File: data_lib.why

package info (click to toggle)
frama-c 20100401%2Bboron%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 12,908 kB
  • ctags: 19,772
  • sloc: ml: 117,445; ansic: 10,764; makefile: 1,706; lisp: 176; sh: 27
file content (463 lines) | stat: -rw-r--r-- 13,622 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
(**************************************************************************)
(*                                                                        *)
(*  This file is part of Frama-C.                                         *)
(*                                                                        *)
(*  Copyright (C) 2007-2010                                               *)
(*    CEA   (Commissariat  l'nergie atomique et aux nergies            *)
(*           alternatives)                                                *)
(*    INRIA (Institut National de Recherche en Informatique et en         *)
(*           Automatique)                                                 *)
(*                                                                        *)
(*  you can redistribute it and/or modify it under the terms of the GNU   *)
(*  Lesser General Public License as published by the Free Software       *)
(*  Foundation, version 2.1.                                              *)
(*                                                                        *)
(*  It is distributed in the hope that it will be useful,                 *)
(*  but WITHOUT ANY WARRANTY; without even the implied warranty of        *)
(*  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *)
(*  GNU Lesser General Public License for more details.                   *)
(*                                                                        *)
(*  See the GNU Lesser General Public License version v2.1                *)
(*  for more details (enclosed in the file licenses/LGPLv2.1).            *)
(*                                                                        *)
(**************************************************************************)


logic dummy_prop : prop

(**************************************************************************)
(*** Specification of Identifiers                                       ***)
(**************************************************************************)

type name

logic mk_name : int -> name
axiom uniq_name : 
 forall i,j:int. mk_name(i)=mk_name(j) <-> i=j

(* Alternative specification *)
(*
type name 
type id 
logic get_name_id : name -> id

axiom same_name: 
 forall i,j: int. 
 get_name_id(x) = get_name_id(y) -> x = y

axiom neq_name: 
 forall i,j: int. 
 get_name_id(x) <> get_name_id(y) -> x <> y
*)


(**************************************************************************)
(*** Specification of Set as First Class Value                          ***)
(**************************************************************************)
(* From Figure 2.6 in ACSL:ANSI/ISO C Specification Language *)


type 'a set

logic empty : 'a set
logic singleton : 'a -> 'a set
logic range : int,int -> int set
logic union : 'a set , 'a set -> 'a set
logic inter : 'a set , 'a set -> 'a set
logic plus_int : int set, int set -> int set
logic subset : 'a set,'a set -> prop
logic range_inf: int -> int set
logic range_sup:int->int set
logic integers_set : int set
logic equiv : 'a set ,'a set -> prop
logic member : 'a,'a set -> prop 

axiom singleton_def :  
 forall x:'a. member (x, singleton(x))  

axiom singleton_eq: 
      forall x,y:'a. member(x,singleton(y)) -> x=y

axiom union_member : 
 forall x:'a. forall s1,s2:'a set. 
  member(x, union(s1,s2)) <-> member(x,s1) or member(x,s2)

axiom union_of_empty : 
 forall x:'a set. union(x,empty) = x 

axiom inter_of_empty : 
 forall x:'a set. inter(x,empty) = empty

axiom union_comm : 
 forall x,y:'a set. union(x,y) = union(y,x)

axiom inter_comm : 
 forall x,y:'a set. inter(x,y) = inter(y,x) 

axiom inter_member : 
 forall x:'a. forall s1,s2:'a set. 
  member(x,inter(s1,s2)) <-> member(x,s1) and member(x,s2)

axiom plus_int_member_1: 
  forall sa,sb:int set. 
  (forall a,b:int.
        member(a,sa) and member(b,sb) -> member((a+b), plus_int(sa,sb)))

axiom plus_int_member_2: 
  forall sa,sb:int set.
  (forall c:int. 
      member(c,plus_int(sa,sb)) -> 
       exists a:int. exists b:int. 
        member(a,sa) and member(b,sb) and c=a+b) 

axiom subset_empty : 
 forall sa:'a set. subset(empty,sa)

axiom subset_sym: 
 forall sa:'a set. subset(sa,sa)

axiom subset_trans : 
 forall sa,sb,sc: 'a set. 
    subset(sa,sb) -> 
    subset(sb,sc) ->
    subset(sa,sc)

axiom subset_def: 
 forall sa,sb:'a set. 
  (forall a:'a. member(a,sa) -> member(a,sb)) <-> subset(sa,sb) 

axiom range_def: 
 forall i,j:int.
   forall k: int. i <= k<= j -> member (k,range(i,j)) 

axiom range_inf_def: (* range_inf(i) is [ i .. ] *)
 forall i: int. 
   forall k: int. i <= k -> member (k,range_inf(i))

axiom range_sup_def: (* range_sup(j) is [ .. j ] *)
 forall j: int. 
   forall k: int. k <= j -> member (k,range_sup(j))

axiom integers_set_def: 
 forall k:int. k >= 0 -> member(k,integers_set) 

axiom equiv_def: 
 forall s1,s2:'a set. (
 (forall a:'a. member(a,s1) -> member(a,s2)) and
   (forall b:'a. member(b,s2) -> member(b,s1))) <->
 equiv(s1,s2)

axiom equiv_refl: 
 forall s:'a set. equiv(s,s) 

axiom equiv_sym: 
 forall s1,s2:'a set. equiv(s1,s2) -> equiv(s2,s1)

axiom equiv_trans: 
 forall s1,s2,s3:'a set. 
  equiv(s1,s2) -> equiv(s2,s3) -> equiv(s1,s3)



(**************************************************************************)
(*** Specification of Record as First Class Value                       ***)
(**************************************************************************)

type record
type urecord
type pointer
type 'a format

logic int_format: int format
logic real_format : real format
logic record_format : name -> record format
logic union_format : name -> urecord format
logic array_format : int , 'a format -> 'a farray format
logic pointer_format : pointer format

logic data_get_field: record,name,'a format -> 'a 
logic data_set_field: record,name,'a format,'a -> record
logic eq_struct: name,record,record -> prop
logic eq_struct_bool:name,record,record -> bool
logic eq_union: name,urecord,urecord -> prop
logic eq_union_bool:name,urecord,urecord -> bool

logic data_get_ufield: urecord,name,'a format -> 'a 
logic data_set_ufield: urecord,name,'a format,'a -> urecord

axiom eq_struct_refl: 
 forall s:name.
 forall r:record. eq_struct(s,r,r) 

axiom eq_struct_trans: 
 forall r1,r2,r3:record. 
  forall s:name.
   eq_struct(s,r1,r2) ->
   eq_struct(s,r2,r3) ->
   eq_struct(s,r1,r3)

axiom eq_struct_bool_refl: 
 forall s:name.
 forall r:record. eq_struct_bool(s,r,r)=true 

axiom eq_struct_bool_trans: 
 forall r1,r2,r3:record. 
  forall s:name.
   eq_struct_bool(s,r1,r2) = true ->
   eq_struct_bool(s,r2,r3) = true ->
   eq_struct_bool(s,r1,r3) = true

axiom eq_struct_bool_eq_struct: 
 forall s:name. forall r,r':record. 
   eq_struct_bool(s,r,r')=true <-> eq_struct(s,r,r')


axiom eq_union_trans: 
 forall r1,r2,r3:urecord. 
  forall s:name.
   eq_union(s,r1,r2) ->
   eq_union(s,r2,r3) ->
   eq_union(s,r1,r3)

axiom eq_union_bool_refl: 
 forall s:name.
 forall r:urecord. eq_union_bool(s,r,r)=true 

axiom eq_union_bool_trans: 
 forall r1,r2,r3:urecord. 
  forall s:name.
   eq_union_bool(s,r1,r2) = true ->
   eq_union_bool(s,r2,r3) = true ->
   eq_union_bool(s,r1,r3) = true

axiom eq_union_bool_eq_struct: 
 forall s:name. forall r,r':urecord. 
   eq_union_bool(s,r,r')=true <-> eq_union(s,r,r')

axiom get_set_record_same: 
 forall r: record. 
  forall f:name. forall dt :'a format.
   forall v:'a.
    data_get_field(data_set_field(r,f,dt,v),f,dt) = v



axiom get_set_record_other: 
 forall r: record. 
  forall f1: name. forall dt1: 'a format. 
  forall f2: name. forall dt2: 'b format.
    forall v:'a.
    f1<>f2 ->
    data_get_field(data_set_field(r,f1,dt1,v),f2,dt2) = 
    data_get_field(r,f2,dt2)

axiom get_set_urecord_same: 
  forall u: urecord.  forall f:name. forall dt :'a format. forall v:'a.
    data_get_ufield(data_set_ufield(u, f,dt,v),f,dt) = v
 
(**************************************************************************)
(*** Specification of Array as First Class Value-                       ***)
(*** -Additional to arrays.why                                          ***)
(**************************************************************************)

logic eq_array:'a farray,'a farray, int ->prop
logic eq_array_bool:'a farray,'a farray, int ->bool

axiom eq_array_def: 
 forall t1,t2:'a farray. 
  forall dim:int. 
   eq_array(t1,t2,dim) <->
    (forall i:int. 0<=i<dim -> access(t1,i)=access(t2,i))

axiom eq_arra_bool_eq_array: 
 forall t1,t2 : 'a farray. 
  forall dim:int. 
   eq_array(t1,t2,dim) <-> eq_array_bool(t1,t2,dim)=true


logic get_range_index: 'a farray , int set -> 'a set
logic set_range_index: 'a farray , int set -> 'a farray

axiom get_range_def : 
 forall t: 'a farray. 
  forall rg: int set. 
    forall i: int. 
    member (i,rg) <-> member(access(t,i),(get_range_index(t,rg))) 

axiom set_range_def :
 forall t: 'a farray. 
  forall rg: int set. 
     forall i:int. not (member(i,rg)) <-> 
     access(set_range_index(t,rg),i) = access(t,i)


(**************************************************************************)
(*** Integer Cast into Machine                                          ***)
(**************************************************************************) 

(** Is a mutiple cf Zdivide of Coq Std lib*)
logic is_mult : int,int -> prop

axiom is_mult_def: 
 forall x,y: int. is_mult(x,y) <-> exists z:int. y = x*z

axiom is_mult_refl: 
 forall x:int. is_mult(x,x)

axiom is_mult_one: 
 forall x:int. is_mult(1,x)

axiom is_mult_zero: 
 forall x:int. is_mult(x,0)

axiom is_mult_mult_left: 
 forall a,b,c:int. 
  is_mult(a,b) -> is_mult (c*a,c*b)

axiom is_mult_right: 
 forall a,b,c:int. 
  is_mult(a,b) -> is_mult(a*c,b*c)

axiom is_mult_plus_right: 
 forall a,b,c:int. 
 is_mult(a,b) -> is_mult(a,c) -> is_mult(a,b+c)

axiom is_mult_opp_right: 
 forall a,b: int. is_mult(a,b) <-> is_mult(a,-b)

axiom is_mult_opp_left: 
 forall a,b: int. is_mult(a,b) <-> is_mult(-a,b)

axiom is_mult_fact_r: 
 forall a,b:int. is_mult(a,a*b)

axiom is_mult_fact_l: 
 forall a,b:int. is_mult(a,b*a)

axiom is_mult_antisym: 
 forall a,b:int. 
    is_mult(a,b) -> is_mult(b,a) -> a=b or a=-b

axiom is_mult_trans: 
 forall a,b,c:int. 
    is_mult(a,b) -> is_mult(b,c) -> is_mult(a,c)

axiom is_mult_mod: 
 forall a,b:int. 
    b>0 -> is_mult(b,a) -> a%b = 0

axiom is_mult_le: 
 forall a,b:int. 
    0 <= a -> 0 < b -> is_mult(a,b) -> a <= b 

axiom is_mult_div_lt_pos: 
  forall a,b:int. 
    1 < a -> 0 < b -> is_mult(a,b) -> 0< b/a < b 

axiom is_mult_div_mod: 
  forall n,m,a:int. 0 < n -> 0 < m -> is_mult(n,m) -> a % m = (a%m)%n

axiom is_mod_mult_minus: 
  forall a,b,c:int. 0<b -> a%b =c -> is_mult(b, a-c)

axiom is_mod_minus : 
  forall a,b,c: int. 0 <= c <b -> is_mult(b,a-c) -> a%b=c

(**************************************************************)
 (** eq_modulo from Compcert Integer.v *)
  
logic eqmod: int,int,int -> prop

axiom eqmod_def: 
 forall m,a,b:int. 0<m -> eqmod(m,a,b) <-> exists k:int. a= k* m+b

axiom eqmod_refl: forall m,x:int. 0<m -> eqmod(m,x,x)
axiom eqmod_refl2: forall m,x,y:int. 0<m -> x=y -> eqmod(m,x,y)
axiom eqmod_sym: forall m,x,y:int. 0<m -> eqmod(m,x,y) -> eqmod(m,y,x)
axiom eqmod_small_eq:
 forall m,x,y:int. 
   0<m -> eqmod(m,x,y) -> 
   0<= x < m ->
   0<= y < m ->
   x=y
axiom eqmod_mod_eq: forall m,x,y:int. 0<m -> eqmod(m,x,y) -> x%m = y%m
axiom eqmod_mod: forall m,x:int. 0<m -> eqmod(m,x,x%m)
axiom eqmod_add: 
 forall m,a,b,c,d:int. 
  0<m ->eqmod(m,a,b) -> eqmod(m,c,d)->  eqmod(m,a+c,b+d)   
axiom eqmod_neg: forall m,x,y:int. 0<m -> eqmod(m,x,y) ->  eqmod(m,-x,-y)
axiom eqmod_sub: 
 forall m,a,b,c,d:int. 
 0<m -> eqmod(m,a,b) -> eqmod(m,c,d)-> eqmod(m,a-c,b-d)   
axiom eqmod_mult: 
 forall m,a,b,c,d:int. 
  0<m ->eqmod(m,a,b) -> eqmod(m,c,d)-> eqmod(m,a*c,b*d)

axiom eqmod_is_mult: 
 forall m,n,x,y:int. 
  0<n ->eqmod(n,x,y) -> is_mult(m,n) -> eqmod(m,x,y)  
(***************************************************************)
logic unsigned : int,int -> int 
logic signed : int,int -> int 

axiom unsigned_def: 
 forall max,i:int. 0 <= unsigned(max,i) < max

axiom signed_def_inf : 
 forall max,i: int.
  2 * unsigned(max,i) < max -> signed(max,i) =unsigned(max,i)  

axiom signed_def_sup: 
  forall max,i: int.
  2 * unsigned(max,i) > max -> signed(max,i) = unsigned(max,i) - max  

axiom unsigned_in : 
 forall max,i:int. 0<= i < max -> unsigned(max,i) = i

axiom signed_in : 
 forall max,i:int. -max <= 2*i < max -> signed(max,i) = i 
(*
axiom unsigned_in_bis : 
 forall max,i,n:int. 0<= i < max -> unsigned(max,i+n*max) = i
*)

(****************************************************************)

axiom eqmod_unsigned: 
 forall m,x:int.  0<m -> eqmod(m,x,unsigned(m,x))

axiom eqmod_unsigned_left: 
 forall m,a,b:int. 
 0 < m -> eqmod(m,a,b) -> eqmod(m,unsigned(m,a),b)
axiom eqmod_unsigned_right: 
 forall m,a,b:int. 
 0 < m -> eqmod(m,a,b) -> eqmod(m,a,unsigned(m,b))
axiom eqmod_signed_unsigned: 
 forall m,x:int. 0<m -> eqmod(m,signed(m,x),unsigned(m,x)) 
(*****************************************************************)

logic modu8 : int -> int 
logic mods8 : int -> int 
logic modu16: int -> int 
logic mods16: int -> int 
logic modu32: int -> int 
logic mods32: int -> int 
logic modu64: int -> int 
logic mods64: int -> int 


axiom modu8_def :
 forall x:int. modu8(x) = unsigned(256,x)
axiom mods8_def : 
 forall x:int. mods8(x) = signed(256,x)

axiom modu16_def :
 forall x:int. modu16(x) = unsigned(65536,x)
axiom mods16_def : 
 forall x:int. mods16(x) = signed(65536,x)

axiom modu32_def :
 forall x:int. modu32(x) = unsigned(4294967296,x)
axiom mods32_def : 
 forall x:int. mods32(x) = signed(4294967296,x)