1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
|
(**************************************************************************)
(* *)
(* This file is part of Frama-C. *)
(* *)
(* Copyright (C) 2007-2010 *)
(* CEA (Commissariat l'nergie atomique et aux nergies *)
(* alternatives) *)
(* INRIA (Institut National de Recherche en Informatique et en *)
(* Automatique) *)
(* *)
(* you can redistribute it and/or modify it under the terms of the GNU *)
(* Lesser General Public License as published by the Free Software *)
(* Foundation, version 2.1. *)
(* *)
(* It is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *)
(* GNU Lesser General Public License for more details. *)
(* *)
(* See the GNU Lesser General Public License version v2.1 *)
(* for more details (enclosed in the file licenses/LGPLv2.1). *)
(* *)
(**************************************************************************)
logic dummy_prop : prop
(**************************************************************************)
(*** Specification of Identifiers ***)
(**************************************************************************)
type name
logic mk_name : int -> name
axiom uniq_name :
forall i,j:int. mk_name(i)=mk_name(j) <-> i=j
(* Alternative specification *)
(*
type name
type id
logic get_name_id : name -> id
axiom same_name:
forall i,j: int.
get_name_id(x) = get_name_id(y) -> x = y
axiom neq_name:
forall i,j: int.
get_name_id(x) <> get_name_id(y) -> x <> y
*)
(**************************************************************************)
(*** Specification of Set as First Class Value ***)
(**************************************************************************)
(* From Figure 2.6 in ACSL:ANSI/ISO C Specification Language *)
type 'a set
logic empty : 'a set
logic singleton : 'a -> 'a set
logic range : int,int -> int set
logic union : 'a set , 'a set -> 'a set
logic inter : 'a set , 'a set -> 'a set
logic plus_int : int set, int set -> int set
logic subset : 'a set,'a set -> prop
logic range_inf: int -> int set
logic range_sup:int->int set
logic integers_set : int set
logic equiv : 'a set ,'a set -> prop
logic member : 'a,'a set -> prop
axiom singleton_def :
forall x:'a. member (x, singleton(x))
axiom singleton_eq:
forall x,y:'a. member(x,singleton(y)) -> x=y
axiom union_member :
forall x:'a. forall s1,s2:'a set.
member(x, union(s1,s2)) <-> member(x,s1) or member(x,s2)
axiom union_of_empty :
forall x:'a set. union(x,empty) = x
axiom inter_of_empty :
forall x:'a set. inter(x,empty) = empty
axiom union_comm :
forall x,y:'a set. union(x,y) = union(y,x)
axiom inter_comm :
forall x,y:'a set. inter(x,y) = inter(y,x)
axiom inter_member :
forall x:'a. forall s1,s2:'a set.
member(x,inter(s1,s2)) <-> member(x,s1) and member(x,s2)
axiom plus_int_member_1:
forall sa,sb:int set.
(forall a,b:int.
member(a,sa) and member(b,sb) -> member((a+b), plus_int(sa,sb)))
axiom plus_int_member_2:
forall sa,sb:int set.
(forall c:int.
member(c,plus_int(sa,sb)) ->
exists a:int. exists b:int.
member(a,sa) and member(b,sb) and c=a+b)
axiom subset_empty :
forall sa:'a set. subset(empty,sa)
axiom subset_sym:
forall sa:'a set. subset(sa,sa)
axiom subset_trans :
forall sa,sb,sc: 'a set.
subset(sa,sb) ->
subset(sb,sc) ->
subset(sa,sc)
axiom subset_def:
forall sa,sb:'a set.
(forall a:'a. member(a,sa) -> member(a,sb)) <-> subset(sa,sb)
axiom range_def:
forall i,j:int.
forall k: int. i <= k<= j -> member (k,range(i,j))
axiom range_inf_def: (* range_inf(i) is [ i .. ] *)
forall i: int.
forall k: int. i <= k -> member (k,range_inf(i))
axiom range_sup_def: (* range_sup(j) is [ .. j ] *)
forall j: int.
forall k: int. k <= j -> member (k,range_sup(j))
axiom integers_set_def:
forall k:int. k >= 0 -> member(k,integers_set)
axiom equiv_def:
forall s1,s2:'a set. (
(forall a:'a. member(a,s1) -> member(a,s2)) and
(forall b:'a. member(b,s2) -> member(b,s1))) <->
equiv(s1,s2)
axiom equiv_refl:
forall s:'a set. equiv(s,s)
axiom equiv_sym:
forall s1,s2:'a set. equiv(s1,s2) -> equiv(s2,s1)
axiom equiv_trans:
forall s1,s2,s3:'a set.
equiv(s1,s2) -> equiv(s2,s3) -> equiv(s1,s3)
(**************************************************************************)
(*** Specification of Record as First Class Value ***)
(**************************************************************************)
type record
type urecord
type pointer
type 'a format
logic int_format: int format
logic real_format : real format
logic record_format : name -> record format
logic union_format : name -> urecord format
logic array_format : int , 'a format -> 'a farray format
logic pointer_format : pointer format
logic data_get_field: record,name,'a format -> 'a
logic data_set_field: record,name,'a format,'a -> record
logic eq_struct: name,record,record -> prop
logic eq_struct_bool:name,record,record -> bool
logic eq_union: name,urecord,urecord -> prop
logic eq_union_bool:name,urecord,urecord -> bool
logic data_get_ufield: urecord,name,'a format -> 'a
logic data_set_ufield: urecord,name,'a format,'a -> urecord
axiom eq_struct_refl:
forall s:name.
forall r:record. eq_struct(s,r,r)
axiom eq_struct_trans:
forall r1,r2,r3:record.
forall s:name.
eq_struct(s,r1,r2) ->
eq_struct(s,r2,r3) ->
eq_struct(s,r1,r3)
axiom eq_struct_bool_refl:
forall s:name.
forall r:record. eq_struct_bool(s,r,r)=true
axiom eq_struct_bool_trans:
forall r1,r2,r3:record.
forall s:name.
eq_struct_bool(s,r1,r2) = true ->
eq_struct_bool(s,r2,r3) = true ->
eq_struct_bool(s,r1,r3) = true
axiom eq_struct_bool_eq_struct:
forall s:name. forall r,r':record.
eq_struct_bool(s,r,r')=true <-> eq_struct(s,r,r')
axiom eq_union_trans:
forall r1,r2,r3:urecord.
forall s:name.
eq_union(s,r1,r2) ->
eq_union(s,r2,r3) ->
eq_union(s,r1,r3)
axiom eq_union_bool_refl:
forall s:name.
forall r:urecord. eq_union_bool(s,r,r)=true
axiom eq_union_bool_trans:
forall r1,r2,r3:urecord.
forall s:name.
eq_union_bool(s,r1,r2) = true ->
eq_union_bool(s,r2,r3) = true ->
eq_union_bool(s,r1,r3) = true
axiom eq_union_bool_eq_struct:
forall s:name. forall r,r':urecord.
eq_union_bool(s,r,r')=true <-> eq_union(s,r,r')
axiom get_set_record_same:
forall r: record.
forall f:name. forall dt :'a format.
forall v:'a.
data_get_field(data_set_field(r,f,dt,v),f,dt) = v
axiom get_set_record_other:
forall r: record.
forall f1: name. forall dt1: 'a format.
forall f2: name. forall dt2: 'b format.
forall v:'a.
f1<>f2 ->
data_get_field(data_set_field(r,f1,dt1,v),f2,dt2) =
data_get_field(r,f2,dt2)
axiom get_set_urecord_same:
forall u: urecord. forall f:name. forall dt :'a format. forall v:'a.
data_get_ufield(data_set_ufield(u, f,dt,v),f,dt) = v
(**************************************************************************)
(*** Specification of Array as First Class Value- ***)
(*** -Additional to arrays.why ***)
(**************************************************************************)
logic eq_array:'a farray,'a farray, int ->prop
logic eq_array_bool:'a farray,'a farray, int ->bool
axiom eq_array_def:
forall t1,t2:'a farray.
forall dim:int.
eq_array(t1,t2,dim) <->
(forall i:int. 0<=i<dim -> access(t1,i)=access(t2,i))
axiom eq_arra_bool_eq_array:
forall t1,t2 : 'a farray.
forall dim:int.
eq_array(t1,t2,dim) <-> eq_array_bool(t1,t2,dim)=true
logic get_range_index: 'a farray , int set -> 'a set
logic set_range_index: 'a farray , int set -> 'a farray
axiom get_range_def :
forall t: 'a farray.
forall rg: int set.
forall i: int.
member (i,rg) <-> member(access(t,i),(get_range_index(t,rg)))
axiom set_range_def :
forall t: 'a farray.
forall rg: int set.
forall i:int. not (member(i,rg)) <->
access(set_range_index(t,rg),i) = access(t,i)
(**************************************************************************)
(*** Integer Cast into Machine ***)
(**************************************************************************)
(** Is a mutiple cf Zdivide of Coq Std lib*)
logic is_mult : int,int -> prop
axiom is_mult_def:
forall x,y: int. is_mult(x,y) <-> exists z:int. y = x*z
axiom is_mult_refl:
forall x:int. is_mult(x,x)
axiom is_mult_one:
forall x:int. is_mult(1,x)
axiom is_mult_zero:
forall x:int. is_mult(x,0)
axiom is_mult_mult_left:
forall a,b,c:int.
is_mult(a,b) -> is_mult (c*a,c*b)
axiom is_mult_right:
forall a,b,c:int.
is_mult(a,b) -> is_mult(a*c,b*c)
axiom is_mult_plus_right:
forall a,b,c:int.
is_mult(a,b) -> is_mult(a,c) -> is_mult(a,b+c)
axiom is_mult_opp_right:
forall a,b: int. is_mult(a,b) <-> is_mult(a,-b)
axiom is_mult_opp_left:
forall a,b: int. is_mult(a,b) <-> is_mult(-a,b)
axiom is_mult_fact_r:
forall a,b:int. is_mult(a,a*b)
axiom is_mult_fact_l:
forall a,b:int. is_mult(a,b*a)
axiom is_mult_antisym:
forall a,b:int.
is_mult(a,b) -> is_mult(b,a) -> a=b or a=-b
axiom is_mult_trans:
forall a,b,c:int.
is_mult(a,b) -> is_mult(b,c) -> is_mult(a,c)
axiom is_mult_mod:
forall a,b:int.
b>0 -> is_mult(b,a) -> a%b = 0
axiom is_mult_le:
forall a,b:int.
0 <= a -> 0 < b -> is_mult(a,b) -> a <= b
axiom is_mult_div_lt_pos:
forall a,b:int.
1 < a -> 0 < b -> is_mult(a,b) -> 0< b/a < b
axiom is_mult_div_mod:
forall n,m,a:int. 0 < n -> 0 < m -> is_mult(n,m) -> a % m = (a%m)%n
axiom is_mod_mult_minus:
forall a,b,c:int. 0<b -> a%b =c -> is_mult(b, a-c)
axiom is_mod_minus :
forall a,b,c: int. 0 <= c <b -> is_mult(b,a-c) -> a%b=c
(**************************************************************)
(** eq_modulo from Compcert Integer.v *)
logic eqmod: int,int,int -> prop
axiom eqmod_def:
forall m,a,b:int. 0<m -> eqmod(m,a,b) <-> exists k:int. a= k* m+b
axiom eqmod_refl: forall m,x:int. 0<m -> eqmod(m,x,x)
axiom eqmod_refl2: forall m,x,y:int. 0<m -> x=y -> eqmod(m,x,y)
axiom eqmod_sym: forall m,x,y:int. 0<m -> eqmod(m,x,y) -> eqmod(m,y,x)
axiom eqmod_small_eq:
forall m,x,y:int.
0<m -> eqmod(m,x,y) ->
0<= x < m ->
0<= y < m ->
x=y
axiom eqmod_mod_eq: forall m,x,y:int. 0<m -> eqmod(m,x,y) -> x%m = y%m
axiom eqmod_mod: forall m,x:int. 0<m -> eqmod(m,x,x%m)
axiom eqmod_add:
forall m,a,b,c,d:int.
0<m ->eqmod(m,a,b) -> eqmod(m,c,d)-> eqmod(m,a+c,b+d)
axiom eqmod_neg: forall m,x,y:int. 0<m -> eqmod(m,x,y) -> eqmod(m,-x,-y)
axiom eqmod_sub:
forall m,a,b,c,d:int.
0<m -> eqmod(m,a,b) -> eqmod(m,c,d)-> eqmod(m,a-c,b-d)
axiom eqmod_mult:
forall m,a,b,c,d:int.
0<m ->eqmod(m,a,b) -> eqmod(m,c,d)-> eqmod(m,a*c,b*d)
axiom eqmod_is_mult:
forall m,n,x,y:int.
0<n ->eqmod(n,x,y) -> is_mult(m,n) -> eqmod(m,x,y)
(***************************************************************)
logic unsigned : int,int -> int
logic signed : int,int -> int
axiom unsigned_def:
forall max,i:int. 0 <= unsigned(max,i) < max
axiom signed_def_inf :
forall max,i: int.
2 * unsigned(max,i) < max -> signed(max,i) =unsigned(max,i)
axiom signed_def_sup:
forall max,i: int.
2 * unsigned(max,i) > max -> signed(max,i) = unsigned(max,i) - max
axiom unsigned_in :
forall max,i:int. 0<= i < max -> unsigned(max,i) = i
axiom signed_in :
forall max,i:int. -max <= 2*i < max -> signed(max,i) = i
(*
axiom unsigned_in_bis :
forall max,i,n:int. 0<= i < max -> unsigned(max,i+n*max) = i
*)
(****************************************************************)
axiom eqmod_unsigned:
forall m,x:int. 0<m -> eqmod(m,x,unsigned(m,x))
axiom eqmod_unsigned_left:
forall m,a,b:int.
0 < m -> eqmod(m,a,b) -> eqmod(m,unsigned(m,a),b)
axiom eqmod_unsigned_right:
forall m,a,b:int.
0 < m -> eqmod(m,a,b) -> eqmod(m,a,unsigned(m,b))
axiom eqmod_signed_unsigned:
forall m,x:int. 0<m -> eqmod(m,signed(m,x),unsigned(m,x))
(*****************************************************************)
logic modu8 : int -> int
logic mods8 : int -> int
logic modu16: int -> int
logic mods16: int -> int
logic modu32: int -> int
logic mods32: int -> int
logic modu64: int -> int
logic mods64: int -> int
axiom modu8_def :
forall x:int. modu8(x) = unsigned(256,x)
axiom mods8_def :
forall x:int. mods8(x) = signed(256,x)
axiom modu16_def :
forall x:int. modu16(x) = unsigned(65536,x)
axiom mods16_def :
forall x:int. mods16(x) = signed(65536,x)
axiom modu32_def :
forall x:int. modu32(x) = unsigned(4294967296,x)
axiom mods32_def :
forall x:int. mods32(x) = signed(4294967296,x)
|