1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
|
/*
* fcs_hash.c - an implementation of a simplistic (keys only) hash. This
* hash uses chaining and re-hashing and was found to be very fast. Not all
* of the functions of the hash ADT are implemented, but it is useful enough
* for Freecell Solver.
*
* Written by Shlomi Fish (shlomif@vipe.technion.ac.il), 2000
*
* This file is in the public domain (it's uncopyrighted).
*/
#include "config.h"
#if (FCS_STATE_STORAGE == FCS_STATE_STORAGE_INTERNAL_HASH) || (defined(INDIRECT_STACK_STATES) && (FCS_STACK_STORAGE == FCS_STACK_STORAGE_INTERNAL_HASH))
#include <stdlib.h>
#include <string.h>
#define DEBUG
#ifdef DEBUG
#include <stdio.h>
#endif
#include "fcs_hash.h"
#include "alloc.h"
#ifdef DMALLOC
#include "dmalloc.h"
#endif
static void SFO_hash_rehash(SFO_hash_t * hash);
SFO_hash_t * freecell_solver_hash_init(
SFO_hash_value_t wanted_size,
int (*compare_function)(const void * key1, const void * key2, void * context),
void * context
)
{
int size;
SFO_hash_t * hash;
/* Find a prime number that is greater than the initial wanted size */
size = 256;
while (size < wanted_size)
{
size <<= 1;
}
hash = (SFO_hash_t *)malloc(sizeof(SFO_hash_t));
hash->size = size;
hash->size_bitmask = size-1;
hash->num_elems = 0;
/* Allocate a table of size entries */
hash->entries = (SFO_hash_symlink_t *)malloc(
sizeof(SFO_hash_symlink_t) * size
);
hash->compare_function = compare_function;
hash->context = context;
/* Initialize all the cells of the hash table to NULL, which indicate
that the cork of the linked list is right at the start */
memset(hash->entries, 0, sizeof(SFO_hash_symlink_t)*size);
hash->allocator = freecell_solver_compact_allocator_new();
return hash;
}
void * freecell_solver_hash_insert(
SFO_hash_t * hash,
void * key,
SFO_hash_value_t hash_value,
SFO_hash_value_t secondary_hash_value,
int optimize_for_caching
)
{
int place;
SFO_hash_symlink_t * list;
SFO_hash_symlink_item_t * item, * last_item;
/* Get the index of the appropriate chain in the hash table */
place = hash_value & (hash->size_bitmask);
list = &(hash->entries[place]);
/* If first_item is non-existent */
if (list->first_item == NULL)
{
/* Allocate a first item with that key */
fcs_compact_alloc_into_var(item, hash->allocator, SFO_hash_symlink_item_t);
list->first_item = item;
item->next = NULL;
item->key = key;
item->hash_value = hash_value;
item->secondary_hash_value = secondary_hash_value;
goto rehash_check;
}
/* Initialize item to the chain's first_item */
item = list->first_item;
last_item = NULL;
while (item != NULL)
{
/*
We first compare the hash values, because it is faster than
comparing the entire data structure.
*/
if (
(item->hash_value == hash_value) &&
(item->secondary_hash_value == secondary_hash_value) &&
(!(hash->compare_function(item->key, key, hash->context)))
)
{
if (optimize_for_caching)
{
/*
* Place the item in the beginning of the chain.
* If last_item == NULL it is already the first item so leave
* it alone
* */
if (last_item != NULL)
{
last_item->next = item->next;
item->next = list->first_item;
list->first_item = item;
}
}
return item->key;
}
/* Cache the item before the current in last_item */
last_item = item;
/* Move to the next item */
item = item->next;
}
if (optimize_for_caching)
{
/* Put the new element at the beginning of the list */
fcs_compact_alloc_into_var(item, hash->allocator, SFO_hash_symlink_item_t);
item->next = list->first_item;
item->key = key;
item->hash_value = hash_value;
list->first_item = item;
item->secondary_hash_value = secondary_hash_value;
}
else
{
/* Put the new element at the end of the list */
fcs_compact_alloc_into_var(item, hash->allocator, SFO_hash_symlink_item_t);
last_item->next = item;
item->next = NULL;
item->key = key;
item->hash_value = hash_value;
item->secondary_hash_value = secondary_hash_value;
}
rehash_check:
hash->num_elems++;
if (hash->num_elems > ((hash->size*3)>>2))
{
SFO_hash_rehash(hash);
}
return NULL;
}
void freecell_solver_hash_free_with_callback(
SFO_hash_t * hash,
void (*function_ptr)(void * key, void * context)
)
{
int i;
SFO_hash_symlink_item_t * item, * next_item;
for(i=0;i<hash->size;i++)
{
item = hash->entries[i].first_item;
while (item != NULL)
{
function_ptr(item->key, hash->context);
next_item = item->next;
item = next_item;
}
}
freecell_solver_hash_free(hash);
}
void freecell_solver_hash_free(
SFO_hash_t * hash
)
{
freecell_solver_compact_allocator_finish(hash->allocator);
free(hash->entries);
free(hash);
}
/*
This function "rehashes" a hash. I.e: it increases the size of its
hash table, allowing for smaller chains, and faster lookup.
*/
static void SFO_hash_rehash(
SFO_hash_t * hash
)
{
int old_size, new_size, new_size_bitmask;
int i;
#if 0
SFO_hash_t * new_hash;
#endif
SFO_hash_symlink_item_t * item, * next_item;
int place;
SFO_hash_symlink_t * new_entries;
old_size = hash->size;
#if 0
/* Allocate a new hash with hash_init() */
new_hash = freecell_solver_hash_init_proto(
old_size * 2,
hash->compare_function,
hash->context
);
#endif
old_size = hash->size;
new_size = old_size << 1;
new_size_bitmask = new_size - 1;
new_entries = calloc(new_size, sizeof(SFO_hash_symlink_t));
/* Copy the items to the new hash while not allocating them again */
for(i=0;i<old_size;i++)
{
item = hash->entries[i].first_item;
/* traverse the chain item by item */
while(item != NULL)
{
/* The place in the new hash table */
place = item->hash_value & new_size_bitmask;
/* Store the next item in the linked list in a safe place,
so we can retrieve it after the assignment */
next_item = item->next;
/* It is placed in front of the first element in the chain,
so it should link to it */
item->next = new_entries[place].first_item;
/* Make it the first item in its chain */
new_entries[place].first_item = item;
/* Move to the next item this one. */
item = next_item;
}
};
/* Free the entries of the old hash */
free(hash->entries);
/* Copy the new hash to the old one */
#if 0
*hash = *new_hash;
#endif
hash->entries = new_entries;
hash->size = new_size;
hash->size_bitmask = new_size_bitmask;
}
#else
/* ANSI C doesn't allow empty compilation */
static void freecell_solver_hash_c_dummy();
#endif /* (FCS_STATE_STORAGE == FCS_STATE_STORAGE_INTERNAL_HASH) || defined(INDIRECT_STACK_STATES) */
|