1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
|
/*
pqueue.c - implementation of a priority queue by using a binary heap.
Originally written by Justin-Heyes Jones
Modified by Shlomi Fish, 2000
This file is in the public domain (it's uncopyrighted).
Check out Justin-Heyes Jones' A* page from which this code has
originated:
http://www.geocities.com/jheyesjones/astar.html
*/
/* manage a priority queue as a heap
the heap is implemented as a fixed size array of pointers to your data */
#include <stdio.h>
#include <stdlib.h>
#include "jhjtypes.h"
#include "pqueue.h"
#ifdef DMALLOC
#include "dmalloc.h"
#endif
#define TRUE 1
#define FALSE 0
/* initialise the priority queue with a maximum size of maxelements. maxrating is the highest or lowest value of an
entry in the pqueue depending on whether it is ascending or descending respectively. Finally the bool32 tells you whether
the list is sorted ascending or descending... */
void freecell_solver_PQueueInitialise(
PQUEUE *pq,
int32 MaxElements,
pq_rating_t MaxRating,
int bIsAscending
)
{
pq->IsAscendingHeap = bIsAscending;
pq->MaxSize = MaxElements;
pq->CurrentSize = 0;
pq->Elements = (pq_element_t*) malloc( sizeof( pq_element_t ) * (MaxElements + 1) );
if( pq->Elements == NULL )
{
printf( "Memory alloc failed!\n" );
}
pq->MaxRating = MaxRating;
}
/* join a priority queue
returns TRUE if succesful, FALSE if fails. (You fail by filling the pqueue.)
PGetRating is a function which returns the rating of the item you're adding for sorting purposes */
int freecell_solver_PQueuePush( PQUEUE *pq, void *item, pq_rating_t r)
{
uint32 i;
if (pq->CurrentSize == pq->MaxSize )
{
int new_size;
new_size = pq->MaxSize + 256;
pq->Elements = (pq_element_t *)realloc( pq->Elements, sizeof(pq_element_t) * (new_size+1));
pq->MaxSize = new_size;
}
{
/* set i to the first unused element and increment CurrentSize */
i = (pq->CurrentSize += 1);
/* while the parent of the space we're putting the new node into is worse than
our new node, swap the space with the worse node. We keep doing that until we
get to a worse node or until we get to the top
note that we also can sort so that the minimum elements bubble up so we need to loops
with the comparison operator flipped... */
if( pq->IsAscendingHeap == TRUE )
{
while( ( i==PQ_FIRST_ENTRY ?
(pq->MaxRating) /* return biggest possible rating if first element */
:
(pq->Elements[ PQ_PARENT_INDEX(i) ].rating )
)
< r
)
{
pq->Elements[ i ] = pq->Elements[ PQ_PARENT_INDEX(i) ];
i = PQ_PARENT_INDEX(i);
}
}
else
{
while( ( i==PQ_FIRST_ENTRY ?
(pq->MaxRating) /* return biggest possible rating if first element */
:
(pq->Elements[ PQ_PARENT_INDEX(i) ].rating )
)
> r
)
{
pq->Elements[ i ] = pq->Elements[ PQ_PARENT_INDEX(i) ];
i = PQ_PARENT_INDEX(i);
}
}
/* then add the element at the space we created. */
pq->Elements[i].item = item;
pq->Elements[i].rating = r;
}
return TRUE;
}
int freecell_solver_PQueueIsEmpty( PQUEUE *pq )
{
/* todo assert if size > maxsize */
if( pq->CurrentSize == 0 )
{
return TRUE;
}
return FALSE;
}
/* free up memory for pqueue */
void freecell_solver_PQueueFree( PQUEUE *pq )
{
free( pq->Elements );
}
/* remove the first node from the pqueue and provide a pointer to it */
void *freecell_solver_PQueuePop( PQUEUE *pq)
{
int32 i;
int32 child;
pq_element_t pMaxElement;
pq_element_t pLastElement;
if( freecell_solver_PQueueIsEmpty( pq ) )
{
return NULL;
}
pMaxElement = pq->Elements[PQ_FIRST_ENTRY];
/* get pointer to last element in tree */
pLastElement = pq->Elements[ pq->CurrentSize-- ];
if( pq->IsAscendingHeap == TRUE )
{
/* code to pop an element from an ascending (top to bottom) pqueue */
/* UNTESTED */
for( i=PQ_FIRST_ENTRY; PQ_LEFT_CHILD_INDEX(i) <= pq->CurrentSize; i=child )
{
/* set child to the smaller of the two children... */
child = PQ_LEFT_CHILD_INDEX(i);
if( (child != pq->CurrentSize) &&
(PGetRating(pq->Elements[child + 1]) > PGetRating(pq->Elements[child])) )
{
child ++;
}
if( PGetRating( pLastElement ) < PGetRating( pq->Elements[ child ] ) )
{
pq->Elements[ i ] = pq->Elements[ child ];
}
else
{
break;
}
}
}
else
{
/* code to pop an element from a descending (top to bottom) pqueue */
for( i=PQ_FIRST_ENTRY; PQ_LEFT_CHILD_INDEX(i) <= pq->CurrentSize; i=child )
{
/* set child to the larger of the two children... */
child = PQ_LEFT_CHILD_INDEX(i);
if( (child != pq->CurrentSize) &&
(PGetRating(pq->Elements[child + 1]) < PGetRating(pq->Elements[child])) )
{
child ++;
}
if( PGetRating( pLastElement ) > PGetRating( pq->Elements[ child ] ) )
{
pq->Elements[ i ] = pq->Elements[ child ];
}
else
{
break;
}
}
}
pq->Elements[i] = pLastElement;
return pMaxElement.item;
}
|