1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
|
/**************************************************************************
* This file is part of the Fraqtive program
* Copyright (C) 2004-2012 Michał Męciński
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
**************************************************************************/
#include "generatorcore.h"
#include <qglobal.h>
#include <math.h>
#include <cstdlib>
#if defined( HAVE_SSE2 )
# include <emmintrin.h>
#endif
// see http://wiki.mimec.org/wiki/Fraqtive/Generator_Core for a description of this code
namespace GeneratorCore
{
static const double BailoutRadius = 64.0;
#if defined( Q_CC_MSVC )
# pragma float_control( precise, off )
# pragma intrinsic( log, sqrt, exp, atan2, sin, cos, fabs )
#endif
static const double BailoutLog = log( 2.0 * log( BailoutRadius ) );
static inline double calculateResult( int maxIterations, int count, double final, double exponent )
{
if ( count == 0 )
return 0.0;
double value = ( maxIterations - count ) + ( BailoutLog - log( log( sqrt( final ) ) ) ) / log( exponent );
return sqrt( value );
}
template<Variant VARIANT>
static void adjust( double& /*zx*/, double& /*zy*/ );
template<>
inline void adjust<NormalVariant>( double& /*zx*/, double& /*zy*/ )
{
}
template<>
inline void adjust<ConjugateVariant>( double& /*zx*/, double& zy )
{
zy = -zy;
}
template<>
inline void adjust<AbsoluteVariant>( double& zx, double& zy )
{
zx = fabs( zx );
zy = fabs( zy );
}
template<>
inline void adjust<AbsoluteImVariant>( double& /*zx*/, double& zy )
{
zy = fabs( zy );
}
template<Variant VARIANT>
static inline double calculate( double x, double y, double cx, double cy, double exponent, int maxIterations )
{
double zx = x;
double zy = y;
double radius;
double exp2 = 0.5 * exponent;
for ( int k = maxIterations; k > 0; k-- ) {
adjust<VARIANT>( zx, zy );
double zxx = zx * zx;
double zyy = zy * zy;
radius = zxx + zyy;
if ( radius >= BailoutRadius )
return calculateResult( maxIterations, k, radius, exponent );
double z = exp( log( radius ) * exp2 );
double fi = exponent * atan2( zy, zx );
zx = z * cos( fi ) + cx;
zy = z * sin( fi ) + cy;
}
return 0.0;
}
#if defined( Q_CC_MSVC )
# pragma float_control( precise, on )
# pragma function( log, sqrt, exp, atan2, sin, cos, fabs )
#endif
class MandelbrotParams
{
public:
MandelbrotParams( double exponent ) :
m_exponent( exponent )
{
}
protected:
double m_exponent;
};
template<Variant VARIANT>
class MandelbrotFunctor : public Functor, public MandelbrotParams
{
public:
MandelbrotFunctor( const MandelbrotParams& params ) : MandelbrotParams( params )
{
}
double operator()( double zx, double zy, int maxIterations )
{
return calculate<VARIANT>( zx, zy, zx, zy, m_exponent, maxIterations );
}
};
class JuliaParams : public MandelbrotParams
{
public:
JuliaParams( double cx, double cy, double exponent ) : MandelbrotParams( exponent ),
m_cx( cx ),
m_cy( cy )
{
}
protected:
double m_cx;
double m_cy;
};
template<Variant VARIANT>
class JuliaFunctor : public Functor, public JuliaParams
{
public:
JuliaFunctor( const JuliaParams& params ) : JuliaParams( params )
{
}
double operator()( double zx, double zy, int maxIterations )
{
return calculate<VARIANT>( zx, zy, m_cx, m_cy, m_exponent, maxIterations );
}
};
template<typename BASE, template<Variant VARIANT> class FACTORY>
class VariantDispatcher
{
public:
template<typename PARAMS>
static BASE* create( Variant variant, const PARAMS& params )
{
switch ( variant ) {
case NormalVariant:
return FACTORY<NormalVariant>::create( params );
case ConjugateVariant:
return FACTORY<ConjugateVariant>::create( params );
case AbsoluteVariant:
return FACTORY<AbsoluteVariant>::create( params );
case AbsoluteImVariant:
return FACTORY<AbsoluteImVariant>::create( params );
}
return NULL;
}
};
template<typename BASE, template<Variant VARIANT> class FUNCTOR>
class FunctorFactory
{
public:
template<typename PARAMS>
static BASE* create( Variant variant, const PARAMS& params )
{
return VariantDispatcher<BASE, InnerFactory>::create( variant, params );
}
private:
template<Variant VARIANT>
class InnerFactory
{
public:
template<typename PARAMS>
static BASE* create( const PARAMS& params )
{
return new FUNCTOR<VARIANT>( params );
}
};
};
Functor* createMandelbrotFunctor( double exponent, Variant variant )
{
return FunctorFactory<Functor, MandelbrotFunctor>::create( variant, MandelbrotParams( exponent ) );
}
Functor* createJuliaFunctor( double cx, double cy, double exponent, Variant variant )
{
return FunctorFactory<Functor, JuliaFunctor>::create( variant, JuliaParams( cx, cy, exponent ) );
}
template<int N>
static inline void calculatePower( double& zx, double& zy, double& radius )
{
if ( N % 2 == 0 ) {
calculatePower<N / 2>( zx, zy, radius );
double zxx = zx * zx;
double zyy = zy * zy;
double zxy = zx * zy;
zx = zxx - zyy;
zy = zxy + zxy;
} else {
double zx2 = zx;
double zy2 = zy;
calculatePower<N - 1>( zx2, zy2, radius );
double zxx2 = zx * zx2;
double zxy2 = zx * zy2;
double zyx2 = zy * zx2;
double zyy2 = zy * zy2;
zx = zxx2 - zyy2;
zy = zxy2 + zyx2;
}
}
template<>
inline void calculatePower<2>( double& zx, double& zy, double& radius )
{
double zxx = zx * zx;
double zyy = zy * zy;
double zxy = zx * zy;
zx = zxx - zyy;
zy = zxy + zxy;
radius = zxx + zyy;
}
template<>
inline void calculatePower<1>( double& /*zx*/, double& /*zy*/, double& /*radius*/ )
{
}
template<int N, Variant VARIANT>
static double calculateFast( double x, double y, double cx, double cy, int maxIterations )
{
double zx = x;
double zy = y;
for ( int k = maxIterations; k > 0; k-- ) {
adjust<VARIANT>( zx, zy );
double radius;
calculatePower<N>( zx, zy, radius );
if ( radius >= BailoutRadius )
return calculateResult( maxIterations, k, radius, N );
zx += cx;
zy += cy;
}
return 0.0;
}
class MandelbrotFastParams
{
public:
MandelbrotFastParams()
{
}
};
template<int N, Variant VARIANT>
class MandelbrotFastFunctor : public Functor, public MandelbrotFastParams
{
public:
MandelbrotFastFunctor( const MandelbrotFastParams& params ) : MandelbrotFastParams( params )
{
}
double operator()( double zx, double zy, int maxIterations )
{
return calculateFast<N, VARIANT>( zx, zy, zx, zy, maxIterations );
}
};
class JuliaFastParams : public MandelbrotFastParams
{
public:
JuliaFastParams( double cx, double cy ) : MandelbrotFastParams(),
m_cx( cx ),
m_cy( cy )
{
}
protected:
double m_cx;
double m_cy;
};
template<int N, Variant VARIANT>
class JuliaFastFunctor : public Functor, public JuliaFastParams
{
public:
JuliaFastFunctor( const JuliaFastParams& params ) : JuliaFastParams( params )
{
}
double operator()( double zx, double zy, int maxIterations )
{
return calculateFast<N, VARIANT>( zx, zy, m_cx, m_cy, maxIterations );
}
};
template<typename BASE, template<int N, Variant VARIANT> class FACTORY, int EXPONENT = MaxExponent>
class ExponentDispatcher
{
public:
template<typename PARAMS>
static BASE* create( int exponent, Variant variant, const PARAMS& params )
{
if ( exponent == EXPONENT )
return VariantDispatcher<BASE, FactoryAdapter>::create( variant, params );
return ExponentDispatcher<BASE, FACTORY, EXPONENT - 1>::create( exponent, variant, params );
}
private:
template<Variant VARIANT>
class FactoryAdapter
{
public:
template<typename PARAMS>
static BASE* create( const PARAMS& params )
{
return FACTORY<EXPONENT, VARIANT>::create( params );
}
};
};
template<typename BASE, template<int N, Variant VARIANT> class FACTORY>
class ExponentDispatcher<BASE, FACTORY, 1>
{
public:
template<typename PARAMS>
static BASE* create( int /*exponent*/, Variant /*variant*/, const PARAMS& /*params*/ )
{
return NULL;
}
};
template<typename BASE, template<int N, Variant VARIANT> class FUNCTOR>
class FastFunctorFactory
{
public:
template<typename PARAMS>
static BASE* create( int exponent, Variant variant, const PARAMS& params )
{
return ExponentDispatcher<BASE, InnerFactory>::create( exponent, variant, params );
}
private:
template<int N, Variant VARIANT>
class InnerFactory
{
public:
template<typename PARAMS>
static BASE* create( const PARAMS& params )
{
return new FUNCTOR<N, VARIANT>( params );
}
};
};
Functor* createMandelbrotFastFunctor( int exponent, Variant variant )
{
return FastFunctorFactory<Functor, MandelbrotFastFunctor>::create( exponent, variant, MandelbrotFastParams() );
}
Functor* createJuliaFastFunctor( double cx, double cy, int exponent, Variant variant )
{
return FastFunctorFactory<Functor, JuliaFastFunctor>::create( exponent, variant, JuliaFastParams( cx, cy ) );
}
void generatePreview( const Input& input, const Output& output, Functor* functor, int maxIterations )
{
for ( int y = 0; y < output.m_height; y += CellSize ) {
double* row = output.m_buffer + output.m_stride * y;
for ( int x = 0; x < output.m_width; x += CellSize ) {
double zx = input.m_x + input.m_ca * x + input.m_sa * y;
double zy = input.m_y - input.m_sa * x + input.m_ca * y;
row[ x ] = ( *functor )( zx, zy, maxIterations );
}
}
}
static inline bool checkThreshold( double p1, double p2, double threshold )
{
double pmin, pmax;
if ( p1 < p2 )
pmin = p1, pmax = p2;
else
pmin = p2, pmax = p1;
if ( pmin == 0.0 && pmax != 0.0 )
return true;
if ( ( pmax - pmin ) > threshold )
return true;
return false;
}
static inline bool checkThreshold( double p1, double p2, double p3, double p4, double threshold )
{
return checkThreshold( p1, p2, threshold )
|| checkThreshold( p3, p4, threshold )
|| checkThreshold( p1, p3, threshold )
|| checkThreshold( p2, p4, threshold );
}
void generateDetails( const Input& input, const Output& output, Functor* functor, int maxIterations, double threshold )
{
for ( int y = 0; y < output.m_height; y += CellSize ) {
double* row = output.m_buffer + output.m_stride * y;
for ( int x = 0; x < output.m_width - CellSize; x += CellSize ) {
double p1 = row[ x ];
double p2 = row[ x + CellSize ];
if ( checkThreshold( p1, p2, threshold ) ) {
for ( int i = 1; i < CellSize; i++ ) {
double zx = input.m_x + input.m_ca * ( x + i ) + input.m_sa * y;
double zy = input.m_y - input.m_sa * ( x + i ) + input.m_ca * y;
row[ x + i ] = ( *functor )( zx, zy, maxIterations );
}
}
}
}
for ( int y = 0; y < output.m_height - CellSize; y += CellSize ) {
double* row = output.m_buffer + output.m_stride * y;
for ( int x = 0; x < output.m_width; x += CellSize ) {
double p1 = row[ x ];
double p2 = row[ output.m_stride * CellSize + x ];
if ( checkThreshold( p1, p2, threshold ) ) {
for ( int i = 1; i < CellSize; i++ ) {
double zx = input.m_x + input.m_ca * x + input.m_sa * ( y + i );
double zy = input.m_y - input.m_sa * x + input.m_ca * ( y + i );
row[ output.m_stride * i + x ] = ( *functor )( zx, zy, maxIterations );
}
}
}
}
for ( int y = 0; y < output.m_height - CellSize; y += CellSize ) {
double* row = output.m_buffer + output.m_stride * y;
for ( int x = 0; x < output.m_width - CellSize; x += CellSize ) {
double p1 = row[ x ];
double p2 = row[ x + CellSize ];
double p3 = row[ output.m_stride * CellSize + x ];
double p4 = row[ output.m_stride * CellSize + x + CellSize ];
if ( checkThreshold( p1, p2, p3, p4, threshold ) ) {
for ( int i = 1; i < CellSize; i++ ) {
for ( int j = 1; j < CellSize; j++ ) {
double zx = input.m_x + input.m_ca * ( x + j ) + input.m_sa * ( y + i );
double zy = input.m_y - input.m_sa * ( x + j ) + input.m_ca * ( y + i );
row[ output.m_stride * i + x + j ] = ( *functor )( zx, zy, maxIterations );
}
}
}
}
}
}
void interpolate( const Output& output )
{
for ( int y = 0; y < output.m_height; y += CellSize ) {
double* row = output.m_buffer + output.m_stride * y;
for ( int x = 0; x < output.m_width - CellSize; x += CellSize ) {
double p1 = row[ x ];
double p2 = row[ x + CellSize ];
for ( int i = 1; i < CellSize; i++ )
row[ x + i ] = (double)( CellSize - i ) / (double)CellSize * p1 + (double)i / (double)CellSize * p2;
}
}
for ( int y = 0; y < output.m_height - CellSize; y += CellSize ) {
double* row = output.m_buffer + output.m_stride * y;
for ( int x = 0; x < output.m_width; x++ ) {
double p1 = row[ x ];
double p2 = row[ output.m_stride * CellSize + x ];
for ( int i = 1; i < CellSize; i++ )
row[ output.m_stride * i + x ] = (double)( CellSize - i ) / (double)CellSize * p1 + (double)i / (double)CellSize * p2;
}
}
}
#if defined( HAVE_SSE2 )
#if defined( Q_CC_MSVC )
# define ALIGNXMM( var ) __declspec(align(16)) var
#else
# define ALIGNXMM( var ) var __attribute__((aligned(16)))
#endif
enum CPUFeatures
{
MMX = 1,
SSE = 2,
SSE2 = 4
};
// based on qdrawhelper.cpp
static int detectCPUFeatures()
{
#if defined( __x86_64__ ) || defined( __ia64__ ) || defined( Q_OS_WIN64 )
return MMX | SSE | SSE2;
#elif defined( __i386__ ) || defined( _M_IX86 )
int result = 0;
#if defined( Q_CC_GNU )
asm( "push %%ebx\n"
"pushf\n"
"pop %%eax\n"
"mov %%eax, %%ebx\n"
"xor $0x00200000, %%eax\n"
"push %%eax\n"
"popf\n"
"pushf\n"
"pop %%eax\n"
"xor %%edx, %%edx\n"
"xor %%ebx, %%eax\n"
"jz 1f\n"
"mov $0x00000001, %%eax\n"
"cpuid\n"
"1:\n"
"pop %%ebx\n"
"mov %%edx, %0\n"
: "=r" ( result )
:
: "%eax", "%ecx", "%edx"
);
#elif defined ( Q_OS_WIN )
_asm {
push eax
push ebx
push ecx
push edx
pushfd
pop eax
mov ebx, eax
xor eax, 00200000h
push eax
popfd
pushfd
pop eax
mov edx, 0
xor eax, ebx
jz skip
mov eax, 1
cpuid
mov result, edx
skip:
pop edx
pop ecx
pop ebx
pop eax
}
#endif
int features = 0;
if ( result & ( 1 << 23 ) )
features |= MMX;
if ( result & ( 1 << 25 ) )
features |= SSE;
if ( result & ( 1 << 26 ) )
features |= SSE2;
return features;
#else
return 0;
#endif
}
static const int AvailableCPUFeatures = detectCPUFeatures();
bool isSSE2Available()
{
return AvailableCPUFeatures & SSE2;
}
template<int N>
static inline void calculatePowerSSE2( __m128d& zx, __m128d& zy, __m128d& radius )
{
if ( N % 2 == 0 ) {
calculatePowerSSE2<N / 2>( zx, zy, radius );
__m128d zxx = _mm_mul_pd( zx, zx );
__m128d zyy = _mm_mul_pd( zy, zy );
__m128d zxy = _mm_mul_pd( zx, zy );
zx = _mm_sub_pd( zxx, zyy );
zy = _mm_add_pd( zxy, zxy );
} else {
__m128d zx2 = zx;
__m128d zy2 = zy;
calculatePowerSSE2<N - 1>( zx2, zy2, radius );
__m128d zxx2 = _mm_mul_pd( zx, zx2 );
__m128d zxy2 = _mm_mul_pd( zx, zy2 );
__m128d zyx2 = _mm_mul_pd( zy, zx2 );
__m128d zyy2 = _mm_mul_pd( zy, zy2 );
zx = _mm_sub_pd( zxx2, zyy2 );
zy = _mm_add_pd( zxy2, zyx2 );
}
}
template<>
inline void calculatePowerSSE2<2>( __m128d& zx, __m128d& zy, __m128d& radius )
{
__m128d zxx = _mm_mul_pd( zx, zx );
__m128d zyy = _mm_mul_pd( zy, zy );
__m128d zxy = _mm_mul_pd( zx, zy );
zx = _mm_sub_pd( zxx, zyy );
zy = _mm_add_pd( zxy, zxy );
radius = _mm_add_pd( zxx, zyy );
}
template<>
inline void calculatePowerSSE2<1>( __m128d& /*zx*/, __m128d& /*zy*/, __m128d& /*radius*/ )
{
}
template<Variant VARIANT>
static void adjustSSE2( __m128d& /*zx*/, __m128d& /*zy*/ );
template<>
inline void adjustSSE2<NormalVariant>( __m128d& /*zx*/, __m128d& /*zy*/ )
{
}
template<>
inline void adjustSSE2<ConjugateVariant>( __m128d& /*zx*/, __m128d& zy )
{
__m128d mask = _mm_castsi128_pd( _mm_set_epi32( int( 0x80000000 ), 0, int( 0x80000000 ), 0 ) );
zy = _mm_xor_pd( mask, zy );
}
template<>
inline void adjustSSE2<AbsoluteVariant>( __m128d& zx, __m128d& zy )
{
__m128d mask = _mm_castsi128_pd( _mm_set_epi32( 0x7fffffff, int( 0xffffffff ), 0x7fffffff, int( 0xffffffff ) ) );
zx = _mm_and_pd( zx, mask );
zy = _mm_and_pd( zy, mask );
}
template<>
inline void adjustSSE2<AbsoluteImVariant>( __m128d& /*zx*/, __m128d& zy )
{
__m128d mask = _mm_castsi128_pd( _mm_set_epi32( 0x7fffffff, int( 0xffffffff ), 0x7fffffff, int( 0xffffffff ) ) );
zy = _mm_and_pd( zy, mask );
}
template<int N, Variant VARIANT>
static inline bool calculateStepSSE2( int k, __m128d& zx, __m128d& zy, __m128d cx, __m128d cy, __m128d rmax, int count[], double final[] )
{
adjustSSE2<VARIANT>( zx, zy );
__m128d radius;
calculatePowerSSE2<N>( zx, zy, radius );
int mask = _mm_movemask_pd( _mm_cmpge_pd( radius, rmax ) );
zx = _mm_add_pd( zx, cx );
zy = _mm_add_pd( zy, cy );
if ( mask ) {
if ( mask & 1 ) {
if ( !count[ 0 ] ) {
count[ 0 ] = k;
_mm_storel_pd( &final[ 0 ], radius );
if ( count[ 1 ] )
return true;
}
}
if ( mask & 2 ) {
if ( !count[ 1 ] ) {
count[ 1 ] = k;
_mm_storeh_pd( &final[ 1 ], radius );
if ( count[ 0 ] )
return true;
}
}
}
return false;
}
template<int N, Variant VARIANT, int STEPS>
class RepeatStepsSSE2
{
public:
static inline bool calculate( int k, __m128d& zx, __m128d& zy, __m128d cx, __m128d cy, __m128d rmax, int count[], double final[] )
{
if ( calculateStepSSE2<N, VARIANT>( k, zx, zy, cx, cy, rmax, count, final ) )
return true;
if ( RepeatStepsSSE2<N, VARIANT, STEPS - 1>::calculate( k - 1, zx, zy, cx, cy, rmax, count, final ) )
return true;
return false;
}
static const int Steps = STEPS;
};
template<int N, Variant VARIANT>
class RepeatStepsSSE2<N, VARIANT, 0>
{
public:
static inline bool calculate( int /*k*/, __m128d& /*zx*/, __m128d& /*zy*/, __m128d /*cx*/, __m128d /*cy*/, __m128d /*rmax*/, int /*count*/[], double /*final*/[] )
{
return false;
}
};
template<int N, Variant VARIANT>
class AutoStepsSSE2 : public RepeatStepsSSE2<N, VARIANT, ( N <= 5 ) ? 2 : 1>
{
};
template<int N, Variant VARIANT>
static inline void calculateSSE2( double result[], double x[], double y[], double cx[], double cy[], int maxIterations )
{
__m128d zx = _mm_load_pd( x );
__m128d zy = _mm_load_pd( y );
__m128d rcx = _mm_load_pd( cx );
__m128d rcy = _mm_load_pd( cy );
__m128d rmax = _mm_set1_pd( BailoutRadius );
int count[ 2 ] = { 0, 0 };
double final[ 2 ] = { 0.0, 0.0 };
for ( int k = maxIterations; k > 0; k -= AutoStepsSSE2<N, VARIANT>::Steps ) {
if ( AutoStepsSSE2<N, VARIANT>::calculate( k, zx, zy, rcx, rcy, rmax, count, final ) )
break;
}
result[ 0 ] = count[ 0 ] ? calculateResult( maxIterations, count[ 0 ], final[ 0 ], N ) : 0.0;
result[ 1 ] = count[ 1 ] ? calculateResult( maxIterations, count[ 1 ], final[ 1 ], N ) : 0.0;
}
template<int N, Variant VARIANT>
class MandelbrotFunctorSSE2 : public FunctorSSE2, public MandelbrotFastParams
{
public:
MandelbrotFunctorSSE2( const MandelbrotFastParams& params ) : MandelbrotFastParams( params )
{
}
void operator()( double result[], double zx[], double zy[], int maxIterations )
{
calculateSSE2<N, VARIANT>( result, zx, zy, zx, zy, maxIterations );
}
};
template<int N, Variant VARIANT>
class JuliaFunctorSSE2 : public FunctorSSE2, public JuliaFastParams
{
public:
JuliaFunctorSSE2( const JuliaFastParams& params ) : JuliaFastParams( params )
{
}
void operator()( double result[], double zx[], double zy[], int maxIterations )
{
ALIGNXMM( double cx[ 2 ] ) = { m_cx, m_cx };
ALIGNXMM( double cy[ 2 ] ) = { m_cy, m_cy };
calculateSSE2<N, VARIANT>( result, zx, zy, cx, cy, maxIterations );
}
};
FunctorSSE2* createMandelbrotFunctorSSE2( int exponent, Variant variant )
{
return FastFunctorFactory<FunctorSSE2, MandelbrotFunctorSSE2>::create( exponent, variant, MandelbrotFastParams() );
}
FunctorSSE2* createJuliaFunctorSSE2( double cx, double cy, int exponent, Variant variant )
{
return FastFunctorFactory<FunctorSSE2, JuliaFunctorSSE2>::create( exponent, variant, JuliaFastParams( cx, cy ) );
}
void generatePreviewSSE2( const Input& input, const Output& output, FunctorSSE2* functor, int maxIterations )
{
ALIGNXMM( double zx[ 2 ] );
ALIGNXMM( double zy[ 2 ] );
double result[ 2 ];
for ( int y = 0; y < output.m_height; y += CellSize ) {
double* row = output.m_buffer + output.m_stride * y;
for ( int x = 0; x < output.m_width; x += CellSize ) {
zx[ 0 ] = input.m_x + input.m_ca * x + input.m_sa * y;
zx[ 1 ] = zx[ 0 ] + input.m_ca * CellSize;
zy[ 0 ] = input.m_y - input.m_sa * x + input.m_ca * y;
zy[ 1 ] = zy[ 0 ] - input.m_sa * CellSize;
( *functor )( result, zx, zy, maxIterations );
row[ x ] = result[ 0 ];
if ( x + CellSize < output.m_width )
row[ x + CellSize ] = result[ 1 ];
}
}
}
void generateDetailsSSE2( const Input& input, const Output& output, FunctorSSE2* functor, int maxIterations, double threshold )
{
ALIGNXMM( double zx[ 2 ] );
ALIGNXMM( double zy[ 2 ] );
double result[ 2 ];
for ( int y = 0; y < output.m_height; y += CellSize ) {
double* row = output.m_buffer + output.m_stride * y;
for ( int x = 0; x < output.m_width - CellSize; x += CellSize ) {
double p1 = row[ x ];
double p2 = row[ x + CellSize ];
if ( checkThreshold( p1, p2, threshold ) ) {
for ( int i = 1; i < CellSize; i += 2 ) {
zx[ 0 ] = input.m_x + input.m_ca * ( x + i ) + input.m_sa * y;
zx[ 1 ] = zx[ 0 ] + input.m_ca;
zy[ 0 ] = input.m_y - input.m_sa * ( x + i ) + input.m_ca * y;
zy[ 1 ] = zy[ 0 ] - input.m_sa;
( *functor )( result, zx, zy, maxIterations );
row[ x + i ] = result[ 0 ];
if ( i + 1 < CellSize )
row[ x + i + 1 ] = result[ 1 ];
}
}
}
}
for ( int y = 0; y < output.m_height - CellSize; y += CellSize ) {
double* row = output.m_buffer + output.m_stride * y;
for ( int x = 0; x < output.m_width; x += CellSize ) {
double p1 = row[ x ];
double p2 = row[ output.m_stride * CellSize + x ];
if ( checkThreshold( p1, p2, threshold ) ) {
for ( int i = 1; i < CellSize; i += 2 ) {
zx[ 0 ] = input.m_x + input.m_ca * x + input.m_sa * ( y + i );
zx[ 1 ] = zx[ 0 ] + input.m_sa;
zy[ 0 ] = input.m_y - input.m_sa * x + input.m_ca * ( y + i );
zy[ 1 ] = zy[ 0 ] + input.m_ca;
( *functor )( result, zx, zy, maxIterations );
row[ output.m_stride * i + x ] = result[ 0 ];
if ( i + 1 < CellSize )
row[ output.m_stride * ( i + 1 ) + x ] = result[ 1 ];
}
}
}
}
for ( int y = 0; y < output.m_height - CellSize; y += CellSize ) {
double* row = output.m_buffer + output.m_stride * y;
for ( int x = 0; x < output.m_width - CellSize; x += CellSize ) {
double p1 = row[ x ];
double p2 = row[ x + CellSize ];
double p3 = row[ output.m_stride * CellSize + x ];
double p4 = row[ output.m_stride * CellSize + x + CellSize ];
if ( checkThreshold( p1, p2, p3, p4, threshold ) ) {
for ( int i = 1; i < CellSize; i++ ) {
for ( int j = 1; j < CellSize; j += 2 ) {
zx[ 0 ] = input.m_x + input.m_ca * ( x + j ) + input.m_sa * ( y + i );
zx[ 1 ] = zx[ 0 ] + input.m_ca;
zy[ 0 ] = input.m_y - input.m_sa * ( x + j ) + input.m_ca * ( y + i );
zy[ 1 ] = zy[ 0 ] - input.m_sa;
( *functor )( result, zx, zy, maxIterations );
row[ output.m_stride * i + x + j ] = result[ 0 ];
if ( j + 1 < CellSize )
row[ output.m_stride * i + x + j + 1 ] = result[ 1 ];
}
}
}
}
}
}
#endif // defined( HAVE_SSE2 )
} // namespace GeneratorCore
|