1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
|
(**************************************************************************)
(* *)
(* This file is part of Frama-C. *)
(* *)
(* Copyright (C) 2007-2010 *)
(* CEA (Commissariat l'nergie atomique et aux nergies *)
(* alternatives) *)
(* INRIA (Institut National de Recherche en Informatique et en *)
(* Automatique) *)
(* *)
(* you can redistribute it and/or modify it under the terms of the GNU *)
(* Lesser General Public License as published by the Free Software *)
(* Foundation, version 2.1. *)
(* *)
(* It is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *)
(* GNU Lesser General Public License for more details. *)
(* *)
(* See the GNU Lesser General Public License version v2.1 *)
(* for more details (enclosed in the file licenses/LGPLv2.1). *)
(* *)
(**************************************************************************)
(** Defines some types : they are not all used in each model,
but try to have different names when things are different
(eg. pointer vr address)
*)
include "bool.why"
include "integer.why"
include "real.why"
include "arrays.why"
(*----------------------------------------------------------------------------*)
type 'a option
logic None : 'a option
logic Some : 'a -> 'a option
axiom None_neq_Some : forall v:'a. None <> Some(v)
axiom Some_inj : forall x, y:'a. Some(x) = Some(y) -> x=y
(*----------------------------------------------------------------------------*)
(** Integer types :
*)
type 'a gint
type c_bool
type char
type uchar
type schar
type cint
type uint
type short
type ushort
type long
type ulong
type longlong
type ulonglong
type size_t
(*
logic c_bool : int_type
logic char : int_type
logic uchar : int_type
logic schar : int_type
logic cint : int_type
logic uint : int_type
logic short : int_type
logic ushort : int_type
logic long : int_type
logic ulong : int_type
logic longlong : int_type
logic ulonglong : int_type
logic size_t : int_type
*)
(*-------------------------------------*)
(** Integer conversion : *)
logic int_of_gint : 'a gint -> int
logic char_of_int : int -> char gint
logic cint_of_int : int -> cint gint
(*-------------------------------------*)
(** Integer operations : *)
logic neg_gint : 'a gint -> 'a gint
logic add_gint : 'a gint, 'a gint -> 'a gint
logic sub_gint : 'a gint, 'a gint -> 'a gint
logic mul_gint : 'a gint, 'a gint -> 'a gint
logic div_gint : 'a gint, 'a gint -> 'a gint
logic mod_gint : 'a gint, 'a gint -> 'a gint
(*-------------------------------------*)
(** Integer comparison : *)
logic lt_gint_bool : 'a gint, 'a gint -> bool
logic gt_gint_bool : 'a gint, 'a gint -> bool
logic le_gint_bool : 'a gint, 'a gint -> bool
logic ge_gint_bool : 'a gint, 'a gint -> bool
logic eq_gint_bool : 'a gint, 'a gint -> bool
logic neq_gint_bool : 'a gint, 'a gint -> bool
logic lt_gint : 'a gint, 'a gint -> prop
logic gt_gint : 'a gint, 'a gint -> prop
logic le_gint : 'a gint, 'a gint -> prop
logic ge_gint : 'a gint, 'a gint -> prop
(*-------------------------------------*)
(** Integer operations axioms :
here mapped to why integer operations, but we can have a more specific
axiomatic.
*)
axiom ax_neg_gint :
forall x : 'a gint. int_of_gint(neg_gint(x)) = neg_int(int_of_gint(x))
axiom ax_add_gint : forall x, y : 'a gint.
int_of_gint(add_gint(x,y)) = add_int(int_of_gint(x),int_of_gint(y))
axiom ax_sub_gint :
forall x, y : 'a gint. int_of_gint(sub_gint(x,y)) =
sub_int(int_of_gint(x),int_of_gint(y))
axiom ax_mul_gint :
forall x, y : 'a gint. int_of_gint(mul_gint(x,y)) =
mul_int(int_of_gint(x),int_of_gint(y))
axiom ax_div_gint :
forall x, y : 'a gint. int_of_gint(div_gint(x,y)) =
div_int(int_of_gint(x),int_of_gint(y))
axiom ax_mod_gint :
forall x, y : 'a gint. int_of_gint(mod_gint(x,y)) =
mod_int(int_of_gint(x),int_of_gint(y))
axiom ax_lt_gint_bool :
forall x, y : 'a gint. lt_gint_bool(x,y) =
lt_int_bool(int_of_gint(x),int_of_gint(y))
axiom ax_gt_gint_bool :
forall x, y : 'a gint. gt_gint_bool(x,y) =
gt_int_bool(int_of_gint(x),int_of_gint(y))
axiom ax_le_gint_bool :
forall x, y : 'a gint. le_gint_bool(x,y) =
le_int_bool(int_of_gint(x),int_of_gint(y))
axiom ax_ge_gint_bool :
forall x, y : 'a gint. ge_gint_bool(x,y) =
ge_int_bool(int_of_gint(x),int_of_gint(y))
axiom ax_eq_gint_bool :
forall x, y : 'a gint. eq_gint_bool(x,y) =
eq_int_bool(int_of_gint(x),int_of_gint(y))
axiom ax_neq_gint_bool :
forall x, y : 'a gint. neq_gint_bool(x,y) =
neq_int_bool(int_of_gint(x),int_of_gint(y))
axiom ax_le_gint :
forall x, y : 'a gint. le_gint(x,y) <-> le_int(int_of_gint(x),int_of_gint(y))
axiom ax_ge_gint :
forall x, y : 'a gint. ge_gint(x,y) <-> ge_int(int_of_gint(x),int_of_gint(y))
axiom ax_lt_gint :
forall x, y : 'a gint. lt_gint(x,y) <-> lt_int(int_of_gint(x),int_of_gint(y))
axiom ax_gt_gint :
forall x, y : 'a gint. gt_gint(x,y) <-> gt_int(int_of_gint(x),int_of_gint(y))
(*-------------------------------------*)
(** Booleans *)
(*
logic bool_of_cbool : c_bool gint -> bool
logic _true : c_bool gint
axiom acsl_true_is_bool_true : bool_of_cbool (_true) = true
logic _false : c_bool gint
axiom acsl_false_is_bool_false : bool_of_cbool (_false) = false
*)
logic _true : bool
axiom acsl_true_is_bool_true : (_true) = true
logic _false : bool
axiom acsl_false_is_bool_false : (_false) = false
(* boolean expressions used as integers have to be injected,
but we only know that it is 0 iff the bool is false.
We cannot give any value to a true bool. *)
logic int_of_bool : bool -> int
axiom int_of_bool_false : int_of_bool (false) = 0
axiom int_of_bool_true : int_of_bool (true) <> 0
(*----------------------------------------------------------------------------*)
type 'a pointer
(*----------------------------------------------------------------------------*)
|