File: fcc_solver.c

package info (click to toggle)
freecell-solver 3.26.0-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 4,864 kB
  • ctags: 3,658
  • sloc: ansic: 34,721; perl: 12,320; xml: 5,999; python: 1,149; sh: 965; ruby: 347; cpp: 304; makefile: 151
file content (940 lines) | stat: -rw-r--r-- 30,118 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
/* Copyright (c) 2012 Shlomi Fish
 *
 * Permission is hereby granted, free of charge, to any person
 * obtaining a copy of this software and associated documentation
 * files (the "Software"), to deal in the Software without
 * restriction, including without limitation the rights to use,
 * copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following
 * conditions:
 *
 * The above copyright notice and this permission notice shall be
 * included in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
 * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
 * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 */
/*
 * fcc_solver.c - a specialised solver that works by analyzing fully-connected
 * components (FCCs) of the Freecell graph.
 *
 * For more information see:
 *
 * ../docs/fully-connected-components-based-solver-planning.txt
 *
 */
#include <stdio.h>
#include <string.h>
#include <pthread.h>
#include <unistd.h>
#include <limits.h>
#include <signal.h>

#include "config.h"

#undef FCS_RCS_STATES

#include "bool.h"
#include "inline.h"
#include "portable_time.h"

#include "dbm_calc_derived.h"

#include "delta_states_any.h"

#include "dbm_common.h"
#include "dbm_solver.h"
#include "dbm_move_to_string.h"

#include "dbm_lru_cache.h"
#include "fcc_brfs.h"

struct fcs_fully_connected_component_struct
{
    /* The minimal state in the fully-connected component, according to
    the lexical sorting of the encoded state keys. This is used to identify
    it and avoid collisions and re-processing.
    */
    fcs_encoded_state_buffer_t min_by_sorting;
    /* The minimal state by absolute depth (including that of
    reversible moves). Not absolutely minimal, because the first
    $depth-1 FCC that reaches it, wins the jackpot.
    */
    fcs_encoded_state_buffer_t min_by_absolute_depth;
    /* Moves to the min_by_absolute_depth from the initial state.
    (accumlative).
    */
    fcs_fcc_moves_seq_t moves_seq_to_min_by_absolute_depth;
    struct fcs_fully_connected_component_struct * next;
};

typedef struct fcs_fully_connected_component_struct fcs_fully_connected_component_t;

typedef struct {
    /* All of these get recycled (and their memory reclaimed by the heap)
     * when we ascend to a new depth. */
    fcs_fully_connected_component_t * queue;
    fcs_fully_connected_component_t * queue_recycle_bin;
    fcs_compact_allocator_t queue_allocator;
    dict_t * does_min_by_sorting_exist;
    dict_t * does_min_by_absolute_depth_exist;
} fcs_fcc_collection_by_depth;

typedef struct {
    int curr_depth;
    long max_num_elements_in_cache;
    fcs_fcc_collection_by_depth FCCs_by_depth[MAX_FCC_DEPTH];
    /* No need to reset when we ascend to a new depth.
     * TODO : make sure the pointers to the encoded states
     * inside the cache are always valid.
     * TODO : might be easier to reset during every ascension.
     * */
    fcs_lru_cache_t cache;
    void * tree_recycle_bin;
} fcs_fcc_solver_state;

typedef struct {
    fcs_fcc_solver_state solver_state;
    long count_num_processed;
    long max_processed_positions_count;
    long FCCs_per_depth_milestone_step;
    long positions_milestone_step;
    FILE * out_fh;
    long num_FCCs_processed_for_depth;
    long num_unique_FCCs_for_depth;
    enum fcs_dbm_variant_type_t variant;
} fcs_dbm_solver_instance_t;

static GCC_INLINE void instance_init(
    fcs_dbm_solver_instance_t * instance,
    enum fcs_dbm_variant_type_t local_variant,
    long max_processed_positions_count,
    long positions_milestone_step,
    long FCCs_per_depth_milestone_step,
    FILE * out_fh
)
{
    instance->variant = local_variant;
    instance->count_num_processed = 0;
    instance->max_processed_positions_count = max_processed_positions_count;
    instance->positions_milestone_step = positions_milestone_step;
    instance->FCCs_per_depth_milestone_step = FCCs_per_depth_milestone_step;
    instance->out_fh = out_fh;
}

static GCC_INLINE void instance_destroy(
    fcs_dbm_solver_instance_t * instance
    )
{
    return;
}

typedef struct {
    fcs_dbm_solver_instance_t * instance;
    fc_solve_delta_stater_t * delta_stater;
} fcs_dbm_solver_thread_t;

typedef struct {
    fcs_dbm_solver_thread_t * thread;
} thread_arg_t;

static GCC_INLINE void init_solver_state(
    fcs_fcc_solver_state * solver_state,
    long max_num_elements_in_cache,
    fcs_meta_compact_allocator_t * meta_alloc
    )
{
    int i;

    solver_state->curr_depth = 0;
    solver_state->max_num_elements_in_cache = max_num_elements_in_cache;

    cache_init (
        &(solver_state->cache),
        max_num_elements_in_cache,
        meta_alloc
    );

    solver_state->tree_recycle_bin = NULL;

    for (i = 0 ; i < MAX_FCC_DEPTH ; i++)
    {
        fcs_fcc_collection_by_depth * fcc = &(solver_state->FCCs_by_depth[i]);
        fcc->queue = NULL;
        fcc->queue_recycle_bin = NULL;
        fc_solve_compact_allocator_init( &(fcc->queue_allocator), meta_alloc );
        fcc->does_min_by_sorting_exist
            = fc_solve_kaz_tree_create(fc_solve_compare_encoded_states, NULL, meta_alloc, &(solver_state->tree_recycle_bin));
        fcc->does_min_by_absolute_depth_exist
            = fc_solve_kaz_tree_create(fc_solve_compare_encoded_states, NULL, meta_alloc, &(solver_state->tree_recycle_bin));
    }
}

static GCC_INLINE void solver_state__free_dcc_depth(
    fcs_fcc_solver_state * solver_state,
    int depth,
    fcs_fcc_moves_seq_allocator_t * moves_list_allocator
    )
{
    fcs_fcc_collection_by_depth * fcc = &(solver_state->FCCs_by_depth[depth]);
    fcs_fully_connected_component_t * iter;

    if (! fcc->does_min_by_sorting_exist)
    {
        return;
    }
    else
    {
        fc_solve_kaz_tree_destroy(fcc->does_min_by_sorting_exist);
        fcc->does_min_by_sorting_exist = NULL;
    }
    /* We need to iterate over the queue before we dellocate its
     * memory by freeing the compact_allocator.
     * */
    for(
        iter = fcc->queue;
        iter;
        iter = iter->next
       )
    {
        if (iter->moves_seq_to_min_by_absolute_depth.moves_list)
        {
            fc_solve_fcc_release_moves_seq(
                &(iter->moves_seq_to_min_by_absolute_depth),
                moves_list_allocator
            );
        }
    }
    fcc->queue = NULL;
    if (fcc->does_min_by_absolute_depth_exist)
    {
        fc_solve_kaz_tree_destroy(fcc->does_min_by_absolute_depth_exist);
        fcc->does_min_by_absolute_depth_exist = NULL;
    }
    fc_solve_compact_allocator_finish(&(fcc->queue_allocator));

}

static GCC_INLINE void solver_state_free(
    fcs_fcc_solver_state * solver_state,
    fcs_fcc_moves_seq_allocator_t * moves_list_allocator
)
{
    int depth;
    for (depth = 0; depth < MAX_FCC_DEPTH ; depth++)
    {
        solver_state__free_dcc_depth(solver_state, depth, moves_list_allocator);
    }
    solver_state->curr_depth = depth;
    cache_destroy(&(solver_state->cache));
}

enum STATUS
{
    FCC_SOLVED = 0,
    FCC_IMPOSSIBLE,
    FCC_INTERRUPTED
};

static void instance_time_printf(
    fcs_dbm_solver_instance_t * instance,
    const char * format,
    ...
)
{
    fcs_portable_time_t mytime;
    va_list ap;
    FILE * fh = instance->out_fh;

    FCS_GET_TIME(mytime);
    fprintf(fh, "[T=%li.%.6li] ", FCS_TIME_GET_SEC(mytime), FCS_TIME_GET_USEC(mytime));
    va_start (ap, format);
    vfprintf(fh, format, ap);
    va_end(ap);
    fflush(fh);
}

#define STEP (instance->positions_milestone_step)

static GCC_INLINE void instance_print_processed_FCCs(
    fcs_dbm_solver_instance_t * instance
    )
{
    instance_time_printf(
        instance,
        "Processed %ld FCCs (%ld unique) for depth %d\n",
        instance->num_FCCs_processed_for_depth, instance->num_unique_FCCs_for_depth,
        instance->solver_state.curr_depth
    );
}

static GCC_INLINE void instance_print_reached(
    fcs_dbm_solver_instance_t * instance
    )
{
    instance_time_printf(
        instance,
        "Reached %li positions\n", instance->count_num_processed
        );
}

static int instance_run_solver(
    fcs_dbm_solver_instance_t * instance,
    long max_num_elements_in_cache,
    fcs_state_keyval_pair_t * init_state,
    fcs_fcc_moves_seq_t * out_moves_seq,
    fcs_fcc_moves_seq_allocator_t * moves_list_allocator,
    fcs_meta_compact_allocator_t * meta_alloc
)
{
    enum fcs_dbm_variant_type_t local_variant;
    fc_solve_delta_stater_t * delta;
    fcs_encoded_state_buffer_t init_state_enc;
    fcs_fcc_solver_state * solver_state;
    fcs_fcc_collection_by_depth * fcc_stage;
    fcs_fully_connected_component_t * fcc;
    int curr_depth;
    fcs_lru_cache_t * cache;
    int ret;
    long next_count_num_processed_landmark = STEP;
    long FCCs_per_depth_milestone_step;
    fcs_fcc_moves_seq_t ret_moves_seq;
    fcs_which_moves_bitmask_t which_no_use = {{'\0'}};

    local_variant = instance->variant;
    /* Initialize the state. */
    solver_state = &(instance->solver_state);
    init_solver_state(solver_state, max_num_elements_in_cache, meta_alloc);
    cache = &(solver_state->cache);

    instance->count_num_processed = 0;
    FCCs_per_depth_milestone_step = instance->FCCs_per_depth_milestone_step;

    /* Initialize local variables. */
    delta = fc_solve_delta_stater_alloc(
        &(init_state->s),
        STACKS_NUM,
        FREECELLS_NUM
#ifndef FCS_FREECELL_ONLY
        , FCS_SEQ_BUILT_BY_ALTERNATE_COLOR
#endif
    );

    fcs_init_and_encode_state(
        delta, local_variant, init_state, &init_state_enc
    );

    ret = FCC_IMPOSSIBLE;
    ret_moves_seq.count = 0;
    ret_moves_seq.moves_list = NULL;

    {
#define SUIT_LIMIT ( DECKS_NUM * 4 )
        int suit;

        for (suit = 0 ; suit < SUIT_LIMIT ; suit++)
        {
            if (fcs_foundation_value(init_state->s, suit) < RANK_KING)
            {
                break;
            }
        }

        if (suit == SUIT_LIMIT)
        {
            ret = FCC_SOLVED;
            goto free_resources;
        }
    }
#undef SUIT_LIMIT

    /* Bootstrap FCC depth 0 with the initial state. */
    fcc_stage = &(solver_state->FCCs_by_depth[0]);
    fcc_stage->queue = fcc =
        fcs_compact_alloc_ptr(
            &(fcc_stage->queue_allocator),
            sizeof(*(fcc_stage->queue))
        );

    fcc->min_by_absolute_depth = init_state_enc;
    fcc->moves_seq_to_min_by_absolute_depth.count= 0;
    fcc->moves_seq_to_min_by_absolute_depth.moves_list = NULL;
    fcc->next = NULL;

    instance->count_num_processed++;

    /* Now: iterate over the depths and generate new states. */
    for (curr_depth=0
         ;
         (ret == FCC_IMPOSSIBLE) && (curr_depth < MAX_FCC_DEPTH )
         ;
         solver_state->curr_depth = ++curr_depth,
         fcc_stage++
         )
    {
        dict_t * do_next_fcc_start_points_exist;
        instance->num_FCCs_processed_for_depth = 0;
        instance->num_unique_FCCs_for_depth = 0;

        do_next_fcc_start_points_exist
            = fc_solve_kaz_tree_create(fc_solve_compare_encoded_states, NULL, meta_alloc, &(solver_state->tree_recycle_bin));

        while ((ret == FCC_IMPOSSIBLE) && fcc_stage->queue)
        {
            fcs_FCC_start_point_t * start_point_iter;
            fcs_FCC_start_points_list_t next_start_points_list;
            fcs_bool_t is_fcc_new;
            fcs_encoded_state_buffer_t min_by_sorting;
            long num_new_positions;
            add_start_point_context_t add_start_point_context;

            fcc_stage->queue = ((fcc = fcc_stage->queue)->next);

            next_start_points_list.list = NULL;
            next_start_points_list.recycle_bin = NULL;
            fc_solve_compact_allocator_init(&(next_start_points_list.allocator), meta_alloc);

#if 0
            instance_time_printf (instance, "Before perform_FCC_brfs\n");
#endif

            add_start_point_context.do_next_fcc_start_points_exist = do_next_fcc_start_points_exist;
            add_start_point_context.next_start_points_list = &next_start_points_list;
            add_start_point_context.moves_list_allocator = moves_list_allocator;

            /* Now scan the new fcc */
            perform_FCC_brfs(
                local_variant,
                init_state,
                fcc->min_by_absolute_depth,
                &(fcc->moves_seq_to_min_by_absolute_depth),
                fc_solve_add_start_point_in_mem,
                &add_start_point_context,
                &is_fcc_new,
                &min_by_sorting,
                fcc_stage->does_min_by_sorting_exist,
                cache,
                &num_new_positions,
                moves_list_allocator,
                meta_alloc
            );

            start_point_iter = next_start_points_list.list;

#if 0
            instance_time_printf (instance, "After perform_FCC_brfs\n");
#endif

            if (( (++instance->num_FCCs_processed_for_depth)
                % FCCs_per_depth_milestone_step )
                    == 0
            )
            {
                instance_print_processed_FCCs(instance);
            }

            if (num_new_positions)
            {
                if ((instance->count_num_processed += num_new_positions) >= next_count_num_processed_landmark)
                {
                    instance_print_reached(instance);
                    next_count_num_processed_landmark = instance->count_num_processed;
                    next_count_num_processed_landmark += (STEP - (next_count_num_processed_landmark % STEP));
                    if (instance->count_num_processed >=
                        instance->max_processed_positions_count)
                    {
                        ret = FCC_INTERRUPTED;

                        goto fcc_loop_cleanup;
                    }
                }
            }

            if (is_fcc_new)
            {
                fcs_encoded_state_buffer_t * min_by_sorting_copy_ptr;

                instance->num_unique_FCCs_for_depth++;

                /* First of all, add min_by_sorting to
                 * fcc_stage->does_min_by_sorting_exist, so it won't be
                 * traversed again. We need to allocate a new copy because
                 * min_by_sorting is a temporary variable and the tree
                 * holds pointers.
                 * */
                min_by_sorting_copy_ptr = fcs_compact_alloc_ptr(
                    &(fcc_stage->does_min_by_sorting_exist->dict_allocator),
                    sizeof(*min_by_sorting_copy_ptr)
                    );

                *min_by_sorting_copy_ptr = min_by_sorting;

                fc_solve_kaz_tree_alloc_insert(
                    fcc_stage->does_min_by_sorting_exist,
                    min_by_sorting_copy_ptr
                );
            }

            /* Free fcc's resources. */
            fc_solve_fcc_release_moves_seq(
                &(fcc->moves_seq_to_min_by_absolute_depth),
                moves_list_allocator
            );

            /* Now: iterate over the next_start_points_list . */
            for (
                    ;
                 start_point_iter
                    ;
                 start_point_iter = start_point_iter->next
                )
            {
                int num_additional_moves;
                fcs_state_keyval_pair_t state;
                int start_point_new_FCC_depth;
                fcs_encoded_state_buffer_t enc_state;
                fcs_fcc_collection_by_depth * next_fcc_stage;

                DECLARE_IND_BUF_T(indirect_stacks_buffer)

                fc_solve_delta_stater_decode_into_state(
                    delta,
                    start_point_iter->enc_state.s,
                    &(state),
                    indirect_stacks_buffer
                );
                /* Perform Horne's Prune on the position to see where it ends up at. */
                /*  TODO : convert horne_prune to fcs_fcc_moves_seq_t . */
                num_additional_moves =
                    horne_prune(
                        local_variant,
                        &state,
                        &(which_no_use),
                        &(start_point_iter->moves_seq),
                        moves_list_allocator
                        );
                /* TODO : check that it's the final state. If
                 * so, do the cleanup and return the solution.
                 * */
                {
#define SUIT_LIMIT ( DECKS_NUM * 4 )
                    int suit;

                    for (suit = 0 ; suit < SUIT_LIMIT ; suit++)
                    {
                        if (fcs_foundation_value(state.s, suit) < RANK_KING)
                        {
                            break;
                        }
                    }

                if (suit == SUIT_LIMIT)
                {
                    /* State is solved! Yay! Cleanup and return. */
                    ret = FCC_SOLVED;
                    ret_moves_seq = start_point_iter->moves_seq;
                    /* Invalidate the existing ones so they won't be
                     * freed by accident.
                     * */
                    start_point_iter->moves_seq.moves_list = NULL;
                    start_point_iter->moves_seq.count = -1;

                    goto fcc_loop_cleanup;
                }
#undef SUIT_LIMIT

                fcs_init_and_encode_state(
                    delta,
                    local_variant,
                    &(state),
                    &enc_state
                    );

                    next_fcc_stage = &(solver_state->FCCs_by_depth[
                        start_point_new_FCC_depth =
                            curr_depth + 1 + num_additional_moves
                    ]);

                    if (!
                        fc_solve_kaz_tree_lookup_value(
                            next_fcc_stage->does_min_by_absolute_depth_exist,
                            &enc_state
                        )
                       )
                    {
                        fcs_fully_connected_component_t * next_fcc;
                        fcs_encoded_state_buffer_t * enc_state_copy_ptr;

                        enc_state_copy_ptr = fcs_compact_alloc_ptr(
                            &(next_fcc_stage->does_min_by_absolute_depth_exist->dict_allocator),
                            sizeof(*enc_state_copy_ptr)
                            );
                        *enc_state_copy_ptr = enc_state;

                        fc_solve_kaz_tree_alloc_insert(
                            next_fcc_stage->does_min_by_absolute_depth_exist,
                            enc_state_copy_ptr
                        );

                        if (next_fcc_stage->queue_recycle_bin)
                        {
                            fcs_fully_connected_component_t * temp_fcc;
                            temp_fcc = next_fcc_stage->queue_recycle_bin->next;
                            next_fcc_stage->queue_recycle_bin->next =
                                next_fcc_stage->queue;
                            next_fcc_stage->queue = next_fcc_stage->queue_recycle_bin;
                            next_fcc_stage->queue_recycle_bin = temp_fcc;
                        }
                        else
                        {
                            fcs_fully_connected_component_t * temp_fcc;
                            temp_fcc =
                                fcs_compact_alloc_ptr(
                                    &(next_fcc_stage->queue_allocator),
                                    sizeof(*(next_fcc_stage->queue))
                                );
                            temp_fcc->next = next_fcc_stage->queue;
                            next_fcc_stage->queue = temp_fcc;
                        }
                        next_fcc = next_fcc_stage->queue;

                        next_fcc->min_by_absolute_depth = enc_state;
                        next_fcc->moves_seq_to_min_by_absolute_depth = start_point_iter->moves_seq;
                    }
                    else
                    {
                        fc_solve_fcc_release_moves_seq(
                            &(start_point_iter->moves_seq),
                            moves_list_allocator
                        );
                    }
                }
            }

fcc_loop_cleanup:
            {
                fcs_FCC_start_point_t * more_start_point_iter;
                for(
                    more_start_point_iter = start_point_iter;
                    more_start_point_iter;
                    more_start_point_iter = more_start_point_iter->next
                   )
                {
                    fc_solve_fcc_release_moves_seq(
                        &(more_start_point_iter->moves_seq),
                        moves_list_allocator
                        );
                }
            }

            /* Free the next_start_points_list */
            fc_solve_compact_allocator_finish(&(next_start_points_list.allocator));

            /* Free fcc's resources. */
            fc_solve_fcc_release_moves_seq(
                &(fcc->moves_seq_to_min_by_absolute_depth),
                moves_list_allocator
            );

            /* -> Put it in the queue's recycle bin. */
            fcc->next = fcc_stage->queue_recycle_bin;
            fcc_stage->queue_recycle_bin = fcc;
        }

        /* Now ascend to the next FCC depth. */
        fc_solve_kaz_tree_destroy(do_next_fcc_start_points_exist);
        solver_state__free_dcc_depth(solver_state, curr_depth, moves_list_allocator);
        /* -> Refresh the cache, because it may hold pointers that are
         * out-of-date.
         * */
        cache_destroy(cache);
        cache_init (cache, max_num_elements_in_cache, meta_alloc);
        /*
         * A trace for keeping track of the solver's progress.
         * TODO : make it optional/abstract and add more traces.
         */
        instance_time_printf (instance, "Finished checking FCC-depth %d (Total processed FCCs for depth - %ld)\n", curr_depth, instance->num_FCCs_processed_for_depth);
    }

free_resources:
    solver_state_free(solver_state, moves_list_allocator);
    fc_solve_delta_stater_free(delta);

    *(out_moves_seq) = ret_moves_seq;

    return ret;
}

typedef struct {
    fcs_dbm_solver_thread_t thread;
    thread_arg_t arg;
    pthread_t id;
} main_thread_item_t;

#define USER_STATE_SIZE 2000

static fcs_dbm_solver_instance_t * global_instance_ptr;

static void command_signal_handler(int signal_num GCC_UNUSED)
{
    instance_print_processed_FCCs( global_instance_ptr );
    instance_print_reached( global_instance_ptr );
}

int main(int argc, char * argv[])
{
    /* Temporarily #if'ed away until we finish working on instance_run_solver
     * */
    enum fcs_dbm_variant_type_t local_variant;
    fcs_dbm_solver_instance_t instance;
    long caches_delta;
    long max_processed_positions_count = LONG_MAX;
    long positions_milestone_step = 100000;
    int num_threads;
    int arg;
    const char * filename;
    const char * out_filename = NULL;
    FILE * fh, * out_fh;
    char user_state[USER_STATE_SIZE];
    fcs_state_keyval_pair_t init_state;
    fcs_fcc_moves_seq_t ret_moves_seq, init_moves_seq;
    long FCCs_per_depth_milestone_step;
    int ret_code;
    fcs_fcc_moves_seq_allocator_t moves_list_allocator;
    fcs_compact_allocator_t moves_list_compact_alloc;
    fcs_meta_compact_allocator_t meta_alloc;
    DECLARE_IND_BUF_T(init_indirect_stacks_buffer)

    local_variant = FCS_DBM_VARIANT_2FC_FREECELL;
    caches_delta = 1000000;
    num_threads = 2;
    FCCs_per_depth_milestone_step = 10000;
    global_instance_ptr = &instance;

    for (arg=1;arg < argc; arg++)
    {
        if (!strcmp(argv[arg], "--caches-delta"))
        {
            arg++;
            if (arg == argc)
            {
                fprintf(stderr, "--caches-delta came without an argument!\n");
                exit(-1);
            }
            caches_delta = atol(argv[arg]);
            if (caches_delta < 1000)
            {
                fprintf(stderr, "--caches-delta must be at least 1,000.\n");
                exit(-1);
            }
        }
        else if (!strcmp(argv[arg], "-o"))
        {
            arg++;
            if (arg == argc)
            {
                fprintf(stderr, "-o requires an argument!\n");
                exit(-1);
            }
            out_filename = argv[arg];
        }
        else if (!strcmp(argv[arg], "--max-iters"))
        {
            arg++;
            if (arg == argc)
            {
                fprintf(stderr, "--max-iters came without an argument!\n");
                exit(-1);
            }
            max_processed_positions_count = atol(argv[arg]);
        }
        else if (!strcmp(argv[arg], "--positions-milestone-step"))
        {
            arg++;
            if (arg == argc)
            {
                fprintf(stderr, "--positions-milestone-step came without an argument!\n");
                exit(-1);
            }
            positions_milestone_step = atol(argv[arg]);
        }
        else if (!strcmp(argv[arg], "--fccs-milestone-step"))
        {
            arg++;
            if (arg == argc)
            {
                fprintf(stderr, "--fcc-milestone-step came without an argument!\n");
                exit(-1);
            }
            FCCs_per_depth_milestone_step = atol(argv[arg]);
        }
        else if (!strcmp(argv[arg], "--num-threads"))
        {
            arg++;
            if (arg == argc)
            {
                fprintf(stderr, "--num-threads came without an argument!\n");
                exit(-1);
            }
            num_threads = atoi(argv[arg]);
            if (num_threads < 1)
            {
                fprintf(stderr, "--num-threads must be at least 1.\n");
                exit(-1);
            }
        }
        else
        {
            break;
        }
    }

    if (arg < argc-1)
    {
        fprintf (stderr, "%s\n", "Junk arguments!");
        exit(-1);
    }
    else if (arg == argc)
    {
        fprintf (stderr, "%s\n", "No board specified.");
        exit(-1);
    }

    filename = argv[arg];

    if (out_filename)
    {
        if (!(out_fh = fopen(out_filename, "wt")))
        {
            fprintf(stderr, "Cannot open '%s' for writing.", out_filename);
            exit(-1);
        }
    }
    else
    {
        out_fh = stdout;
    }

    instance_init(
        &instance,
        local_variant,
        max_processed_positions_count,
        positions_milestone_step,
        FCCs_per_depth_milestone_step,
        out_fh
    );
    fh = fopen(filename, "r");
    if (fh == NULL)
    {
        fprintf (stderr, "Could not open file '%s' for input.\n", filename);
        exit(-1);
    }
    memset(user_state, '\0', sizeof(user_state));
    fread(user_state, sizeof(user_state[0]), USER_STATE_SIZE-1, fh);
    fclose(fh);

    fc_solve_initial_user_state_to_c(
        user_state,
        &init_state,
        FREECELLS_NUM,
        STACKS_NUM,
        DECKS_NUM,
        init_indirect_stacks_buffer
    );

    fc_solve_meta_compact_allocator_init(&meta_alloc);
    fc_solve_compact_allocator_init(&(moves_list_compact_alloc), &(meta_alloc));
    moves_list_allocator.recycle_bin = NULL;
    moves_list_allocator.allocator = &(moves_list_compact_alloc);
    init_moves_seq.moves_list = NULL;
    init_moves_seq.count = 0;
    {
        fcs_which_moves_bitmask_t which_no_use = {{'\0'}};
        horne_prune(local_variant, &init_state, &which_no_use, &init_moves_seq, &moves_list_allocator);
    }

#ifndef WIN32
    signal(SIGUSR1, command_signal_handler);
#endif

    ret_code = instance_run_solver(
        &instance,
        caches_delta,
        &init_state,
        &ret_moves_seq,
        &moves_list_allocator,
        &meta_alloc
    );

    if (ret_code == FCC_SOLVED)
    {
        int i;
        char move_buffer[500];
        const fcs_fcc_moves_list_item_t * iter;

        fprintf (out_fh, "VERDICT: %s\n", "Success!");
        /* Now trace the solution */
        iter = init_moves_seq.moves_list;
        for (i = 0 ; i < init_moves_seq.count ;)
        {
            fprintf(out_fh, "==\n%s\n",
                   move_to_string(
                       iter->data.s[i%FCS_FCC_NUM_MOVES_IN_ITEM],
                       move_buffer
                   )
            );
            if ((++i) % FCS_FCC_NUM_MOVES_IN_ITEM == 0)
            {
                iter = iter->next;
            }
        }
        iter = ret_moves_seq.moves_list;
        for (i = 0 ; i < ret_moves_seq.count ;)
        {
             fprintf(out_fh, "==\n%s\n",
                   move_to_string(
                       iter->data.s[i%FCS_FCC_NUM_MOVES_IN_ITEM],
                       move_buffer
                   )
            );
            if ((++i) % FCS_FCC_NUM_MOVES_IN_ITEM == 0)
            {
                iter = iter->next;
            }
        }
        fprintf (out_fh, "==\nEND\n");
    }
    else if (ret_code == FCC_IMPOSSIBLE)
    {
        fprintf (out_fh, "VERDICT: %s\n", "Could not solve successfully.");
    }
    else if (ret_code == FCC_INTERRUPTED)
    {
        fprintf (out_fh, "VERDICT: %s\n", "Interrupted run after limit reached.");
    }
    else
    {
        fprintf (out_fh, "VERDICT: %s\n", "Unknown return code. ERROR.");
    }

    instance_time_printf(
        &instance,
        "{FINAL} Reached %li positions in total.\n", instance.count_num_processed
        );

    instance_destroy(&instance);

    fc_solve_compact_allocator_finish(&moves_list_compact_alloc);
    fc_solve_meta_compact_allocator_finish(&meta_alloc);

    fclose(out_fh);

    return 0;
}