1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
|
(**************************************************************************)
(* *)
(* This file is part of Frama-C. *)
(* *)
(* Copyright (C) 2007-2016 *)
(* CEA (Commissariat à l'énergie atomique et aux énergies *)
(* alternatives) *)
(* *)
(* you can redistribute it and/or modify it under the terms of the GNU *)
(* Lesser General Public License as published by the Free Software *)
(* Foundation, version 2.1. *)
(* *)
(* It is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *)
(* GNU Lesser General Public License for more details. *)
(* *)
(* See the GNU Lesser General Public License version 2.1 *)
(* for more details (enclosed in the file licenses/LGPLv2.1). *)
(* *)
(**************************************************************************)
open Abstract_interp
open Locations
open Cil_types
module CardinalEstimate = struct
(* We store the estimation as the log10 of the actual number. This is
necessary because the number of states gets huge.
None denotes a cardinal of 0. *)
type t = float option
let zero = None
let one = Some 0.0
let of_integer x = Some(Pervasives.log10 (Integer.to_float x))
let infinite = Some(infinity)
let mul a b = match (a,b) with
| None, _ | _, None -> None
| Some(a), Some(b) -> Some(a +. b);;
let power a b = match a with
| None -> None
| a when Integer.is_one b -> a
| Some(a) -> Some( a *. (Integer.to_float b))
let pretty fmt a = match a with
| None -> Format.fprintf fmt "0"
| Some(a) ->
let value = 10.0 ** a in
if value < 10000.0
then Format.fprintf fmt "%.0f" value
else if (classify_float value) = FP_infinite
then Format.fprintf fmt "10^%.2f" a
else Format.fprintf fmt "10^%.2f (%.3g)" a value
let pretty_long_log10 fmt a = match a with
| None -> Format.fprintf fmt "-inf"
| Some(a) -> Format.fprintf fmt "%.0f" a
end
module V = struct
include Location_Bytes
exception Not_based_on_null
let project_ival m =
try
let k, v = find_lonely_key m in
if not (Base.is_null k)
then raise Not_based_on_null
else v
with Not_found -> raise Not_based_on_null
let is_arithmetic m =
try let base, _ = find_lonely_key m in Base.is_null base
with Not_found -> false
let project_ival_bottom m =
if is_bottom m then Ival.bottom else project_ival m
let is_imprecise v =
match v with
| Top _ -> true
| _ -> false
let is_topint v = equal top_int v
let is_bottom v = equal bottom v
let is_isotropic v =
match v with
| Top _ -> true
| Map _ -> is_topint v || is_bottom v || is_zero v
let contains_zero loc =
try
let is_valid_offset base offset =
match base with
Base.Null ->
if Ival.contains_zero offset then raise Base.Not_valid_offset
| _ ->
let bits_offset = Ival.scale (Bit_utils.sizeofchar()) offset in
Base.is_valid_offset ~for_writing:false Int.zero base bits_offset
in
match loc with
| Location_Bytes.Top _ -> true
| Location_Bytes.Map m ->
Location_Bytes.M.iter is_valid_offset m;
false
with
| Base.Not_valid_offset -> true
let contains_non_zero v =
not ((equal v bottom) || (is_zero v))
let of_char c = inject_ival (Ival.of_int (Char.code c))
let of_int64 i = inject_ival (Ival.of_int64 i)
let inject_int (v:Int.t) =
inject_ival (Ival.inject_singleton v)
let interp_boolean ~contains_zero ~contains_non_zero =
match contains_zero, contains_non_zero with
| true, true -> zero_or_one
| true, false -> singleton_zero
| false, true -> singleton_one
| false, false -> bottom
(* Pretty-printing *)
(* Pretty the partial address [b(base)+i(offsets)] in a basic way,
by printing [i] as an [Ival.t] *)
let pretty_base_offsets_default fmt b i =
if Ival.equal Ival.zero i then
Format.fprintf fmt "@[%a@]" Base.pretty_addr b
else
Format.fprintf fmt "@[%a +@ %a@]" Base.pretty_addr b Ival.pretty i
(* Pretty the partial address [b(base)+i(offsets)], supposing it has type
[typ]. Whenever possible, we print real addresses instead of bytes
offsets. *)
let pretty_base_offsets_typ typ fmt b i =
let typ_match = match Extlib.opt_map Cil.unrollType typ with
| Some (TPtr (typ_pointed, _)) ->
if Cil.isVoidType typ_pointed then None else Some typ_pointed
| _ -> None
in
try
let v_base = Base.to_varinfo b in
let typ_base = v_base.vtype in
(* Manually pretty a cast to [typ_pointed *] *)
let pretty_cast fmt ok =
if not ok then
match typ with
| None -> Format.fprintf fmt "(? *)"
| Some typ -> Format.fprintf fmt "(%a)" Printer.pp_typ typ
in
(* Find an offset in [typ_base] at byte [ioffset] such that the offset
is of type [typ_match]. If no such offset exists, find an offset
that does not have the proper type. *)
let conv_offset ioffset =
let ioffsbits = Int.mul ioffset (Bit_utils.sizeofchar ()) in
let find_match om =
fst (Bit_utils.find_offset typ_base ~offset:ioffsbits om)
in
try
match typ_match with
| None -> raise Bit_utils.NoMatchingOffset
| Some typ -> find_match Bit_utils.(MatchType typ), true
with Bit_utils.NoMatchingOffset ->
(* Backup solution: no type to match, or no offset with the proper
type. Find a matching offset with potentially the wrong type *)
find_match Bit_utils.MatchFirst, false
in
match i with
| Ival.Set [|o|] ->
(* One single offset. Use a short notation, and an even shorter one
if we represent [&b] *)
let o, ok = conv_offset o in
if o = NoOffset then
Format.fprintf fmt "@[%a%a@]" pretty_cast ok Base.pretty_addr b
else
Format.fprintf fmt "@[%a%a%a@]"
pretty_cast ok Base.pretty_addr b Printer.pp_offset o
| Ival.Set a -> (* Multiple offsets. We use a set notation *)
(* Catch NoOffset, which we would be printed as '{, [1], [2]}. Instead,
we find a slightly deeper offset. We should never be in a different
case from array/comp, as the other types cannot have multiple
offsets. *)
let conv_offset' o =
let o, ok = conv_offset o in
if o = NoOffset then
let o' = match Cil.unrollType typ_base with
| TArray _ -> Index (Cil.(zero builtinLoc), NoOffset)
| TComp (ci, _, _) -> Field (List.hd ci.cfields, NoOffset)
| _ -> raise Bit_utils.NoMatchingOffset
in o', ok
else o, ok
in
let arr_off, ok =
Array.fold_right
(fun o (l, ok)-> let o', ok' = conv_offset' o in o' :: l, ok && ok')
a ([], true)
in
Format.fprintf fmt "@[%a%a{%a}@]"
pretty_cast ok
Base.pretty_addr b
(Pretty_utils.pp_iter
~sep:",@ " List.iter Printer.pp_offset) arr_off
| Ival.Top _ ->
(* Too many offsets. Currently, we use the basic notation. *)
pretty_base_offsets_default fmt b i
| Ival.Float _ -> assert false
with
(* Strange looking base, or no offset found. Use default printing *)
| Base.Not_a_C_variable | Bit_utils.NoMatchingOffset ->
pretty_base_offsets_default fmt b i
(* Pretty-print a map of bases, using auxiliary function pp_base *)
let pretty_pointers fmt pp_base m =
Pretty_utils.pp_iter
~pre:"@[<hov 3>{{ " ~suf:" }}@]" ~sep:" ;@ "
(fun pp map -> M.iter (fun k v -> pp (k, v)) map)
(fun fmt (k, v) -> pp_base fmt k v)
fmt m
let pretty_typ typ fmt v =
let pretty_org fmt org =
if not (Origin.is_top org) then
Format.fprintf fmt "@ @[(origin: %a)@]" Origin.pretty org
in
match v with
| Top (Base.SetLattice.Top, a) ->
Format.fprintf fmt "{{ ANYTHING%a }}"
pretty_org a
| Top (Base.SetLattice.Set t, a) ->
let t = Base.SetLattice.(inject (O.remove Base.null t)) in
Format.fprintf fmt "{{ garbled mix of &%a%a }}"
Base.SetLattice.pretty t pretty_org a
| Map m ->
try
Ival.pretty fmt (project_ival v)
with
| Not_based_on_null ->
try
pretty_pointers fmt (pretty_base_offsets_typ typ) m
with Cil.SizeOfError _ ->
(* Standard printing as a set of (base+ival) *)
pretty_pointers fmt pretty_base_offsets_default m
let pretty fmt v = match v with
| Top _ -> pretty_typ None fmt v
| Map m ->
try
Ival.pretty fmt (project_ival v)
with
| Not_based_on_null -> pretty_pointers fmt pretty_base_offsets_default m
(** Comparisons *)
let compare_bound ival_compare_bound l1 l2 =
if l1 == l2 then 0
else if is_bottom l2 then -1
else if is_bottom l1 then 1
else try
let f1 = project_ival l1 in
let f2 = project_ival l2 in
ival_compare_bound f1 f2
with Not_based_on_null -> assert false
let compare_min_float = compare_bound Ival.compare_min_float
let compare_max_float = compare_bound Ival.compare_max_float
let compare_min_int = compare_bound Ival.compare_min_int
let compare_max_int = compare_bound Ival.compare_max_int
open Bottom.Type
let backward_mult_int_left ~right ~result =
try
let right = project_ival right in
let result = project_ival result in
Ival.backward_mult_int_left ~right ~result >>-: Extlib.opt_map inject_ival
with Not_based_on_null -> `Value None
let backward_rel_int_left op l r =
let open Abstract_interp.Comp in
match l with
| Top _ -> l
| Map m1 ->
try
let k,v2 = find_lonely_key r in
let v1 = find_or_bottom k m1 in
let v1' = Ival.backward_comp_int_left op v1 v2 in
let r = add k v1' l in
if (not (Base.equal k Base.null)) && (op = Ge || op = Gt)
then diff_if_one r singleton_zero
else r
with Not_found -> l
(* More agressive reduction by relational pointer operators. This version
assumes that \pointer_comparable alarms have been emitted, and that
we want to reduce by them. For example, &a < &b reduces to bottom,
which might be problematic if &a and &b have been cast to uintptr_t *)
let _backward_rel_int_left op l r =
let debug = false in
(* Pointwise operation on the base [b], bound to [il] in [l] *)
let aux_base b il acc =
let ir = find b r in
if Ival.is_bottom ir then acc
else
let il' = Ival.backward_comp_int_left op il ir in
if not (Ival.is_bottom il')
then add b il' acc
else acc
in
if true then
fold_topset_ok aux_base l bottom
else (* Complicated version that accepts comparisons 0 < &p *)
try
let il, pl = split Base.null l in
let ir, pr = split Base.null r in
let zl = Ival.contains_zero il in
let zr = Ival.contains_zero ir in
let il' = Ival.backward_comp_int_left op il ir in
let pl' = fold_topset_ok aux_base pl bottom in
let open Abstract_interp.Comp in
(* i1' and p1' are pointwise application of the comparison operator,
and will be in the result in all cases. *)
if debug then Kernel.result "%a %a %a %a %a -> %a %a"
Ival.pretty il pretty pl pretty_comp op Ival.pretty ir pretty pr
Ival.pretty il' pretty pl';
match op, zl, zr with
| (Le | Lt), false, _ (* il + pl <~ (ir + ?0) + pr *)
| (Ge | Gt), _, false (* (il + ?0) + pl >~ ir + pr *) ->
add Base.null il' pl'
| (Le | Lt), true, _ -> (* 0 + il + pl <~ ir + pr *)
if is_bottom pr then
add Base.null il' pl'
else
(* also keep the NULL pointer, that compares less than pr *)
add Base.null (Ival.join Ival.zero il') pl'
| (Ge | Gt), _, true -> (* il + pl >~ 0 + pr *)
(* keep all of pl, as they are all greater than 0; this includes pl'*)
add Base.null il' pl
| _ -> assert false
with Error_Top -> l
let backward_comp_int_left op l r =
let open Abstract_interp.Comp in
match op with
| Ne -> diff_if_one l r
| Eq -> narrow l r
| Le | Lt | Ge | Gt -> backward_rel_int_left op l r
let backward_comp_float_left op allmodes fkind l r =
try
let vl = project_ival l in
let vr = project_ival r in
inject_ival (Ival.backward_comp_float_left op allmodes fkind vl vr)
with Not_based_on_null -> l
let inject_comp_result = function
| Comp.True -> singleton_one
| Comp.False -> singleton_zero
| Comp.Unknown -> zero_or_one
let forward_rel_int ~signed op e1 e2 =
let open Abstract_interp.Comp in
try
let k1,v1 = find_lonely_key e1 in
let k2,v2 = find_lonely_key e2 in
if Base.equal k1 k2 then
Ival.forward_comp_int op v1 v2
else begin
if signed then
Unknown
else begin
(* k1 -> v1, k2 -> v2, k1 <> k2 *)
let e1_zero = equal e1 singleton_zero in
let e2_zero = equal e2 singleton_zero in
if (e1_zero && (op = Le || op = Lt))
|| (e2_zero && (op = Ge || op = Gt))
then True (* if e1/e2 is NULL, then e2/e1 is a pointer *)
else
if (e2_zero && (op = Le || op = Lt))
|| (e1_zero && (op = Ge || op = Gt))
then False
else Unknown
end
end
with Not_found -> Comp.Unknown
let forward_eq_int e1 e2 =
if (equal e1 e2) && (cardinal_zero_or_one e1)
then Comp.True
else if intersects e1 e2
then Comp.Unknown
else Comp.False
let forward_comp_int ~signed op v1 v2 =
let open Abstract_interp.Comp in
match op with
| Eq -> forward_eq_int v1 v2
| Ne -> inv_result (forward_eq_int v1 v2)
| Le | Ge | Lt | Gt -> forward_rel_int ~signed op v1 v2
(** Casts *)
let cast_float ~rounding_mode v =
try
let i = project_ival v in
let b, i = Ival.force_float FFloat i in
let b', i = Ival.cast_float ~rounding_mode i in
false, b || b', inject_ival i
with
Not_based_on_null ->
if is_bottom v
then false, false, bottom
else true, true, topify_arith_origin v
let cast_double v =
try
let i = project_ival v in
let b, i = Ival.force_float FDouble i in
let b', i = Ival.cast_double i in
false, b || b', inject_ival i
with
Not_based_on_null ->
if is_bottom v
then false, false, bottom
else true, true, topify_arith_origin v
let cast ~size ~signed v =
let integer_part, pointer_part = split Base.null v in
let integer_part' = Ival.cast ~size ~signed ~value:integer_part in
(* ok_garbled indicates that we do _not_ create a (new) garbled mix *)
let pointer_part', ok_garbled =
if Int.ge size (Int.of_int (Bit_utils.sizeofpointer ())) ||
is_bottom pointer_part || is_imprecise pointer_part
then pointer_part, true
else topify_arith_origin pointer_part, false
in
if ok_garbled && integer_part' == integer_part then
v (* both pointer and integer part are unchanged *), true
else
join (inject_ival integer_part') pointer_part', ok_garbled
let cast_float_to_int ~signed ~size v =
try
let v1 = project_ival v in
let alarm_use_as_float, alarm_overflow, r =
Ival.cast_float_to_int ~signed ~size v1
in
false, alarm_use_as_float, alarm_overflow, inject_ival r
with Not_based_on_null ->
if is_bottom v then
false, false, (false, false), v
else
(not (is_bottom v)), true, (true, true), topify_arith_origin v
let cast_float_to_int_inverse ~single_precision i =
try
let v1 = project_ival i in
let r = Ival.cast_float_to_int_inverse ~single_precision v1 in
Some (inject_ival r)
with Not_based_on_null -> None
let cast_int_to_float rounding_mode v =
try
let i = project_ival v in
let ok, r = Ival.cast_int_to_float rounding_mode i in
inject_ival r, ok
with Not_based_on_null -> v, false
let cast_int_to_float_inverse ~single_precision vf =
try
let ivf = project_ival vf in
let i = Ival.cast_int_to_float_inverse ~single_precision ivf in
Some (inject_ival i)
with Not_based_on_null -> None
(** Binary functions *)
let import_function ~topify f e1 e2 =
try
let v1 = project_ival e1 in
let v2 = project_ival e2 in
inject_ival (f v1 v2)
with Not_based_on_null ->
if is_bottom e1 || is_bottom e2
then bottom
else begin
join
(topify_with_origin_kind topify e1)
(topify_with_origin_kind topify e2)
end
let arithmetic_function = import_function ~topify:Origin.K_Arith
(* Compute the pointwise difference between two Locations_Bytes.t. *)
let sub_untyped_pointwise ?factor v1 v2 =
let offsets = sub_pointwise ?factor v1 v2 in
let warn =
try
let b1, _ = find_lonely_key v1
and b2, _ = find_lonely_key v2 in
not (Base.equal b1 b2)
with Not_found -> true
in
offsets, warn
(* compute [e1+factor*e2] using C semantic for +, i.e.
[ptr+v] is [add_untyped sizeof_in_octets( *ptr) ptr v]. This function
handles simultaneously PlusA, MinusA, PlusPI, MinusPI and sometimes
MinusPP, by setting [factor] accordingly. This is more precise than
having multiple functions, as computations such as
[(int)&t[1] - (int)&t[2]] would not be treated precisely otherwise. *)
let add_untyped ~topify ~factor e1 e2 =
try
if Int_Base.equal factor (Int_Base.minus_one)
then
(* Either e1 and e2 have the same base, and it's a subtraction
of pointers, or e2 is really an integer *)
let b1, o1 = Location_Bytes.find_lonely_key e1 in
let b2, o2 = Location_Bytes.find_lonely_key e2 in
if Base.compare b1 b2 <> 0 then raise Not_found;
inject_ival (Ival.sub_int o1 o2)
else begin
if not (Int_Base.equal factor (Int_Base.one)) then
raise Not_found (* cannot multiply a pointer *);
try
Location_Bytes.shift (project_ival_bottom e2) e1
with Not_based_on_null ->
try (* On the off chance that someone writes [i+(int)&p]... *)
Location_Bytes.shift (project_ival_bottom e1) e2
with Not_based_on_null ->
join
(topify_with_origin_kind topify e1)
(topify_with_origin_kind topify e2)
end
with Not_found ->
(* we end up here if the only way left to make this
addition is to convert e2 to an integer *)
try
let right = Ival.scale_int_base factor (project_ival_bottom e2)
in Location_Bytes.shift right e1
with Not_based_on_null -> (* from [project_ival] *)
join
(topify_with_origin_kind topify e1)
(topify_with_origin_kind topify e2)
(* Under-approximating variant of add_untyped. Takes two
under-approximation, and returns an under-approximation.*)
let add_untyped_under ~factor e1 e2 =
if Int_Base.equal factor (Int_Base.minus_one)
then
(* Note: we could do a "link" for each pair of matching bases in
e1 and e2, so this is an underapproximation in the most
common case. *)
try
let b1, o1 = Location_Bytes.find_lonely_key e1 in
let b2, o2 = Location_Bytes.find_lonely_key e2 in
if Base.compare b1 b2 <> 0 then bottom
else inject_ival (Ival.sub_int_under o1 o2)
with Not_found -> bottom
else if Int_Base.equal factor Int_Base.one
then
try Location_Bytes.shift_under (project_ival_bottom e2) e1
with Not_based_on_null -> bottom
else
try
let right = Ival.scale_int_base factor (project_ival_bottom e2) in
Location_Bytes.shift_under right e1
with Not_based_on_null -> bottom
;;
let div e1 e2 =
arithmetic_function Ival.div e1 e2
let c_rem e1 e2 =
arithmetic_function Ival.c_rem e1 e2
let mul e1 e2 =
arithmetic_function Ival.mul e1 e2
let shift_left e1 e2 =
arithmetic_function Ival.shift_left e1 e2
let bitwise_xor v1 v2 =
arithmetic_function Ival.bitwise_xor v1 v2
let bitwise_or v1 v2 =
if equal singleton_zero v1 then v2
else if equal singleton_zero v2 then v1
else if equal v1 v2 && cardinal_zero_or_one v1 then v1
else
import_function ~topify:Origin.K_Arith Ival.bitwise_or v1 v2
let bitwise_and ~signed ~size v1 v2 =
if equal v1 v2 && cardinal_zero_or_one v1 then v1
else
let f i1 i2 = Ival.bitwise_and ~size ~signed i1 i2 in
import_function ~topify:Origin.K_Arith f v1 v2
let shift_right e1 e2 =
arithmetic_function Ival.shift_right e1 e2
let bitwise_not v =
try
let i = project_ival v in
inject_ival (Ival.bitwise_not i)
with Not_based_on_null -> topify_arith_origin v
let bitwise_not_size ~signed ~size v =
try
let i = project_ival v in
inject_ival (Ival.bitwise_not_size ~size ~signed i)
with Not_based_on_null -> topify_arith_origin v
let extract_bits ~topify ~start ~stop ~size v =
try
let i = project_ival_bottom v in
false, inject_ival (Ival.extract_bits ~start ~stop ~size i)
with
| Not_based_on_null ->
if is_imprecise v
then false, v
else true, topify_with_origin_kind topify v
(* Computes [e * 2^factor]. Auxiliary function for foo_endian_merge_bits *)
let shift_left_by_integer ~topify factor e =
try
let i = project_ival_bottom e in
inject_ival (Ival.scale (Int.two_power factor) i)
with
| Not_based_on_null -> topify_with_origin_kind topify e
| Integer.Too_big -> top_int
let big_endian_merge_bits ~topify ~conflate_bottom ~total_length ~length ~value ~offset acc =
if is_bottom acc || is_bottom value
then begin
if conflate_bottom
then
bottom
else
join
(topify_with_origin_kind topify acc)
(topify_with_origin_kind topify value)
end
else
let total_length_i = Int.of_int total_length in
let factor = Int.sub (Int.sub total_length_i offset) length in
let value' = shift_left_by_integer ~topify factor value in
let result = add_untyped ~topify ~factor:Int_Base.one value' acc in
(* Format.printf "big_endian_merge_bits : total_length:%d length:%a value:%a offset:%a acc:%a GOT:%a@."
total_length
Int.pretty length
pretty value
Int.pretty offset
pretty acc
pretty result; *)
result
let little_endian_merge_bits ~topify ~conflate_bottom ~value ~offset acc =
if is_bottom acc || is_bottom value
then begin
if conflate_bottom
then
bottom
else
join
(topify_with_origin_kind topify acc)
(topify_with_origin_kind topify value)
end
else
let value' = shift_left_by_integer ~topify offset value in
let result = add_untyped ~topify ~factor:Int_Base.one value' acc in
(*Format.printf "le merge_bits : total_length:%d value:%a offset:%a acc:%a GOT:%a@."
total_length pretty value Int.pretty offset pretty acc pretty result;*)
result
(* neutral value for foo_endian_merge_bits *)
let merge_neutral_element = singleton_zero
let all_values ~size v =
if Int.(equal size zero) then true
else
try
let i = project_ival v in
Ival.all_values ~size i
with Not_based_on_null ->
false
let anisotropic_cast ~size v =
if all_values ~size v then top_int else v
let create_all_values ~signed ~size =
inject_ival (Ival.create_all_values ~signed ~size)
let cardinal_estimate lb size = match lb with
| Top _ -> Int.two_power size (* TODO: this could be very slow when [size]
is big *)
| Map m ->
M.fold (fun _ v card ->
Int.add card (Ival.cardinal_estimate v size)
) m Int.zero
let add_untyped ~factor v1 v2 =
add_untyped ~topify:Origin.K_Arith ~factor v1 v2
end
module V_Or_Uninitialized = struct
(* Note: there is a "cartesian product" of the escape and init flags
in the constructors, instead of having a tuple or two sum types,
for performance reasons: this avoids an indirection. *)
type t =
| C_uninit_esc of V.t
| C_uninit_noesc of V.t
| C_init_esc of V.t
| C_init_noesc of V.t
let make ~initialized ~escaping v =
match initialized, escaping with
| true, false -> C_init_noesc v
| true, true -> C_init_esc v
| false, false -> C_uninit_noesc v
| false, true -> C_uninit_esc v
let mask_init = 2
let mask_noesc = 1
(* replace "noalloc" with [@@noalloc] for OCaml version >= 4.03.0 *)
[@@@ warning "-3"]
external get_flags : t -> int = "caml_obj_tag" "noalloc"
[@@@ warning "+3"]
let is_initialized v = (get_flags v land mask_init) <> 0
let is_noesc v = (get_flags v land mask_noesc) <> 0
let get_v = function
| C_uninit_esc v
| C_uninit_noesc v
| C_init_esc v
| C_init_noesc v -> v
let is_indeterminate = function
| C_init_noesc _ -> false
| _ -> true
let create : int -> V.t -> t = fun flags v ->
match flags with
| 0 -> C_uninit_esc v
| 1 -> C_uninit_noesc v
| 2 -> C_init_esc v
| 3 -> C_init_noesc v
| _ -> assert false
(* let (==>) = (fun x y -> (not x) || y) *)
type size_widen_hint = V.size_widen_hint
type generic_widen_hint = V.generic_widen_hint
type widen_hint = V.widen_hint
let widen wh t1 t2 =
create (get_flags t2) (V.widen wh (get_v t1) (get_v t2))
let equal t1 t2 =
(get_flags t1) = (get_flags t2) &&
V.equal (get_v t1) (get_v t2)
let join t1 t2 =
create
((get_flags t1) land (get_flags t2))
(V.join (get_v t1) (get_v t2))
let narrow t1 t2 =
create
((get_flags t1) lor (get_flags t2))
(V.narrow (get_v t1) (get_v t2))
let link t1 t2 =
create
((get_flags t1) land (get_flags t2))
(V.link (get_v t1) (get_v t2))
let meet t1 t2 =
create
((get_flags t1) lor (get_flags t2))
(V.meet (get_v t1) (get_v t2))
let map f v = create (get_flags v) (f (get_v v))
let map2 f v1 v2 =
create ((get_flags v1) land (get_flags v2)) (f (get_v v1) (get_v v2))
let bottom = C_init_noesc V.bottom
let top = C_uninit_esc V.top
let top_opt = Some top
let is_bottom = equal bottom
let uninitialized = C_uninit_noesc V.bottom
let initialized v = C_init_noesc v
let is_included t1 t2 =
(* (t2.initialized ==> t1.initialized) &&
(t2.no_escaping_adr ==> t1.no_escaping_adr) &&
V.is_included t1.v t2.v
*)
let flags1 = get_flags t1 in
let flags2 = get_flags t2 in
(lnot flags2) lor flags1 = -1 &&
V.is_included (get_v t1) (get_v t2)
let join_and_is_included t1 t2 =
let t12 = join t1 t2 in (t12, equal t12 t2)
let pretty_aux pp fmt t =
let no_escaping_adr = is_noesc t in
let initialized = is_initialized t in
let v = get_v t in
match V.(equal bottom v), initialized, no_escaping_adr with
| false, false, false ->
Format.fprintf fmt "%a or UNINITIALIZED or ESCAPINGADDR" pp v
| true, false, false ->
Format.pp_print_string fmt "UNINITIALIZED or ESCAPINGADDR"
| false, false, true ->
Format.fprintf fmt "%a or UNINITIALIZED" pp v
| true, false, true ->
Format.pp_print_string fmt "UNINITIALIZED"
| false, true, false ->
Format.fprintf fmt "%a or ESCAPINGADDR" pp v
| true, true, false ->
Format.pp_print_string fmt "ESCAPINGADDR"
| false, true, true ->
pp fmt v
| true, true, true ->
Format.pp_print_string fmt "BOTVALUE"
let pretty fmt v = pretty_aux V.pretty fmt v
let pretty_typ typ fmt v =
pretty_aux (fun fmt v -> V.pretty_typ typ fmt v) fmt v
let cardinal_zero_or_one t =
match t with
C_init_noesc v -> V.cardinal_zero_or_one v
| C_init_esc v | C_uninit_noesc v -> V.is_bottom v
| C_uninit_esc _ -> false
let hash t = (get_flags t) * 4513 + (V.hash (get_v t))
include
(Datatype.Make
(struct
type uninitialized = t
type t = uninitialized (* = | C_uninit_esc of V.t
| C_uninit_noesc of V.t
| C_init_esc of V.t
| C_init_noesc of V.t *)
let name = "Cvalue.V_Or_Uninitialized"
let structural_descr =
let v = V.packed_descr in
Structural_descr.t_sum [| [| v |]; [| v |]; [| v |]; [| v |] |]
let reprs =
List.fold_left
(fun acc v ->
List.fold_left
(fun acc v ->
List.fold_left
(fun acc v -> C_uninit_noesc v :: acc)
(C_uninit_esc v :: acc)
V.reprs)
(C_init_noesc v :: acc)
V.reprs)
(List.map (fun v -> C_init_esc v) V.reprs)
V.reprs
let hash = hash
let equal = equal
let compare = Datatype.undefined
let copy = Datatype.undefined
let rehash = Datatype.identity
let pretty = pretty
let internal_pretty_code = Datatype.undefined
let varname = Datatype.undefined
let mem_project = Datatype.never_any_project
end)
: Datatype.S with type t := t)
let is_isotropic t = V.is_isotropic (get_v t)
let extract_bits ~topify ~start ~stop ~size t =
let inform_extract_pointer_bits, v =
V.extract_bits ~topify ~start ~stop ~size (get_v t)
in
inform_extract_pointer_bits,
create (get_flags t) v
let little_endian_merge_bits ~topify ~conflate_bottom ~value ~offset t =
create
((get_flags t) land (get_flags value))
(V.little_endian_merge_bits ~topify ~conflate_bottom
~value:(get_v value) ~offset
(get_v t))
let big_endian_merge_bits ~topify ~conflate_bottom ~total_length ~length ~value ~offset t =
create
((get_flags t) land (get_flags value))
(V.big_endian_merge_bits ~topify ~conflate_bottom
~total_length ~length
~value:(get_v value)
~offset
(get_v t))
let topify_with_origin o t =
create
(get_flags t)
(V.topify_with_origin o (get_v t))
let anisotropic_cast ~size t =
create
(get_flags t)
(V.anisotropic_cast ~size (get_v t))
let singleton_zero = C_init_noesc (V.singleton_zero)
let merge_neutral_element = singleton_zero
let unspecify_escaping_locals ~exact is_local t =
let flags = get_flags t in
let flags = flags land mask_init
(* clear noesc flag *)
in
let v = get_v t in
let locals, v' = V.remove_escaping_locals is_local v in
let v = if exact then v' else V.join v v' in
locals, create flags v
let reduce_by_initializedness init v = match init, v with
| true, C_uninit_esc v -> C_init_esc v
| true, C_uninit_noesc v -> C_init_noesc v
| true, (C_init_esc _ | C_init_noesc _) -> v
| false, (C_init_esc _ | C_init_noesc _) -> bottom
| false, C_uninit_noesc _ -> C_uninit_noesc V.bottom
| false, C_uninit_esc _ -> C_uninit_esc V.bottom
let reduce_by_danglingness spec v = match spec, v with
| false, C_uninit_esc v -> C_uninit_noesc v
| false, C_init_esc v -> C_init_noesc v
| false, (C_uninit_noesc _ | C_init_noesc _) -> v
| true, (C_uninit_noesc _ | C_init_noesc _) -> bottom
| true, C_uninit_esc _ -> C_uninit_esc V.bottom
| true, C_init_esc _ -> C_init_esc V.bottom
let remove_indeterminateness = function
| C_init_noesc _ as v -> v
| (C_uninit_noesc v | C_uninit_esc v | C_init_esc v) -> C_init_noesc v
let cardinal_estimate v size =
let vcard v = V.cardinal_estimate v size in
match v with
| C_init_noesc(v) -> vcard v
| C_uninit_noesc(v) | C_init_esc(v) -> Integer.add Integer.one (vcard v)
| C_uninit_esc(v) -> Integer.add Integer.two (vcard v)
let bottom_is_strict = true
end
module V_Offsetmap = struct
include Offsetmap.Make(V_Or_Uninitialized)
let from_string s =
(* Iterate on s + null terminator; same signature as List.fold_left *)
let fold_string f acc s =
let acc = ref acc in
for i = 0 to String.length s - 1 do
let v = V_Or_Uninitialized.initialized (V.of_char s.[i]) in
acc := f !acc v;
done;
f !acc V_Or_Uninitialized.singleton_zero (** add null terminator *)
in
let size_char = Integer.of_int (Cil.bitsSizeOfInt IChar) in
of_list fold_string s size_char
let from_wstring s =
let conv v = V_Or_Uninitialized.initialized (V.of_int64 v) in
let fold f acc l = List.fold_left (fun acc v -> f acc (conv v)) acc l in
let size_wchar = Integer.of_int Cil.(bitsSizeOf theMachine.wcharType) in
of_list fold (s @ [0L]) size_wchar
let from_cstring = function
| Base.CSWstring w -> from_wstring w
| Base.CSString s -> from_string s
(* Note: it may be surprising that an offsetmap of top_ival repeated
on 32 bits gives a state space of size 3^32. Indeed each bit
belongs to {-1,0,1}. *)
let cardinal_estimate offsetmap =
let f (start,stop) (value, size, _) accu =
let cardinal = V_Or_Uninitialized.cardinal_estimate value size in
(* There are some bottom values bound to offsetmaps, for
instance before the minimum of absolute valid range, that
have a cardinal of zero; we ignore them. *)
let cardinal =
if Integer.is_zero cardinal then Integer.one else cardinal
in
let cardinalf = CardinalEstimate.of_integer cardinal in
let repeat = Integer.(div (length start stop) size) in
(* If a value is "cut", we still count it as if it were whole. *)
let repeat = Integer.(max repeat one) in
let cardinalf_repeated = CardinalEstimate.power cardinalf repeat in
CardinalEstimate.mul accu cardinalf_repeated
in
fold f offsetmap CardinalEstimate.one
exception NarrowReturnsBottom
module OffsetmapNarrow = Make_Narrow(struct
let top = V_Or_Uninitialized.top
(* Special definition of narrow that catches newly-introduced bottom *)
let narrow x y =
let r = V_Or_Uninitialized.narrow x y in
if V_Or_Uninitialized.is_bottom r then raise NarrowReturnsBottom;
r
end)
let narrow x y =
try `Value (OffsetmapNarrow.narrow x y)
with NarrowReturnsBottom -> `Bottom
end
module Default_offsetmap = struct
module StringOffsetmaps =
State_builder.Int_hashtbl
(V_Offsetmap)
(struct
let name = "Cvalue.Default_offsetmap.StringOffsetmaps"
let dependencies = [ Ast.self ]
let size = 17
end)
let () = Ast.add_monotonic_state StringOffsetmaps.self
let default_offsetmap base =
let aux validity v =
match V_Offsetmap.size_from_validity validity with
| `Bottom -> `Bottom
| `Value size -> `Value (V_Offsetmap.create_isotropic ~size v)
in
match base with
| Base.Allocated (_, validity) ->
aux validity V_Or_Uninitialized.bottom
| Base.Var (_, validity) | Base.CLogic_Var (_, _, validity) ->
aux validity V_Or_Uninitialized.uninitialized
| Base.Null ->
let validity = Base.validity base in
(* The map we create is not faithful for Null: this is not a problem in
practice, because the Null base is always bound to something correct
in module Value/Initial_state, or is invalid. *)
aux validity V_Or_Uninitialized.bottom
| Base.String (id,lit) ->
try
`Value (StringOffsetmaps.find id)
with Not_found ->
let o = V_Offsetmap.from_cstring lit in
StringOffsetmaps.add id o;
`Value o
let default_contents = Lmap.Bottom
(* this works because, currently:
- during the analysis, we merge maps with the same variables (all locals
are explicitly present)
- after the analysis, for synthetic results, we merge maps with different
sets of locals, but is is ok to have missing ones considered as being
bound to Bottom.
- for dynamic allocation, the default value is indeed Bottom
*)
let name = "Cvalue.Default_offsetmap"
end
module Model = struct
include
Lmap.Make_LOffset(V_Or_Uninitialized)(V_Offsetmap)(Default_offsetmap)
include Make_Narrow(V_Or_Uninitialized)
let find_unspecified ?(conflate_bottom=true) state loc =
find ~conflate_bottom state loc
let find ?(conflate_bottom=true) state loc =
let alarm, v = find_unspecified ~conflate_bottom state loc in
alarm, V_Or_Uninitialized.get_v v
let add_unsafe_binding ~exact mem loc v =
add_binding ~reducing:true ~exact mem loc v
let add_binding_unspecified ~exact mem loc v =
add_binding ~reducing:false ~exact mem loc v
let reduce_previous_binding state l v =
assert (Locations.cardinal_zero_or_one l);
let v = V_Or_Uninitialized.initialized v in
snd (add_binding ~reducing:true ~exact:true state l v)
let reduce_indeterminate_binding state l v =
assert (Locations.cardinal_zero_or_one l);
snd (add_binding ~reducing:true ~exact:true state l v)
let reduce_binding initial_mem l v =
let _, v_old = find initial_mem l in
(* This function will discard any indeterminate bit in [v_old]. This is
by design, as reduction functions must be called after evaluation
was done. *)
if V.equal v v_old
then initial_mem
else
let v_new = V.narrow v_old v in
if V.equal v_new v_old then initial_mem
else if V.is_bottom v_new then bottom
else reduce_previous_binding initial_mem l v_new
let add_initial_binding mem loc v =
snd (add_binding ~reducing:true ~exact:true mem loc v)
(* Overwrites the definition of add_binding coming from Lmap, with a
signature change. *)
let add_binding ~exact acc loc value =
add_binding
~reducing:false ~exact acc loc (V_Or_Uninitialized.initialized value)
let add_new_base base ~size v ~size_v state =
let v = V_Or_Uninitialized.initialized v in
add_new_base base ~size v ~size_v state
let uninitialize_blocks_locals blocks state =
List.fold_left
(fun acc block -> remove_variables block.blocals acc) state blocks
let cardinal_estimate state =
match state with
| Bottom -> CardinalEstimate.zero
| Top -> CardinalEstimate.infinite
| Map(m) ->
let count = ref (CardinalEstimate.one) in
let f _ offsetmap =
let offsetmap_card = V_Offsetmap.cardinal_estimate offsetmap in
count := CardinalEstimate.mul !count offsetmap_card
in
iter f m;
!count
end
(*
Local Variables:
compile-command: "make -C ../../.."
End:
*)
|