File: overkill.frm

package info (click to toggle)
fractxtra 6-7
  • links: PTS
  • area: non-free
  • in suites: etch, etch-m68k, lenny, sarge
  • size: 4,064 kB
  • ctags: 69
  • sloc: ansic: 343; makefile: 32; sh: 14
file content (441 lines) | stat: -rw-r--r-- 10,578 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
comment {
  This Fractint formula file is by Bradley Beacham, (c) April 1994.
  I encourage you to copy and distribute it, but only if it is unaltered.
  If you make changes to any of these formulas, please put your changes in
  a new '.FRM' file.

  Early versions of most of these formulas have already been released in
  either BLB.FRM or MONGO.FRM.  This file collects them in an improved
  format and adds ten new formulas.

  The parameter file OVERKILL.PAR has many examples of the images I have
  created with these formulas, as well as lots of other fractal types.
  
  I welcome any comments.  Reach me at:

    CIS: 74223,2745    Internet: 74223,2745@compuserve.com

    U.S. Mail: Bradley Beacham
               1343 S. Tyler
               Salt Lake City, Utah  84105
               U.S.A.
  
  NOTE: You'll usually get more interesting results by using floating-point
        math.  
}

{-------------------------------------------------------------------------}

comment {
  Earlier versions of the formulas OK-01 to OK-22 appeared in the file
  BLB.FRM (June 1993), where they were named BLB-1 to BLB-22.  In these
  'improved' versions, I added default values for any numeric parameters
  you may supply, so you don't get a blank screen by leaving them at zero.

  These were my first attempts at inventing new formulas.  I basically used
  the 'monkey-pounding-on-the-keyboard' technique, but still got some
  interesting results.
}

OK-01 { ;TRY P1 REAL = 10000, FN1 = SQR
   z = 0, c = pixel:
   z = (c^z) + c;
   z = fn1(z),
   |z| <= (5 + p1)
  }

OK-02 { ;TRY FN1 = COTAN
   z = c = pixel, k = 1 + p1:
   z = (c^z) + c;
   z = fn1(z) * k,
   |z| <= (5 + p2)
  }

OK-03 { ;TRY P1 REAL = 500, FN1 = COS, FN2 = SQR
   z = c = pixel:
   z = fn1(z)/c;
   z = fn2(z),
   |z| <= (5 + p1)
  }

OK-04 { ;TRY FN2 = SQR, DIFFERENT FUNCTIONS FOR FN1
   z = 0, c = fn1(pixel):
   z = fn2(z) + c,
   |z| <= (5 + p1)
  }

OK-05 {
   z = pixel, k = -2,2 + p1:
   z = (z^k + z) / k,
   (1 + p2) <= |z|
  }

OK-06 { ;TRY FN1 = SQR, FN2 = SQR
   z = c = pixel, d = fn1(pixel):
   z = fn2(z / d) + c 
   |z| <= (5 + p1)
  }

OK-07 {
   z = 0, c = pixel:
   z = c * (z + c);
   z = fn1(z + c),
   |z| <= (5 + p1)
  }

OK-08 {
   z = pixel, c = fn1(pixel):
   z = z^z / fn2(z);
   z = c / z,
   |z| <= (5 + p1)
  }

OK-09 {
   z = c = pixel, d = fn1(pixel), k = 1 + p1:
   z = z^c * k;
   z = d / z,
   |z| <= (5 + p2)
  }

OK-10 {
   z = 0, c = pixel, k1 = 1 + p1, k2 = 1 + p2:
   z = (z * k1) + c;
   z = fn1(z) / (k2 + c),
   |z| <= (k2)
  }

OK-11 { ;TRY FN1 = SQR, FN2 = SQR
   z = 0, v = pixel:
   z = fn1(v) + z;
   v = fn2(z) + v,
   |z| <= (5 + p1)
  }

OK-12 { ;TRY FN1 = SQR, FN2 = SQR
   z = c = pixel:
   z = fn1(z) + c;
   z = fn2(z) / c,
   |z| <= (5 + p1)
  }

OK-13 { ;TRY FN1 = SQR, FN2 = SQR
   z = 0, c = fn1(pixel) :
   z = fn1(z) + c;
   z = fn2(z),
   |z| <= (5 + p1)
  }

OK-14 { ;FOUR FUNCTIONS TO PLAY WITH HERE.  GO CRAZY.
   z = 0, c = pixel :
   z = fn1(z+c) + c;
   z = fn2(z-c) + c;
   z = fn3(z*c) + c;
   z = fn4(z/c) + c,
   |z| <= (5 + p1)
  }

OK-15 {
   z = 0, v = pixel :
   z = fn1(v*z) + v;
   v = fn2(v/z),
   |z| <= (5 + p1)
  }

OK-16 {
   z = v = pixel :
   z = fn1(z)^v;
   v = v + z,
   |z| <= (5 + p1)
  }

OK-17 {
   z = c = pixel, r = real(pixel), i = imag(pixel):
   z = z^r + z^i + c;
   z = z + real(fn1(z)) + imag(fn2(z)),
   |z| <= (5 + p1)
  }

OK-18 {
   z = v = pixel:
   z = fn1(v) + real(z);
   v = fn2(z) + imag(v),
   |z| <= (5 + p1)
  }
  
OK-19 {
   a = b = z = pixel:
   a = fn1(b) + fn2(z);
   b = fn1(z) + fn2(a);
   z = fn1(a) + fn2(b),
   |z| <= (5 + p1)
  }

OK-20 {
   a = b = c = z = pixel:
   a = fn1(b) + c^z;
   b = fn2(a+c);
   z = z + (a * b * c),
   |z| <= (5 + p1)
  }

OK-21 {
   z = pixel, c = fn1(pixel):
   z = fn2(z) + c,
   fn3(z) <= p1
  }

OK-22 {
   z = v = pixel:
   v = fn1(v) * fn2(z);
   z = fn1(z) / fn2(v),
   |z| <= (5 + p1)
  }

{-------------------------------------------------------------------------}

comment {
  Earlier versions of the formulas OK-23 to OK-35 appeared in the file
  MONGO.FRM (August 1993), where they were named MONGO-01 to MONGO-13.  In
  these 'improved' versions, I added default values for any numeric
  parameters you may supply, so you don't get a blank screen by leaving
  them at zero.

  Most of these formulas are experiments with a crude sort of IF/ELSE
  logic (an idea I swiped from Jon Osuch's SELECT.FRM) and produce images
  with interesting discontinuities.
}

OK-23 {
   z = c = pixel, k = 1 + p1:
   z = k * fn1(z^z + c) + c/z,
   |z| <= (5 + p2)
  }

OK-24 { ;TRY P1 REAL = -2, FN1 = SQR, FN2 = RECIP
   z = 0, c = pixel, k = 1 + p1:
   z = fn2(fn1(z) + c) + (k * z),
   |z| <= (5 + p2)
  }

OK-25 {
   z = c = pixel, k = 1 + p1:
   a = (abs(z) > k)  * (fn1(z) + c);
   b = (abs(z) <= k) * (fn2(z) + c);
   z = a + b,
   |z| <= (5 + p2)
  }

OK-26 {
   z = c = pixel, k = 2 + p1, test = k/(2 + p2):
   a = fn1(z);
   b = (|z| > test)  * (a - c);
   d = (|z| <= test) * (a + c);
   z = b + d,
   |z| <= k
  }

OK-27 {
   z = pixel, c = fn1(pixel), k = 1 + p1:
   a = fn2(z);
   b = (|z| >= k) * (a - c);
   d = (|z| < k) * (a + c);
   z = a + b + d,
   |z| <= (10 + p2)
  }

OK-28 {
   z = c = pixel, d = fn1(pixel), k = p1:
   a = fn2(z);
   b = (z <= k) * (a + c + d);
   e = (z > k) * (a + c - d);
   z = z + b + e,
   |z| <= (10 + p2)
  }

OK-29 {
   z = v = pixel, k = 1 + p1:
   oldz = z;
   z = fn1(z)^k + v;
   v = oldz,
   |z| <= (5 + p2)
  }

OK-30 {
   z = v = pixel, k = .5 + p1:
   a = fn1(z);
   b = (z <= k) * (a + v);
   e = (z > k) * (a - v);
   v = z;
   z = b + e,
   |z| <= (5 + p2)
  }

OK-31 {
   z = v = pixel, k = .1 + p1:
   a = fn1(z);
   b = (a <= k) * (a + v);
   e = (a > k) * fn2(a);
   v = z;
   z = b + e,
   |z| <= (5 + p2)
  }

OK-32 {
   z = y = x = pixel, k = 1 + p1:
   a = fn1(z);
   b = (a <= y) * ((a * k) + y);
   e = (a > y) * ((a * k) + x);
   x = y;
   y = z;
   z = b + e,
   |z| <= (5 + p2)
  }

OK-33 {
   z = y = x = pixel, k = 1 + p1:
   a = (|y| <= k) * fn1(y);
   b = (|x| <= k) * fn2(x);
   x = y;
   y = z;
   z = fn3(z) + a + b,
   |z| <= (10 + p2)
  }

OK-34 {
   z = pixel, c = (fn1(pixel) * p1):
   x = abs(real(z));
   y = abs(imag(z));
   a = (x <= y) * (fn2(z) + y + c);
   b = (x > y) * (fn2(z) + x + c);
   z = a + b,
   |z| <= (10 + p2)
  }

OK-35 {
   z = pixel, k = 1 + p1:
   v = fn1(z);
   x = (z*v);
   y = (z/v);
   a = (|x| <= |y|) * ((z + y) * k);
   b = (|x| > |y|) * ((z + x) * k);
   z = fn2((a + b) * v) + v,
   |z| <= (10 + p2)
  }

{-------------------------------------------------------------------------}

comment {
  The remaining formulas, OK-36 to OK-45, are new to OVERKILL.FRM.  Some of
  these formulas use an approach I call 'disection' (for lack of a better
  term), and were inspired by a nifty CD-ROM called "Fractal Ecstasy".
  (It's made by Deep River Publishing.)

  Anyway, the idea is to calculate the real and imaginary parts of complex
  numbers separately using standard algebra.  The advantage is that
  variables and functions can be applied in ways that would be difficult
  using the conventional approach.  The disadvantage is that the formula is
  more complicated.

  Suggestion:  When you experiment with the 'disected' formulas, start by
  setting all functions to IDENT.  Then change one or two of the parameters
  at a time.
}

OK-36 { ; DISECTED MANDELBROT
  ; TO GENERATE "STANDARD" MANDELBROT, SET P1 = 0,0 & ALL FN = IDENT
  z = pixel, cx = fn1(real(z)), cy = fn2(imag(z)), k = 2 + p1:
  zx = real(z), zy = imag(z);
  x = fn3(zx*zx - zy*zy) + cx;
  y = fn4(k * zx * zy) + cy;
  z = x + flip(y),
  |z| <  (10 + p2)
}

OK-37 { ; ANOTHER DISECTED MANDELBROT
  ; TO GENERATE "STANDARD" MANDELBROT, SET P1 = 0,0 & ALL FN = IDENT
  z = pixel, c = fn1(fn2(z)), cx = real(c), cy = imag(c), k = 2 + p1:
  zx = fn3(real(z)), zy = fn4(imag(z));
  x = zx*zx - zy*zy + cx;
  y = k * zx * zy + cy;
  z = x + flip(y),
  |z| <  (10 + p2)
}

OK-38 { ; DISECTED CUBIC MANDELBROT
  ; TO GENERATE "STANDARD" CUBIC MANDELBROT, SET P1 = 0,0 & ALL FN = IDENT
  z = pixel,  cx = fn1(real(pixel)), cy = fn2(imag(pixel)), k = 3 + p1:
  zx = real(z), zy = imag(z);
  x = fn3(zx*zx*zx - k*zx*zy*zy) + cx;
  y = fn4(k*zx*zx*zy - zy*zy*zy) + cy;
  z =  x + flip(y),
  |z| <  (4 + p2)
}

OK-39 { ; JUST AN EXPERIMENT
  z = pixel, c = fn1(z), k = p1:
  z = fn2(z*c + k) + c,
  |z| <= (20 + p2)
 }

OK-40 { ; DISECTED OK-39
  ; (ASSUMING YOU USE OK-39 WITH FN1= IDENT & FN2 = SQR...)
  z = pixel, cx = fn1(real(pixel)), cy = fn2(imag(pixel)), k = 2 + p1:
  zx = real(z), zy = imag(z);
  a = zx*cx - zy*cy;
  b = cx*zy + zx*cy;
  x = fn3(a*a - b*b) + cx;
  y = fn4(k*a*b) + cy;
  z = x + flip(y),
  |z| <= (10 + p2)
}

OK-41 { ; DISECTED MANDELLAMBDA
  z = 0.5 + p1, lx = fn1(real(pixel)), ly = fn2(imag(pixel)):
  zx = real(z), zy = imag(z);
  x = fn3(lx*zx + 2*ly*zx*zy - ly*zy - lx*zx*zx + lx*zy*zy);
  y = fn4(ly*zx - 2*lx*zx*zy + lx*zy - ly*zx*zx + ly*zy*zy);
  z = x + flip(y),
  |z| <= (10 + p2)
}

OK-42 { ; MUTATION OF FN + FN
  z = pixel, p1x = real(p1)+1, p1y = imag(p1)+1,
  p2x = real(p2)+1, p2y = imag(p2)+1:
  zx = real(z), zy = imag(z);
  x = fn1(zx*p1x - zy*p1y) + fn2(zx*p2x - zy*p2y);
  y = fn3(zx*p1y + zy*p1x) + fn4(zx*p2y + zy*p2x);
  z = x + flip(y),
  |z| <= 20
}

OK-43 { ; DISECTED SPIDER
  ; TO GENERATE "STANDARD" SPIDER, SET P1 = 0,0 & ALL FN = IDENT
  z = c = pixel, k = 2 + p1:
  zx = real(z), zy = imag(z);
  cx = real(c), cy = imag(c);
  x = fn1(zx*zx - zy*zy) + cx;
  y = fn2(k*zx*zy) + cy;
  z = x + flip(y);
  c = fn3((cx + flip(cy))/k) + z,
  |z| <  (10 + p2)
}

OK-44 { ; DISECTED MANOWAR
  ; TO GENERATE "STANDARD" MANOWAR, SET P1 = 0,0 & ALL FN = IDENT
  z = pixel, z1x = cx = real(pixel), z1y = cy = imag(pixel),
  k = 2 + p1:
  oldzx = zx = real(z), oldzy = zy = imag(z);
  x = fn1(zx*zx - zy*zy) + fn2(z1x) + cx;
  y = fn3(k*zx*zy) + fn4(z1y) + cy;
  z = x + flip(y);
  z1x = oldzx, z1y = oldzy,
  |z| <= (10 + p2)
}

OK-45 { ; ANOTHER LITTLE QUICKY
  z = pixel, c = fn1(pixel), ka = 1 + p1, kb = 1 + p2:
  a = fn2(z), b = fn3(z);
  z = ka*a*a*a + kb*b*b + c,
  |z| <= 10
 }