));
x = zx*zx - zy*zy + cx;
y = k * zx * zy + cy;
z = x + flip(y),
|z| < (10 + p2)
}
OK-38 { ; DISECTED CUBIC MANDELBROT
; TO GENERATE "STANDARD" CUBIC MANDELBROT, SET P1 = 0,0 & ALL FN = IDENT
z = pixel, cx = fn1(real(pixel)), cy = fn2(imag(pixel)), k = 3 + p1:
zx = real(z), zy = imag(z);
x = fn3(zx*zx*zx - k*zx*zy*zy) + cx;
y = fn4(k*zx*zx*zy - zy*zy*zy) + cy;
z = x + flip(y),
|z| < (4 + p2)
}
OK-39 { ; JUST AN EXPERIMENT
z = pixel, c = fn1(z), k = p1:
z = fn2(z*c + k) + c,
|z| <= (20 + p2)
}
OK-40 { ; DISECTED OK-39
; (ASSUMING YOU USE OK-39 WITH FN1= IDENT & FN2 = SQR...)
z = pixel, cx = fn1(real(pixel)), cy = fn2(imag(pixel)), k = 2 + p1:
zx = real(z), zy = imag(z);
a = zx*cx - zy*cy;
b = cx*zy + zx*cy;
x = fn3(a*a - b*b) + cx;
y = fn4(k*a*b) + cy;
z = x + flip(y),
|z| <= (10 + p2)
}
OK-41 { ; DISECTED MANDELLAMBDA
z = 0.5 + p1, lx = fn1(real(pixel)), ly = fn2(imag(pixel)):
zx = real(z), zy = imag(z);
x = fn3(lx*zx + 2*ly*zx*zy - ly*zy - lx*zx*zx + lx*zy*zy);
y = fn4(ly*zx - 2*lx*zx*zy + lx*zy - ly*zx*zx + ly*zy*zy);
z = x + flip(y),
|z| <= (10 + p2)
}
OK-42 { ; MUTATION OF FN + FN
z = pixel, p1x = real(p1)+1, p1y = imag(p1)+1,
p2x = real(p2)+1, p2y = imag(p2)+1:
zx = real(z), zy = imag(z);
x = fn1(zx*p1x - zy*p1y) + fn2(zx*p2x - zy*p2y);
y = fn3(zx*p1y + zy*p1x) + fn4(zx*p2y + zy*p2x);
z = x + flip(y),
|z| <= 20
}
OK-43 { ; DISECTED SPIDER
; TO GENERATE "STANDARD" SPIDER, SET P1 = 0,0 & ALL FN = IDENT
z = c = pixel, k = 2 + p1:
zx = real(z), zy = imag(z);
cx = real(c), cy = imag(c);
x = fn1(zx*zx - zy*zy) + cx;
y = fn2(k*zx*zy) + cy;
z = x + flip(y);
c = fn3((cx + flip(cy))/k) + z,
|z| < (10 + p2)
}
OK-44 { ; DISECTED MANOWAR
; TO GENERATE "STANDARD" MANOWAR, SET P1 = 0,0 & ALL FN = IDENT
z = pixel, z1x = cx = real(pixel), z1y = cy = imag(pixel),
k = 2 + p1:
oldzx = zx = real(z), oldzy = zy = imag(z);
x = fn1(zx*zx - zy*zy) + fn2(z1x) + cx;
y = fn3(k*zx*zy) + fn4(z1y) + cy;
z = x + flip(y);
z1x = oldzx, z1y = oldzy,
|z| <= (10 + p2)
}
OK-45 { ; ANOTHER LITTLE QUICKY
z = pixel, c = fn1(pixel), ka = 1 + p1, kb = 1 + p2:
a = fn2(z), b = fn3(z);
z = ka*a*a*a + kb*b*b + c,
|z| <= 10
}
|