File: split_ref_by_bai_datasize.py

package info (click to toggle)
freebayes 1.3.9-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 6,984 kB
  • sloc: cpp: 125,778; ansic: 4,581; sh: 1,084; python: 672; asm: 271; javascript: 94; lisp: 85; makefile: 37; perl: 27
file content (168 lines) | stat: -rw-r--r-- 6,414 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
#!/usr/bin/env python3
"""
Create a list of regions by splitting a reference based on the amount of data in bam files.
Uses the `bai` index of the bam files. Useful for submitting jobs of equal size to a cluster.
"""

import sys
import os
import argparse
import time
import logging

import struct
import numpy as np
from scipy import interpolate


DEFAULT_LOGGING_LEVEL = logging.INFO
MAX_LOGGING_LEVEL = logging.CRITICAL

def setup_logger(verbose_level):
    fmt=('%(levelname)s %(asctime)s [%(module)s:%(lineno)s %(funcName)s] :: '
            '%(message)s')
    logging.basicConfig(format=fmt, level=max((0, min((MAX_LOGGING_LEVEL,
                        DEFAULT_LOGGING_LEVEL-(verbose_level*10))))))


def Main(argv):
    tic_total = time.time()

    # parse arguments
    parser = argparse.ArgumentParser(description=__doc__, formatter_class=argparse.ArgumentDefaultsHelpFormatter)
    parser.add_argument('bamfiles', metavar='BAMFILE', nargs='*')
    parser.add_argument('-L', '--bam-list', nargs='*')
    parser.add_argument('-r', '--reference-fai', help="reference fasta index file", required=True)
    parser.add_argument('-s', '--target-data-size', default='100e6', help="target combined data size of bam files in each region (MB)")
    parser.add_argument('--bai-interval-size', default=16384, type=int, help="Size in baseparis of each interval in the bam index (bai).")
    parser.add_argument('-v', '--verbose', action='count', default=0,
                        help="increase logging verbosity")
    parser.add_argument('-q', '--quiet', action='count', default=0,
                        help="decrease logging verbosity")
    args = parser.parse_args(argv)

    # setup logger
    setup_logger(verbose_level=args.verbose-args.quiet)
    if argv is not None:
        logging.warning('Using passed arguments: '+str(argv))
    logging.info('args: '+str(args))

    # additional argument parsing and datatype handling
    if not args.bamfiles and not args.bam_list:
        logging.error("Must provide an BAMFILE and/or --bam-list argument")
        sys.exit(2)
    args.target_data_size = int(float(args.target_data_size))*1000000
    logging.info('target-data-size: '+str(args.target_data_size)+' bytes')

    # read bam-lists if provided
    if args.bam_list:
        for bamlistfile in args.bam_list:
            with open(bamlistfile,'r') as fh:
                for x in fh:
                    x = x.split('#')[0].strip()
                    if x:
                        args.bamfiles.append(x)
    #logging.info('bam files: '+", ".join(args.bamfiles)) # output complete list of bam files being used

    # read the reference fasta index
    fai_chrom = []
    fai_len = []
    with open(args.reference_fai,'r') as fh:
        for x in fh:
            x = x.strip().split(sep='\t')
            fai_chrom.append(str(x[0]))
            fai_len.append(int(x[1]))


    ## read bai indexes, skipping bin info
    # list by chrom of number of intervals
    n_intvs = np.array([int(np.ceil(x/args.bai_interval_size)) for x in fai_len])
    # list by chrom of lists of interval offsets
    icumsz = [] # cumulative size of data by interval
    for i,n in enumerate(n_intvs):
        icumsz.append(np.zeros((n,), dtype=np.int64))

    for bamfn in args.bamfiles:
        baifn = bamfn+'.bai'
        with open(baifn,'rb') as fh:
            logging.info("processing: "+baifn)
            # filetype magic check
            assert struct.unpack('4s', fh.read(4))[0] == b'BAI\x01'

            # number of reference sequences (chroms)
            n_ref = struct.unpack('i', fh.read(4))[0]
            assert n_ref == len(fai_len), "fasta index and bam index have must have same number of chroms"

            for ci in range(n_ref):
                # skip over the binning index
                n_bin = struct.unpack('i', fh.read(4))[0]
                for bini in range(n_bin):
                    bin_id = struct.unpack('I', fh.read(4))[0]
                    n_chunk = struct.unpack('i', fh.read(4))[0]
                    fh.seek(n_chunk*16, os.SEEK_CUR)
                # read interval index
                n_intv = struct.unpack('i', fh.read(4))[0]
                if n_intv > 0:
                    ioff = np.array(struct.unpack(str(n_intv)+'Q', fh.read(n_intv*8)), dtype=np.int64)
                    while( len(ioff) < len(icumsz[ci]) ):
                        ioff = np.append(ioff, ioff[-1]+1)
                    icumsz[ci] += ioff-ioff[0]



    ## make the list of regions
    regions = []

    for ci,chrom in enumerate(fai_chrom):

        # sanity check last point if there are more than one
        if len(icumsz[ci]) > 1:
            assert icumsz[ci][-1] >= icumsz[ci][-2]

        # tiny chroms just get 1 region
        if len(icumsz[ci]) < 2:
            regions.extend([ (fai_chrom[ci], 0, fai_len[ci]) ])
            continue
        ds = icumsz[ci]
        pos = np.arange(0, ds.shape[0])*args.bai_interval_size

        # estimate total data size for the chrom
        f = interpolate.interp1d(pos, ds, fill_value='extrapolate', kind='linear')
        ds_total = f([fai_len[ci]])[0]

        num_regions = int(np.ceil(ds_total/args.target_data_size))

        # approx equal LENGTH regions
        # tmp = np.linspace(0, fai_len[ci], num=num_regions+1, endpoint=True, dtype=int)

        # approx equal DATA SIZE regions
        f = interpolate.interp1d(ds, pos, fill_value='extrapolate', kind='linear')
        dsx = np.linspace(0, ds_total, num=num_regions+1, endpoint=True, dtype=int)
        tmp = f(dsx).astype(int)
        # ensure we exactly hit the endpoints
        tmp[0] = 0
        tmp[-1] = fai_len[ci]

        regions.extend([ (fai_chrom[ci], tmp[i], tmp[i+1]) for i in range(len(tmp)-1) ])

    ## Output regions file
    for r in regions:
        print(*r, sep='\t')

    logging.info("Number of chroms: {}".format(len(fai_len)))
    logging.info("Number of splits: {}".format(len(regions)-len(fai_len)))
    logging.info("Number of regions: {}".format(len(regions)))

    logging.info("Done: {:.2f} sec elapsed".format(time.time()-tic_total))
    return 0



#########################################################################
# Main loop hook... if run as script run main, else this is just a module
if __name__ == '__main__':
    if 'TESTING_ARGS' in globals():
        sys.exit(Main(argv=TESTING_ARGS))
    else:
        sys.exit(Main(argv=None))